CHARACTERIZATIONS OF ℵ-SPACES

L. FOGED

Two simultaneous generalizations of metric spaces and \aleph_0 -spaces, the \aleph -spaces introduced by O'Meara and the cs- σ -spaces of Guthrie, are shown to be the same.

It was shown by Guthrie [2] that a regular space is an \aleph_0 -space if and only if it has a countable cs-network (see definitions below). We show here that, in parallel manner, O'Meara's \aleph -spaces may be characterized as the regular spaces admitting σ -locally finite cs-networks; that is, the classes of \aleph -spaces and cs- σ -spaces coincide. While this equivalence has been proved by Guthrie [3] for paracompact spaces, the fact that these classes contain non-paracompact examples [6] makes our result an honest improvement.

DEFINITION 1. A collection \mathcal{P} of subsets of a topological space X is a *k*-network for X if, given any compact subset C of X and any neighborhood U of C, there is a finite subcollection \mathcal{P}^* of \mathcal{P} so that $C \subset \bigcup \mathcal{P}^* \subset U$. A collection \mathcal{P} is a cs-network for X if, given any sequence σ converging to $x \in X$ and any neighborhood U of x, there is a $P \in \mathcal{P}$ so that $P \subset U$ and σ is eventually in P. A regular space is an \aleph_0 -space [5] (\aleph -space [6], [7], cs- σ -space [3]) if it has a countable k-network (σ -locally finite k-network, σ -locally finite cs-network); because of regularity, these collections can be chosen to consist of closed sets.

We say that a subset W of a topological space X is a sequential neighborhood of a subset F of W if every sequence converging to a member of F is eventually in W.

LEMMA 2. A discrete family $\{F_{\alpha}: \alpha \in A\}$ of subsets of an \aleph -space X admits a pairwise disjoint family $\{W_{\alpha}: \alpha \in A\}$ of sequential neighborhoods.

Proof. For every $n < \omega$, let \mathfrak{P}_n be a locally finite collection of closed sets so that $\bigcup_{n < \omega} \mathfrak{P}_n$ is a k-network for X. For $n < \omega$ and $B \subset A$, let

$$T(n, B) = \bigcup \{ P \in \mathcal{P}_n : P \cap \bigcup \{ F_\alpha : \alpha \in B \} = \emptyset \}.$$

For every $\alpha \in A$, let

$$W_{\alpha} = \bigcup_{n < \omega} \left[T(n, A \setminus \{\alpha\}) \setminus T(n, \{\alpha\}) \right].$$

It is simple to verify that the W_{α} 's are pairwise disjoint. To see that W_{α} is a sequential neighborhood of F_{α} , note that for a sequence σ converging to a member of F_{α} there is an $n < \omega$ so that σ is eventually in $T(n, A \setminus \{\alpha\})$; hence σ is eventually in $T(n, A \setminus \{\alpha\}) \setminus T(n, \{\alpha\}) \subset W_{\alpha}$.

LEMMA 3. Assume X has a point-countable k-network \mathfrak{P} of closed sets so that \mathfrak{P} is closed under finite intersections. If $x \in X$, if W is a sequential neighborhood of x, and if σ is a sequence converging to x, then there is a finite subset \mathfrak{P}^* of \mathfrak{P} so that $\bigcup \mathfrak{P}^* \subset W$ and $\bigcup \mathfrak{P}^*$ contains a tail of σ .

Proof. Let $\{\mathcal{P}_n : n < \omega\}$ be the family of all finite subsets \mathcal{P}^* of \mathcal{P} such that $x \in \bigcap \mathcal{P}^*$ and σ is eventually in $\bigcup \mathcal{P}^*$. If no finite subset of \mathcal{P} satisfies the conclusion of the lemma, then we could find a $y_n \in \bigcap_{i \le n} (\bigcup \mathcal{P}_i) \setminus W$ for every $n < \omega$. This sequence $\{y_n : n < \omega\}$ converges to x; indeed, if U is a neighborhood of x, we could find a \mathcal{P}_m so that $\{y_n : n \ge m\} \subset \bigcup \mathcal{P}_m \subset U$. The convergence of $\{y_n : n < \omega\}$ contradicts that W is a sequential neighborhood of x.

THEOREM 4. The following are equivalent for a regular space X.

- (a) X has a σ -discrete cs-network.
- (b) X has a σ -discrete k-network.
- (c) X has a σ -locally finite cs-network.
- (d) X has a σ -locally finite k-network.

