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LOCALLY CONVEX SPACES
OF NON-ARCHIMEDEAN VALUED CONTINUOUS

FUNCTIONS

WILLY GOVAERTS

We study the space C( X, K, <3)) of all continuous functions from the
ultraregular space X into the non-Archimedean valued field K with
topology of uniform convergence on a family 9 of subsets of the
Z-repletion of X. We characterize the bornological space associated to
C(X, K, <5P), semi-bornological spaces C(X,K,9), reflexivity and
semi-reflexivity both for spherically complete and non-spherically com-
plete K.

1. Introduction. Throughout this paper, K is a complete non-triv-

ially non-Archimedean valued field and X is an ultraregular ( = zero-

dimensional Hausdorff) space. Then X Q vκX Q v0X Q β0X where vκX,

v0X and β0X are the ΛΓ-repletion, Z-repletion and Banaschewski com-

pactification of X, respectively. If K has nonmeasurable cardinal, then

vκX — VQX[\, Theorem 15].

The set \K\— {|λ|: λ E K) is provided with a topology in which all

points are discrete, except for 0, whose neighborhoods are the usual ones.

IKI is a complete metric space under the metric

Hence \K\is Z-replete [1, Theorem 9], so |/ | can be extended continu-

ously over the whole of v0X whenever / belongs to the vector space

C( X, K) of all continuous functions from Xinto K.

A set A c v0X is called bounding if \\f\\A '-= sup x G / ί | / | (x) < °o for

all / E C(X, K). We omit the relatively easy proof of the following:

PROPOSITION 1. The following are equivalent for A C v0X\

(i) A is bounding.

(ii) Every g E C( υ0 X, \ K |) is bounded on A.

(iii) // (Ui)^=zl is a partition of v0X in open-and-closed subsets, then

Ut Π A = 0 for all but finitely many i.

(iv) Ifg E C(υ0X, \K\), then g(A) is compact in \K\.

(v) Ifg£ C(v0X, \K\), then g(A) is relatively compact in\K\.

(vi) Av°x is compact.
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Let <? be an arbitrary family of subsets of u0 X such that Y$ : = U ̂  is

dense in υ0X. Let C(X, K, <3>) be the Hausdorff locally convex space

C(X, K) with topology of uniform convergence on all members of ty.

Without loss of generality we assume:

(i) If A, B G <3\ then A U B G <3\

(ii) If A G <3\ B C Λ, then fiG?.

(iii)IfΛ G<3\ then Λ~y" G <3\

If <*? is the set %{X) (resp. 6E(A')) of all compact (resp. finite) subsets

of X9 then we write CC(X, K) (resp. CS(X9 K)) instead of C(X, K, 6J)).

DEFINITION 2. The family Φ : = ( 5 c υ0X: 3 ΰ ' G ? with 5 c 5"°*}

is called the extended family of 9.

P̂ and ̂ P induce the same topology on C(X, K). P̂ satisfies (i)-(iii) as

well as

(iii)' UAeΨ, thenAυoχ eΦ.

DEFINITION3. If A Cυ0X9AnQυ0XΐoτaΆn= 1,2,... then (^, ?)^= 1

is /I-finite ΊίAnΓ\ A — 0 for all but finitely many n. (An)™=ι is ̂ -finite if

it is A -finite for all A G <3\

PROPOSITION 4. Le/ KP C Z C u o l , y4 C Z . 7%e following are equiva-

lent:

(a) Every bounded subset of C(X, K^ty) is uniformly bounded on A.

(b) // {An)°£=x is a ^-finite sequence of open subsets of Z, then it is

A-finite.

In (b) we can replace "open" by "clopen" and/or " Z " by "v0X".

DEFINITION 5. Let KP C Z C v0X. The Z-saturated family <3>z associ-

ated to ^ is the set of all A C Z that satisfy one of the conditions

mentioned in Proposition 4. P̂ is Z-saturated iff %z — ̂ P. We write ^

instead of Ψ°x.

2. Completeness and quasi-completeness. The results in this section

are relatively easy and are stated here mainly for further use.

THEOREM 6. Assume Y-f C vκX and let Fύ}{X, K) be the set of all f:

Y$ -> K that are continuous on every A G ̂ P. Then:

(1) FO?(X, K) is a vector space over K and contains C(X, K) as a

subspace.

