ON SYLVESTER'S PROBLEM AND HAAR SPACES

Peter B. Borwein

Abstract

Given a finite set of points in the plane (with distinct x coordinates) must there exist a polynomial of degree n that passes through exactly $n+1$ of the points? Provided that the points do not all lie on the graph of a polynomial of degree n then the answer to this question is yes. This generalization of Sylvester's Problem (the $n=1$ case) is established as a corollary to a version of Sylvester's Problem that holds for certain finite dimensional Haar spaces of continuous functions.

If E is a finite set of points in the plane then there exists a line through exactly two points of E unless all the points of E are colinear. This attractive result was posed as a problem by J. J. Sylvester in 1893 and was proved in 1933 by T. Gallai (see [3]). A particularly simple solution of Sylvester's Problem, due to L. M. Kelly, may be found in [1]. We ask the following question: If V_{n} is an n-dimensional vector space of real-valued continuous functions of a real variable and if E is a finite set in the plane, must there exist $g \in V_{n}$ so that the graph of g passes through exactly n points of E ? We show that the answer to the above question is affirmative if V_{n} is a uni-modal Haar space of dimension n. (See Theorem 1.)

A Haar space H_{n} of dimension n on an interval $[a, b]$ is an n-dimensional real vector space of real-valued continuous functions with the additional property that if $g \in H_{n}$ and g has n distinct zeros then g is identically zero. Haar spaces are often also called Chebychev spaces. A Haar space H_{n} of dimension n is uni-modal if it satisfies the following: if $g \in H_{n}$ has $n-1$ distinct zeros at $a \leq \alpha_{1}<\alpha_{2}<\cdots<\alpha_{n-1} \leq b$ then g has a single change of monotonicity on each of the intervals

$$
\left[\alpha_{1}, \alpha_{2}\right],\left[\alpha_{2}, \alpha_{3}\right], \ldots,\left[\alpha_{n-2}, \alpha_{n-1}\right]
$$

and g is monotonic on $\left[a, \alpha_{1}\right]$ and $\left[\alpha_{n-1}, b\right]$.
The algebraic polynomials of degree less than n form a uni-modal Haar space of dimension n on any interval. The following are other examples of uni-modal Haar spaces of dimension n on $[a, b]$:
(a) The space spanned by

$$
\left\{1, e^{\alpha_{1} x}, \ldots, e^{\alpha_{n-1} x}\right\}
$$

where $\alpha_{1}, \ldots, \alpha_{n-1}$ are distinct non-zero real numbers.
(b) The space spanned by

$$
\left\{1, x, x^{2}, \ldots, x^{n-2}, f(x)\right\}
$$

where $f^{(n-1)}(x)>0$ on $[a, b]$.
(c) The space spanned by

$$
\left\{1, x^{2}, x^{4}, \ldots, x^{2 n-2}\right\}
$$

on an interval $[a, b]$ where $a>0$.
We say that a finite set E contained in the plane R^{2} in $\operatorname{co}\left(H_{n}\right)$ if all the points of E lie on (the graph of) g where g is a single element of H_{n}.

We shall now prove:
Theorem 1. Suppose that E is a finite set of points in the strip $\{(x, y) \mid a \leq x \leq b\}$ and suppose that no two points of E lie on the same vertical line. Suppose that H_{n} is a uni-modal Haar space of dimension $n \geq 2$ on $[a, b]$. Then either there exists $g \in H_{n}$ so that g passes through exactly n points of E or E is $\operatorname{co}\left(H_{n}\right)$.

Proof. Our proof is motivated by L. M. Kelly's proof of Sylvester's Problem. We first note that if $x_{1}, x_{2}, \ldots, x_{n}$ are n distinct numbers in [a, b] and if y_{1}, \ldots, y_{n} are real numbers then there exists a unique $h \in H_{n}$ so that

$$
h\left(x_{l}\right)=y_{t} \quad \text { for } i=1, \ldots, n
$$

This interpolation property is an easy consequence of the fact that H_{n} is a Haar space of dimension n. (For further discussion of Haar spaces see [2, p. 23].) We assume that E is not $\operatorname{co}\left(H_{n}\right)$ and, hence, that E contains at least $n+1$ points. We know that there is an element of H_{n} that passes through any n points of E. We assume, for the sake of deriving a contradiction, that any such element in fact passes through at least $n+1$ points of E. Let $K \subset H_{n}$ denote the set of elements of H_{n} that pass through at least n points of E. Since H_{n} is Haar there is a unique element of H_{n} passing through any n points of E. Since E is finite K must be finite also.

Let P be a point in E that is vertically closest to, though not on, the graph of an element g in K. Since K and E are finite such a pair P and g must exist. We assumed that g was an element of K, thus there exist $n+1$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n+1}, y_{n+1}\right)$ in E through which g passes. We may suppose that

$$
a \leq x_{1}<x_{2}<\cdots<x_{n+1} \leq b
$$

Write $P=\left(x^{*}, y^{*}\right)$ and suppose that the vertical distance from P to g is δ.