Proof. It is clear that (a) implies (c) and (b) implies (d). As Guthrie observed in [3], his proof of the countable case in [2] can be adapted to show (c) implies (d), and the same is true for (a) implies (b). It therefore suffices to show (d) implies (a).

For every $m < \omega$ let \mathfrak{P}_m be a locally finite collection of closed sets (our only use of regularity) which is closed under finite intersections, so that $\mathfrak{P}_m \subset \mathfrak{P}_{m+1}$ and $\mathfrak{P} = \bigcup_{m < \omega} \mathfrak{P}_m = \{P_\alpha : \alpha \in A\}$ is a k-network for X.

For each *m* let \mathfrak{A}_m be an open cover of *X* that witnesses the local finiteness of \mathfrak{P}_m . Since a space *X* satisfying (d) is clearly subparacompact [1], it follows from [1] that \mathfrak{A}_m has a σ -discrete closed refinement $\bigcup_{n<\omega} \{F_{\beta}: \beta \in B_{m,n}\}$, where $\{F_{\beta}: \beta \in B_{m,n}\}$ is discrete for each *n*. It follows that, if $\beta \in \bigcup_{n<\omega} B_{m,n}$, then $F_{\beta} \cap P_{\alpha} \neq \emptyset$ for only finitely many $P_{\alpha} \in \mathfrak{P}_m$.

By Lemma 2 we can find, for every $\langle m, n \rangle \in \omega^2$, a pairwise disjoint family $\{W_{\beta}: \beta \in B_{m,n}\}$ of sequential neighborhoods for $\{F_{\beta}: \beta \in B_{m,n}\}$. For every pair $\langle m, n \rangle \in \omega^2$ let

$$C_{m,n} = \{ \langle \alpha, \beta \rangle \colon P_{\alpha} \in \mathcal{P}_{m}, \beta \in B_{m,n}, P_{\alpha} \cap F_{\beta} \neq \emptyset \}.$$

Let us check that the collection $\{P_{\alpha} \cap W_{\beta} : \langle \alpha, \beta \rangle \in C_{m,n}\}$ is starfinite. Indeed, if $\langle \alpha, \beta \rangle \in C_{m,n}$ and $(P_{\alpha} \cap W_{\beta}) \cap (P_{\gamma} \cap W_{\delta}) \neq \emptyset$ (where $\langle \gamma, \delta \rangle \in C_{m,n}$), the fact that β and δ are in $B_{m,n}$ with $W_{\beta} \cap W_{\delta} \neq \emptyset$ forces $\beta = \delta$. Consequently, $\langle \gamma, \beta \rangle \in C_{m,n}$; it follows that $P_{\gamma} \cap F_{\beta} \neq \emptyset$. So P_{γ} is one of the finitely many members of \mathcal{P}_{m} which meets F_{β} . So there are only finitely many pairs $\langle \gamma, \delta \rangle \in C_{m,n}$ for which $(P_{\alpha} \cap W_{\beta}) \cap (P_{\gamma} \cap W_{\delta}) \neq \emptyset$.

Fix
$$\langle m, n \rangle \in \omega^2$$
. Now if $\langle \alpha, \beta \rangle \in C_{m,n}$ and $r < \omega$, let

$$S(\alpha,\beta,r) = \bigcup \{P_{\alpha} \cap P_{\gamma} \colon P_{\gamma} \in \mathcal{P}_{r} \text{ and } P_{\gamma} \subset W_{\beta}\}$$

and

$$\mathfrak{S}(m,n,r)=\{S(\alpha,\beta,r)\colon \langle \alpha,\beta\rangle\in C_{m,n}\}.$$

Since $S(\alpha, \beta, r) \subset P_{\alpha} \cap W_{\beta}$ for every $r < \omega$, the collections S(m, n, r) inherit the star-finite property from $\{P_{\alpha} \cap W_{\beta}: \langle \alpha, \beta \rangle \in C_{m,n}\}$. Note too that every member of S(m, n, r) is the union of a subcollection of the locally finite collection $\{P_{\alpha} \cap P_{\gamma}: P_{\alpha} \in \mathcal{P}_{m}, P_{\gamma} \in \mathcal{P}_{r}\}$ and thus S(m, n, r) is closure-preserving. Because a star-finite collection of sets is σ -disjoint and because a disjoint and closure-preserving collection of closed sets is discrete, we have that S(m, n, r) is σ -discrete.