(2) E9(X, K) is a locally convex space under the semi-norms \\ \\A

(A Eψ)where\\f\\A:=sup^A\f(x)\.
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(3) The natural imbedding C{ X, K, <3)) -> E?(X9 K) is an into homeo-
morphism.

(4) F$( X, K) is complete and contains C{ X, AΓ?

 <3>) as a dense subspace;
hence it is a completion of C{ X, K, <$).

THEOREM 7. Assume Y$ C vκX. The following are equivalent.
( l ) C ( U , ? ) is complete.
(2) C( X9K,<>?) is quasi-complete.
(3) // /: Y-? -> K is continuous on every A E (3), ί/zeπ ίftere w α

thatf(x) = g(jc) /or α// c G KτP.

. (hint for (2) => (3)). Let / be as stated. Choose a sequence

= l in AT with |λ; ϊ | -» oc. For all AI put

SH= {g e C(X, K):\g(x)\<:\λH\foτ aΆx e X}.

By quasi-completeness there is a function/,' E C( X, K7 P̂) with

, , = ί/(x) if | / W | < | λ n | a n d x e 7 ?,
Λ Λ j [λ i f | /(x) |> |λ

Let 5 = [g E C(X, A:): \g(x)\<\f(x)\ for all x G Y$}. By quasi-
completeness, the Cauchy-net (/?0/?=i ^n ^ has a limit g and g(x) = f(x)
for all Λ: G K?.

REMARK 8. For spherically complete Â  an example of a quasi-com-
plete, non-complete locally convex space over K may be constructed as in
the real case ([2, Chap. Ill, §2.5.]; communicated by N. De Grande-De
Kimpe).

3. The bornological space associated to C(X,K,ty). J. Schmets
[10, Theoreme III. 12] characterized the bornological space associated to
C( X, ίP), the classical (Archimedean) analogue of C( X, K, <?). We give an
analogous characterization of the bornological space associated to
C( X, K, ^P). We assume the reader consults [10] and mainly stress the new
features.

It is nice to remark that completeness of K can be dispensed with in
this section.
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DEFINITION 9. I f / E C(X9 K)9 put Δ(/) - {g E C(X9 K): | g | < | / | } .

In particular, put Δ = Δ(l). Let / be the continuous extension of / to a

function β0X-* β0K.

Let D be an absolutely convex absorbing subset of C(X9 K) such that

Δ c D. A compact subset A oί βQX is called a carrier of D if f E D

whenever/vanishes on A

The set of all carriers of D will be denoted by (3,D.

LEMMA 10. Let A C β0X be compact. Iff E D whenever f vanishes on a

neighborhood of A in β0X, then A E &D.

LEMMA 11. If A, B E $ D , r/ze« .4 Π J? E &D.

LEMMA 12. ffi^ contains a smallest element %(D).

LEMMA 13. // / (*) E { λ 6 ί : | λ | < \}β°κ for all x E K(D)9 then

LEMMA 14. The following are equivalent:

(a)K(D)Qυ0X.

(b) 2) w α neighborhood in C(X9 K9 %(v0X)).

(c) Z) w bornivorous in C(X9 K, %(υ0X)).

The above results are in a form that make them comparable with the

Archimedean ones as given in [10, Theoreme III. 1.2 and related results].

The Archimedean analogues go back to [9].

THEOREM 15. C(X, K, fy) is the bornological space associated to

C(X9K9Φ).

Proof. By (a) of Lemma 4, it suffices to prove that C(X9 K,^) is

bornological. Let D be an absolutely convex bornivorous subset of

C(X9 K, ty). We may assume Δ C D (for Δ is bounded). By Lemma 14 we

have K{D)Qυ0X\ from Lemma 13 we induce that { / E C ( I J ) :

\\f\\κ(D) ~ι) ^ D Hence it suffices to prove that K(D) E # . Suppose

not.