Case 1. $x_{i}<x^{*}<x_{i+1}$ where $2 \leq i \leq n-1$. Let $f \in K$ pass through the n points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{i-1}, y_{i-1}\right),\left(x^{*}, y^{*}\right),\left(x_{i+2}, y_{i+2}\right), \ldots$, $\left(x_{n+1}, y_{n+1}\right)$. Consider $f-g \in H_{n}$. The function $f-g$ has $n-1$ distinct zeros at $x_{1}, \ldots, x_{i-1}, x_{t+2}, \ldots, x_{n+1}$. Since H_{n} is a uni-modal Haar space, $f-g$ has at most a single change of monotonicity on the interval $\left[x_{t-1}, x_{t+2}\right]$. Since, $x_{i-1}<x_{t}<x^{*}<x_{t+1}<x_{t+2}$ we must have either

$$
0<\left|f\left(x_{t}\right)-g\left(x_{t}\right)\right|<\left|f\left(x^{*}\right)-g\left(x^{*}\right)\right|=\delta
$$

or

$$
0<\left|f\left(x_{t+1}\right)-g\left(x_{t+1}\right)\right|<\left|f\left(x^{*}\right)-g\left(x^{*}\right)\right|=\delta .
$$

This implies the contradiction that either $\left(x_{t}, y_{t}\right)$ or $\left(x_{t+1}, y_{t+1}\right)$ is vertically too close to $f \in K$.

Case 2. Either $x^{*}<x_{2}$ or $x_{n}<x^{*}$. We treat the case $x^{*}<x_{2}$. The other case is virtually identical. Let $f \in K$ pass through the n points

$$
\left(x^{*}, y^{*}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n+1}, y_{n+1}\right) .
$$

Since $f-g \in H_{n}$ has $n-1$ distinct zeros at $x_{3}, x_{4}, \ldots, x_{n+1}$ we know that $f-g$ is monotonic on $\left[a, x_{3}\right]$. This leads to the contradiction that

$$
0<\left|f\left(x_{2}\right)-g\left(x_{2}\right)\right|<\left|f\left(x^{*}\right)-g\left(x^{*}\right)\right|=\delta .
$$

We get a solution of Sylvester's Problem by taking H_{2} in Theorem 1 to be the uni-modal Haar space of lines (it may be necessary to rotate E first to ensure that no two points of E lie on the same vertical line). We also have

Corollary 1. Let E be a finite set in R^{2} with no two points on the same vertical line. Suppose that the points of E do not all lie on a polynomial of degree less than $n+1$. Then there exists:
(a) a line through exactly two points of E.
(b) a parabola through exactly three points of E.
(c) a cubic through exactly four points of E.
(n) a polynomial of degree n through exactly $n+1$ points of E.

We can construct a Haar space H_{n}^{\prime} on $[a, b)$ where we demand that each $g \in H_{n}^{\prime}$ be periodic with period $b-a$. To make H_{n}^{\prime} uni-modal we
require that: if $g \in H_{n}^{\prime}$ has $n-1$ distinct zeroes at $a \leq \alpha_{1}<\alpha_{2}<\cdots<$ $\alpha_{n-1}<b$ then g has a single change of monotonicity on each of the $n-1$ intervals

$$
\left[\alpha_{1}, \alpha_{2}\right],\left[\alpha_{2}, \alpha_{3}\right], \ldots,\left[\alpha_{n-2}, \alpha_{n-1}\right],\left[\alpha_{n-1}, b-a+\alpha_{1}\right]
$$

Theorem 2. Suppose that E is a finite set of points in the strip $\{(x, y) \mid a \leq x<b\}$ and suppose that no two points of E lie on the same vertical line. Suppose that H_{n}^{\prime} is a uni-modal Haar space of dimension $n \geq 2$ on $[a, b)$. Then either there exists $g \in H_{n}^{\prime}$ so that g passes through exactly n points of E or E is $\operatorname{co}\left(H_{n}^{\prime}\right)$.

Proof. The proof is exactly analogous to the proof of Theorem 1 , Case 1.

The trigonometric polynomials of degree n form a uni-modal Haar space of dimension $2 n+1$ on $[-\pi, \pi)$. We can now, of course, formulate a corollary similar to Corollary 1 for trigonometric polynomials.

References

[1] H. S. M. Coxeter, A problem of collinear points, Amer. Math. Monthly, 55 (1948), 26-28.
[2] G. G. Lorentz, Approximation of Functıons, Holt, Rienhart and Winston, New York, 1966.
[3] Th. Motzkin, The lines and planes connecting the points of a finite set, Trans. Amer. Math. Soc., 70 (1951), 451-464.

Received June 15, 1981.

Dalhousie University
Halifax, Nova Scotia
Canada, B3H 4H8