Thus $S = \bigcup \{S(m, n, r): \langle m, n, r \rangle \in \omega^3\}$ is σ -discrete; write $S = \bigcup_{k < \omega} S_k$ so that every S_k is a discrete collection of closed sets and $S_j \cap S_k = \emptyset$ if $j \neq k$. Let

 $\mathbf{F} = \{ \mathfrak{F} : \mathfrak{F} \text{ is a finite subset of } \mathbb{S}, \ \bigcap \mathfrak{F} \neq \emptyset \},\$

and for every finite subset Φ of ω , let

$$\mathbf{F}_{\Phi} = \{ \mathfrak{F} \in \mathbf{F} \colon \{ k < \omega \colon \mathfrak{F} \cap \mathfrak{S}_k \neq \emptyset \} = \Phi \}.$$

Note that for a particular $k < \omega$, a collection $\mathfrak{F} \in \mathbf{F}$ may contain at most one member of \mathfrak{S}_k , as \mathfrak{S}_k is pairwise disjoint.

Now for a given finite subset Φ of ω consider the collection $\{ \cap \mathfrak{F} : \mathfrak{F} \in \mathbf{F}_{\Phi} \}$. It is locally finite because it is comprised of finite intersections of the locally finite family $\bigcup_{k \in \Phi} \mathfrak{S}_k$. It is also pairwise disjoint: if $\mathfrak{F}_1 \neq \mathfrak{F}_2$ are members of \mathbf{F}_{Φ} , then $\mathfrak{F}_1 \cap \mathfrak{S}_k \neq \mathfrak{F}_2 \cap \mathfrak{S}_k$ for some $k \in \Phi$; i.e. if $\{S_1\} = \mathfrak{F}_1 \cap \mathfrak{S}_k$ and $\{S_2\} = \mathfrak{F}_2 \cap \mathfrak{S}_k$, then $S_1 \neq S_2$. Pairwise disjointness

of \mathfrak{S}_k gives $S_1 \cap S_2 = \emptyset$, and thus $(\cap \mathfrak{F}_1) \cap (\cap \mathfrak{F}_2) = \emptyset$. So $\{\cap \mathfrak{F}: \mathfrak{F} \in \mathbf{F}_{\Phi}\}$ is both pairwise disjoint and a locally finite collection of closed sets; therefore it is discrete.

Again we apply Lemma 2 to find, for every finite subset Φ of ω , a pairwise disjoint family $\{V(\mathcal{F}): \mathcal{F} \in \mathbf{F}_{\Phi}\}$ of sequential neighborhoods of $\{ \cap \mathcal{F}: \mathcal{F} \in \mathbf{F}_{\Phi} \}$. For $j < \omega$ and $\mathcal{F} \in \mathbf{F}_{\Phi}$ let

$$V(\mathfrak{F}, j) = \bigcup \{ S \cap P_{\delta} : S \in \mathfrak{F}, P_{\delta} \in \mathfrak{P}_{i}, P_{\delta} \subset V(\mathfrak{F}) \}.$$

Now $V(\mathfrak{F}, j) \subset V(\mathfrak{F})$, so for a fixed $j < \omega$ the collection

$$\mathbb{V}(\Phi, j) = \{ V(\mathfrak{F}, j) \colon \mathfrak{F} \in \mathbf{F}_{\Phi} \}$$

is pairwise disjoint. Further, every $V(\mathcal{F}, j) \in \mathcal{V}(\Phi, j)$ is the union of a subcollection of the locally finite family of closed sets $\{S \cap P_{\delta}: S \in \bigcup_{k \in \Phi} S_k, P_{\delta} \in \mathcal{P}_i\}$. Hence

is σ -discrete. We will now verify that \Im is a cs-network for X.

Suppose U is open and σ is a sequence converging to $x \in U$. Because \mathcal{P} is a k-network for X, we can find an $m < \omega$ and a finite subset \mathcal{P}_m^* of \mathcal{P}_m so that $\bigcup \mathcal{P}_m^* \subset U$, σ is eventually in $\bigcup \mathcal{P}_m^*$, and, because the members of \mathcal{P} are closed, we may choose such a \mathcal{P}_m^* so that $x \in \bigcap \mathcal{P}_m^*$.