By Lemma 4(b) there is a ^P-finite sequence (An)™=ι of open subsets

of v0X that is not K(D)-finite. We may assume each An to be open-and-

closed and An Π K(D) Φ 0 for all n. For all n there is an/π E C(X9 K)

with /„ - 0 on β0X\An and fn&D (since β0X\An & &D). If λ 0 E K9

0 < | λ o | < 1, then U * = 1 KK Ω i s bounded in C(X9 K, ί3)) so there is a
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λ G K with LΓ= 1 Δ(λό'%) C λD. Then for all njn G λn

oλD, a contradic-
tion.

COROLLARY 16. ([5, 6]). If 9 = %(X)or<3> = &(X), then C(X, K, 9)
is bornological iff X is Z-replete.

4. Semi-bornological spaces C(X, K, 9) and C(X, 9). In this sec-
tion we characterize the semi-bornological spaces C(X, K,9) as well as
their Archimedean counterparts C(X, 9). In the non-Archimedean setting
semi-bornological spaces C(X, K, 9) are bornological in most practically
occurring cases. In the Archimedean setting this turns out not to be true.

We use the notations of A. C. M. Van Rooij [11] on non-Archimedean
measure theory. The notations on C(X,9) are taken from J. Schmets [10].
In particular, X then denotes a completely regular Hausdorff space. Our
main result is the following:

THEOREM 17. IfC(X, K, 9) is bornological {equivalently, # C 9), then
it is semi-bornological. Conversely, assume that either K is spherically
complete or has non-measurable cardinality. Then, if C(X, K,9) is semi-
bornological, it is bornological.

Proof. We prove only the second part. Let A G 9; we may assume A
is closed in Av°x, i.e. A is compact. From [11, Theorem 7.9] we infer that
there is a non-Archimedean measure μ on A such that, for every open-
and-closed subset B C A there is an / G C{A, K) with Il/H^^ = 0 and
jAfdμ φ 0. Define L: C(v0X, K) -> K by L(f) = jAfdμ. Then L is
linear and | L(f) |< \\f\\A \\A\\μ for/ G C(v0X, K). By the assumption on
K in the theorem we may assume L is defined on the whole of C(X, K)
with I L(f) |< 11/11,, \\A\\μ for all/ G C(X9 K).

Since v4 G 9, L is bounded (Lemma 4 and Definition 5) so L is
continuous. Let 4̂' G ̂ P be such that L is || \\A. continuous; we prove
A ( ΛfvQΛ

Suppose not. Let A" be an open-and-closed subset of A\A'. Let
/ G C(v4, ΛΓ) be zero on A\Af and fA fdμ φ 0. Since A" is compact, /can
be extended to a function in C(̂ 4 U yί/υ();r, K) with | | / | |^ = 0. By com-
pleteness of K and compactness of A U A'v°x it follows from [11, Theorem
5.24} that /can be extended to a function in C(v0X, K). Hence | | / | |^ = 0
and L(f) φ 0, a contradiction.

Surprisingly, the Archimedean analogue of Theorem 17 does not
hold; a more complicated theory has to be developed. We make free use
of the notations in [10].
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DEFINITION 18. A Radon measure μ on a compact Hausdorff space A

is called strictly positive if | μ \ (U) ¥= 0 for every non-empty open subset U

of A.

The strict family associated to $ is ^PstΓ = [A E Φ: AvX carries a

strictly positive measure}.

Remark that %iτ satisfies (i)-(iϋ) and Y^ = Kp. We have (a)=>(β)

=> (γ) where:

(α) 4̂ is separable.

(β) A carries a strictly positive measure.

(γ) Every family of nonempty disjoint open subsets of A is countable.

LEMMA 19. Let L: C(X,9) ^R be bounded and linear. Then it is

continuous on C(X,(Ψ)str).

Proof. Cf. [7, Lemma 1].

LEMMA 20. Assume f and S satisfy (i)-(iii) and ? c ΐ / / C ( I , 2 ) is
semi-bornological, then (<3 ) u) s t r C S.

Proof. Let A E (^ ) ι ;) s t r. We may assume A is compact. Let μ be a

strictly positive measure on A and put L(f) = jA fdμ. Then L is bounded

on all ̂ -bounded sets.

Since ί c δ and C(X9&) is semi-bornological, it follows that L is

continuous on C(X, S). Let ΰ G S and ε > 0 be such that | L ( / ) | < 1

whenever 11/11 β < ε.

We may assume 5 is compact; a standard device then shows that

A QB. Hence A E S.

THEOREM 21. ΓΛere w α smallest family ®L of relatively compact subsets

of vX such that (a)-(c) hold:

(a) $, satisfies (i)-(iv).

(b) a D ̂
(c) C( X, S ) w semi-bornological.

Actually, Q= {A Q vX: there exist Ax ^Φ, A2£ ( # υ ) s t r such that A C

Proof. From Lemmas 19 and 20.

COROLLARY 22. C(X,9) is semi-bornological iff(^v)sir C Ψ.
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REMARKS 23. (a) Let X be a compact Hausdorff space that carries no

strictly positive measure and put 9 = (%(X))str. Then ( # v ) s t r C

(%(X))str = 9 C «P so C(X9 9) is semi-bornological. On the other hand,

C(X,Φ) is not bornological; in fact CC(X) is the bornological space

associated to C( X, <*P).

(b) Clearly <3> C <? C Ψ and <3>str C <3\ Less trivially we have (%r)
v D

tyVm

9 this is proved by an argument involving the fact that separable

members of <5P belong to ^Pstr.

THEOREM 24. Let 9 = %(X) or 9 = &(X). The following are equiva-

lent:

(\)C(X99)is bornological.

(2) C(X99) is semi-bornological.

(3) X = vX.

Proof. The equivalence of (1) and (3) is known ([10]), while (1) =» (2)

is trivial.

To prove (2) => (3) remark that &(X)V = &(vX) ([10, III.4.3]) so

(&(X)υ)stτ = &(υX). lϊ($ = %(X), see [10, IIL2.4].

5. Reflexivity and semi-reflexivity for non spherically complete K.
In this section we assume Yψ C vκX. Since Y$ is dense in v0X the dual

C(X9 K9 9)' of C(X9 K9

 (3)) separates the points of C(X9 K9 9). Let b be

the strong topology on C(X9 K, <3))/. There is a natural injection from

C(X9 K9 9) into (C(X9 K9 ^YJ. C(X9 K9

 (3)) is called semi-reflexive if

this injection is onto, and reflexive if it is a homeomorphism onto

LEMMA 25. IfL e C(X9 K, ^P)', /Λew //zere is a compact subset A L C v0X

such that:

(1) For all ε > 0 there is a δ > 0 JMCA that | L ( / ) | < ε whenever

fGC(X,K)and\\f\\Aι<δ.

(2) If A is a compact subset ofv0X and L is bounded on \\ \\A-bounded

subsets ofC(X9 K), then ALC A.

(3) If A is a compact subset of v0X and L(f) = 0 for all f E C(X, K)

for which \\f\\A = 0, ίAe« ΛL C A.

(4) IffeC(X9 K) and\\f\\AL = 0, ώαi L(/) - 0.

(5)ALeΦ.

The set AL is called the carrier of L.
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REMARK 26. By [11, Theorem 7.18] there is a non-Archimedean
measure μ on AL such that L ( / ) = fAι fdμ for al l/ E C(X, K).

COROLLARY 27. Lέ?/ 9 be directed by < wAm? Λ < 5 //jfj1'0 * C BVQX. If

A <Bput

where (hB,A(
L))(f) = £ ( / W ) whenever L E CC(AV«X, K)' and /

A^: Cc(Aυ°x, K)'

(hA(L))(f) = L ( / l r ^ ) whenever L <Ξ C(AV°X, K)' and f

C(X, K). Then C{X, K, 9 ) ' w ίλέ? algebraic inductive limit of

(C£AV°X

9 K)')AξΞ$
 w i t h respect to the above hB A and hA.

Let B be bounded in C(X9 K9<$)9 BA(A E 9 ) the set of all restric-

tions to Av°x of functions from B. Every 5^ (̂ 4 E <?) is bounded in

Cc(Aυ°x, K) and

5°= UM(^)°I

where 5° (resp. 5 j ) is the polar of B (resp. BA) in C(Z, AT, 9)' (resp.

LEMMA 28. Let φ <Ξ (C(X, K^YJ. For every A E Φ there is a

φA E CC(AV°X, K)" such that

Proof. By assumption there is a bounded set B in C(X, K, (3)) such

that | φ ( L 0 ) | < l whenever L0EB°. If A E (3), then (cpC/ẑ CZ.)) |< 1

whenever L E BA. Since φ ° hA is linear, we infer φ ° hA E CC(AV()X, AT)".