Since $X \subset \bigcup_{n < \omega} \{F_{\beta} : \beta \in B_{m,n}\}$, we can find an $n < \omega$ and a $\beta \in B_{m,n}$ so that $x \in F_{\beta}$. Now W_{β} is a sequential neighborhood of F_{β} , hence of x, so by applying Lemma 3 we can find an $r < \omega$ and a finite subset \mathcal{P}_{r}^{**} of \mathcal{P}_{r} so that $\bigcup \mathcal{P}_{r}^{**} \subset W_{\beta}$ and σ is eventually in $\bigcup \mathcal{P}_{r}^{**}$. Because the members of \mathcal{P} are closed, necessarily $x \in \bigcup \mathcal{P}_{r}^{**}$.

If $P_{\alpha} \in \mathcal{P}_{m}^{*}$, the fact that $x \in P_{\alpha} \cap F_{\beta}$ implies $\langle \alpha, \beta \rangle \in C_{m,n}$. If, in addition, $P_{\gamma} \in \mathcal{P}_{r}^{**}$, then $P_{\gamma} \in \mathcal{P}_{r}$ and $P_{\gamma} \subset W_{\beta}$, and thus $P_{\alpha} \cap P_{\gamma} \subset$ $S(\alpha, \beta, r)$. From this we see that $(\bigcup \mathcal{P}_{m}^{*}) \cap (\bigcup \mathcal{P}_{r}^{**}) \subset \bigcup \{S(\alpha, \beta, r):$ $P_{\alpha} \in \mathcal{P}_{m}^{*}\}$ and, because there is a γ so that $x \in P_{\gamma} \in \mathcal{P}_{r}^{**}$, that $x \in$ $\cap \{S(\alpha, \beta, r): P_{\alpha} \in \mathcal{P}_{m}^{*}\}$. Let $\mathcal{F} = \{S(\alpha, \beta, r): P_{\alpha} \in \mathcal{P}_{m}^{*}\}$ (a finite subset of \mathcal{S}). The previous sentence implies σ is eventually in $\bigcup \mathcal{F}$ (since σ is eventually in $\bigcup \mathcal{P}_{m}^{*} \cap \bigcup \mathcal{P}_{r}^{**}$) and $\cap \mathcal{F} \neq \emptyset$ (since $x \in \cap \mathcal{F}$). In particular, $\mathcal{F} \in \mathbf{F}$.

As $V(\mathcal{F})$ is a sequential neighborhood of $\cap \mathcal{F}$, hence of x, Lemma 3 enables us to find a $j < \omega$ and a finite subset \mathcal{P}_{j}^{***} of \mathcal{P}_{j} so that $\mathcal{P}_{i}^{***} \subset V(\mathcal{F})$ and σ is eventually in $\bigcup \mathcal{P}_{i}^{***}$.

Now if $P_{\delta} \in \mathcal{P}_{j}^{***}$, then $P_{\delta} \in \mathcal{P}_{j}$ and $P_{\delta} \subset V(\mathcal{F})$; therefore for any $S \in \mathcal{F}$ we have $S \cap P_{\delta} \subset V(\mathcal{F}, j)$. It follows that $(\bigcup \mathcal{F}) \cap (\bigcup \mathcal{P}_{j}^{***}) \subset V(\mathcal{F}, j)$. As a result, σ is eventually in $V(\mathcal{F}, j)$.

62

In addition,

 $V(\mathfrak{F}, j) \subset \bigcup \mathfrak{F} = \bigcup \{ S(\alpha, \beta, r) \colon P_{\alpha} \in \mathfrak{P}_{m}^{*} \} \subset \bigcup \mathfrak{P}_{m}^{*} \subset U.$

So \mathcal{V} is a cs-network for *X*.

Our Theorem 4, taken with Theorem 2 of [3], gives the following answer to Michael's question in [4].

COROLLARY 5. If X is an \aleph_0 -space and Y is an \aleph -space, then the space of continuous functions from X to Y equipped with the compact-open topology is an \aleph -space.

References

- [1] D. Burke, On subparacompact spaces, Proc. Amer. Math. Soc., 23 (1969), 655-663.
- [2] J. Guthrie, A characterization of \aleph_0 -spaces, General Topology Appl., 1 (1971), 105–110.
- [3] _____, Mapping spaces and cs-networks, Pacific J. Math., 47 (1973), 465–471.
- [4] E. Michael, *Review of* [3], Math. Rev., 49 (1975), 696–697.
- [5] _____, 8₀-spaces, J. Math. Mech., 15 (1966), 983-1002.
- [6] P. O'Meara, A new class of topological spaces, University of Alberta Dissertation (1966).
- [7] ____, On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc., 29 (1971), 183-189.

Received November 9, 1981 and in revised form August 12, 1982.

UNIVERSITY OF TEXAS EL PASO, TX 79968