PROPOSITION 29. Assume K non-spherically complete, K and Y nonmea-

surable, φ E (C(X, K, 9yhy. Then there is a function /: Y^> -

(1)/!^ w continuous on every A E ^P.

(2)φ(Λ/4(L)) - L{f\A) for all A E Ψ and L E Cc( J v ° ^ AT)'.

/. For every 4̂ E ty the space Cc(yίυ()X, AT) is isomorphic to a

space of type co(/) [11, 5.23]. Since i£ and Z are nonmeasurable, / is
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nonmeasurable. By [11, Theorem 4.21] co(I) is reflexive. Hence there is an

fA e C,(Aυ°x, K) such that q>(hA(L)) = L(fA) for all L £ C,( A°°x, K)'.
Let A, B G 9, A < B. For L G QΛ 1** # ) ' we have

= ψ(hB(hBjL))) = (hBjL))(fB).

In particular, if L = δΛ (α E ^4ϋ()X

? δΛ the evaluation in α), then

Hence there is an/: 7 -> AT such that/l^oA- = /^ for all A E 9; clearly
(1) and (2) hold.

THEOREM 30. Assume K non-spherically complete, K and X nonmea-

surable. The following are equivalent:

(1) C(X9 K9Φ) is complete.

(2) C(X, K, <?) is quasi-complete.

(3) C( X, A', ̂ P) w semi-reflexive.

(4) // /: 1^ -» AT w continuous on every A G P̂

g G C(X, # ) TOCA /AΛ/ g=fon Y^.

Proof. By the assumptions vκX= v0X. The equivalence of (1), (2) and

(4) is Theorem 7. Furthermore (3) => (2) by a standard argument (remark

that C(X, K9 <$)' separates the points of the completion of C(X, K, ^P) by

virtue of Theorem 6).

To prove that (4) => (3) assume φ G (C(X9 K, <S>)'hy. Let / be as in

Proposition 29. By (4) there is a g E QΛ", K) such that g(x) = / ( x ) for

all x EYj. Let φ^: C ( * , A, ^P)' -> ̂  be defined by φg(hA(L)) = L(g\A)

for Λ E P̂ and L E C(y4υ°^ A")'. Then φ = ψg so C(Z, A, ^P) is semi-re-

flexive.

THEOREM 31. Assume K non-spherically complete, K and X nonmea-

surable. Then C(X9 K, 9) is reflexive iff both (a) and (b) hold:

(a) C(X9 K9Jί) is semi-reflexive.

(b) # y 6 p C 9.

Proof. If C(X, A, <3>) is reflexive, then we prove (b). Suppose AeΦγ*

and put BA = {/E C(Z, A): H/l^ < 1}. Let 5^0 be the polar of BA in

C(X9 K, <$)' and Bf the bipolar in C(X, K, 9). A routine argument

shows that Bf = BA. If C is any bounded set in C(X, A, <?), then, by

Proposition 4, there is a λ E A\{0} such that C C λfi^, so B% C λC°;

this proves 5° is bounded in C(AT, A, ̂ P);. By reflexivity, BA = 5j° is a

neighbourhood in C(X, ΛΓ, ^P) which implies A E <3\
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Now assume (a) and (b) and let B be bounded in C(X, A, <$)f

h. Then

B° is absolutely convex and absorbs all bounded sets, hence is a

neighbourhood in the bornological space associated to C(X, A, <3)), i.e. in

C(X,K9Φ) (Theorem 15). Let A G 9 and λ G A\{0} be such that

{/G C(X, A): \\f\\A < | λ | } C ί ° . Let A' = A Π Yψ If L G B and / G

C(X, A'), H/ll̂  = 0, then L(f) = 0; hence ΛL C 4 by Lemma 25. On the

other hand AL C Kp, so ^4L C Af.

L e t / G C(X, A') be arbitrary with \\f\\A, < | λ | . Let g G C(X, A) be

such that Ugll̂  < | λ | and/ = g on ^4'. Then for L G B we have

Since fU^gUr L ( / - g ) = 0, so | L ( / ) | ^ | L ( g ) | < 1. Now {/G

Q ^ , AT): 11/11̂  < |λ | } C B° and yίr G #K J i > C ^P, so B° is a neighbour-

hood in C(X9K99).

REMARK 32. Two counterexamples prove that (a) and (b) of Theorem

31 are independent.

(1) Let X = [ 0 , Ω [ , the first uncountable ordinal, <3> = %(X). By

Theorem 7 and local compactness of X, Cc( X, K) is complete. However,

# = gC([O, Ω]) and so [0, Ω[ G # y ^ \ ^ .

(2) Let X - [0, Ω], <3> = # ( * ) • Then # y # = # = ^ - 9 (Corollary

16). However, X is not discrete and so condition (3) of Theorem 7 is not

fulfilled.

6. Reflexivity and semi-reflexivity for spherically complete K. In

this section we assume Yq> C vκX. A locally convex space over the

spherically complete field K is c-Montel if it is a barrelled space in which

all absolutely convex, closed, bounded sets are ocompact [12, Definition

3.8.b]. From [3, Proposition 2] it follows that "oMontel" is equivalent

with "MonteΓ if A is a local field.

Our main result is the following substantial generalization of [4,

Theorem 111.45] (See also [13]).

THEOREM 33. Let K be spherically complete. The following are equiva-

lent:

(1) C( X, A, 9) is a c-Montel space.

(2) C(X, K,Φ) is reflexive.

(3) C(X, A, 9) is semi-reflexive.

(4) For every f: Yψ -> A there is a g G C(X, K) such that f — gon Yψ

Proof. (1) =* (2). See [12, Corollaire 1 of Theoreme 4.28].

(2) => (3). Trivial.
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(3) => (4). First we show that every A E 9 is finite. If not, then there is

a sequence (xn)™=] in vκX and x £ vκX such that xn Φ x for all n and

x G{xl9x29...}
v°x. For all Λ choose /„ E C(X, K) so that /„(*,.) = 1 if

/ < *,/„(*,-) = 0 if / > Λ, and |/n(>0 | < 1 for ally E X

Let Bn be the convex hull of {/„, / „ + „ . . . } . The set {/E C(X9 K):

\f(y)\<\ for all y E Jf} is absolutely convex, weakly bounded and

weakly closed in a semi-reflexive space, hence weakly c-compact [12,

Theoreme 4.25(2)].

Let/be a weak adherence point of the convex filter (Bn)™=]. Let n be

arbitrary. If / < AI and g G Bn, then g(jcf ) = 1; hence /(JC,-) = 1. Since

f(Xj) — 1 for all i, we have/(x) = 1. On the other hand, g(x) = 0 for all

tt E JV and g G Bn; hence/(JC) = 0, a contradiction.

Since every 4̂ E ^ is finite, ^ is the family of finite subsets of Kp. Let

Γ be an arbitrary bounded closed subset of C(X9 K, 9) and Co(Γ) its

absolutely convex closed hull. By [12, Theoreme 4.25, 2°] Co(Γ) is weakly

c-compact. From [3, Proposition 3(a)] and [8, §5, Proposition 4] we infer

that Co(Γ) is c-compact; by [3, Proposition 1] Co(T) is complete. As a

closed subset of a complete set, T is complete.

We conclude that C(X9K9^P) is quasi-complete, hence complete.

Since every /: Y^ -^ K may be pointwisely approximated by functions

from C(vkX9 K), (4) follows.

(4)=*(1). If (4) holds, then Φ = &(Yy) and Y9 is discrete so

C(X9 K,ty) can be identified with Kγ\ Since K is a oMontel space, the

result follows as in [4, Theorem 111.45].

COROLLARY 34. // K is spherically complete and Y$ — X, then the

following are equivalent:

(1) C(X, K, ί3)) is a c-Mont el space {reflexive, semi-reflexive).

(2) CC(X, K) is a c-Montelspace (reflexive, semi-reflexive).

(3) CS(X9 K) is a c-Montel space (reflexive, semi-reflexive).
(4) X is discrete.

REMARK 35. If K is spherically complete, X = [0, Ω], then CC(X9 K) is

complete (Theorem 7) but not semi-reflexive (Theorem 33).
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