EXTENDING BOUNDED HOLOMORPHIC FUNCTIONS FROM CERTAIN SUBVARIETIES OF A WEAKLY PSEUDOCONVEX DOMAIN

Kenzō Adachi

Let D be a weakly pseudoconvex domain in C^n with C^{∞} -boundary and Δ be a hypersurface in D which intersects ∂D transversally. If $\partial \Delta$ consists of strictly pseudoconvex boundary points of D, then any bounded holomorphic function in Δ can be extended to a bounded holomorphic function in D.

1. Introduction. G. M. Henkin [5] proved that any bounded holomorphic function defined on an analytic closed submanifold in general position in a strongly pseudoconvex domain can be continued to a bounded holomorphic function in the entire domain. The related results have been given by the author [1] and J. E. Fornaess [4]. In this paper, we extend this problem to the weakly pseudoconvex case. Our proof depends on the integral formula constructed by E. L. Stout [8], and the kernel function constructed by F. Beatrous, Jr. [3] which was used to obtain a Hölder estimate for solutions to $\bar{\partial}$ -problem in weakly pseudoconvex domains.

2. Let Ω be a bounded domain in C^{N+1} with C^{∞} -boundary. We shall denote by $O(\Omega)$ the space of holomorphic functions in Ω . We shall also denote by $H^{\infty}(\Omega)$ the space of bounded holomorphic functions on Ω and by $A(\Omega)$ the subspace of $H^{\infty}(\Omega)$ of functions which extend continuously to $\overline{\Omega}$.

DEFINITION 1. (R. M. Range [7]) A point $\lambda \in \partial \Omega$ is a strictly pseudoconvex boundary point if there are a neighborhood U of λ and a C^{∞} function $\phi: U \to R$ such that:

(a) $U \cap \Omega = \{z \in U: \phi(z) < 0\};$ (b) $\Sigma(\partial^2 \phi(\lambda) / \partial z_i \partial \bar{z}_j) w_i \bar{w}_j > 0$ for all $w \in C^{N+1} - (0);$ (c) $d\phi(\lambda) \neq 0.$

The set of strictly pseudoconvex boundary points of Ω will be denoted by $S(\Omega)$. It follows from Definition 1 that $S(\Omega)$ is an open subset of the boundary $\partial \Omega$.

KENZO ADACHI

Let D be a pseudoconvex domain in C^{N+1} with C^{∞} -boundary. We fix a function $F \in O(\overline{D})$, $F \neq 0$. Then F is holomorphic in a domain \tilde{D} with $\overline{D} \subset \tilde{D}$. We set $\tilde{\Delta} = \{z \in \tilde{D}: F(z) = 0\}$ and $\Delta = \tilde{\Delta} \cap D$. We make the following assumptions:

- (a) Δ is a non-empty connected set;
- (b) $dF \neq 0$ on $\partial \Delta$;
- (c) $\tilde{\Delta}$ meets ∂D transversally;
- (d) $\partial \Delta \subset S(D)$.
- In this setting, we have the following:

THEOREM. Under hypotheses (a)–(d), there exists a continuous linear extension operator L: $H^{\infty}(\Delta) \rightarrow H^{\infty}(D)$. Moreover if Δ has no singular points then $L(A(\Delta)) \subset A(D)$.

In order to prove this theorem, we use the function $\Phi(\zeta, z)$ in the following proposition which was constructed by F. Beatrous, Jr. ([3], Theorem 2.1).

PROPOSITION 1. Let k be a positive integer $(k \ge 3)$. There are a neighborhood U of $\partial \Delta$, a smooth positive function r on U, and a C^k function Φ on $U \times \overline{D}$ with the following properties:

(i) For each $\zeta \in U$, $\Phi(\zeta, \cdot) \in C^{k}(D) \cap O(D)$.

(ii) $G(\zeta, z) = \Phi(\zeta, z)/T(\zeta, z)$ is a non-vanishing C^k function on $\{(\zeta, z) \in U \times \overline{D} : |\zeta - z| \le r(z)\}.$

(iii) $\Phi(\zeta, z) \neq 0$ if $|\zeta - z| \ge r(z)$.

(iv) Re $T(\zeta, z) > \rho(\zeta) - \rho(z) + r(z) |\zeta - z|^2$ if $|\zeta - z| \le r(\zeta)$, where ρ is the defining function for the domain D constructed by F. Beatrous, Jr., and

$$T(\zeta, z) = -2\sum_{i} \frac{\partial \rho}{\partial z_{i}}(\zeta)(z_{i} - \zeta_{i}) - \sum_{i,j} \frac{\partial^{2} \rho}{\partial z_{i} \partial z_{j}}(\zeta)(z_{i} - \zeta_{i})(z_{j} - \zeta_{j})$$

Moreover we can extend $\Phi(\zeta, z)$ to a C^k function on a neighborhood of $\partial D \times \overline{D}$, holomorphic in z such that $\Phi(\zeta, z)$ satisfies $\Phi(\zeta, z) = \sum_{j=1}^{N+1} P_j(\zeta, z)(\zeta_j - z_j)$, and $\Phi(\zeta, z) \neq 0$ if $\rho(\zeta) > \rho(z)$, where $P_j(\zeta, z)$ is a C^k function on a neighborhood of $\partial D \times \overline{D}$, holomorphic in z.

Let $D_{\nu} = \{z \in D: \rho(z) < -\varepsilon_{\nu}\}$ and $\Delta_{\nu} = \Delta \cap D_{\nu}$, where $\{\varepsilon_{\nu}\}$ is a sequence of sufficiently small strictly decreasing positive numbers converging to 0. By E. L. Stout [8], we have the following:

10

PROPOSITION 2. If $f \in H^{\infty}(\Delta)$, then the following formula holds for all $z \in \Delta_{\nu}$ and all sufficiently large ν :

(1)
$$f(z) = \int_{\partial \Delta_{\nu}} f(\zeta) \frac{\tilde{\Psi}(\zeta, z) \tilde{\omega}_{F}}{\Phi(\zeta, z)^{N} ||\text{grad } F(\zeta)||} = \int_{\partial \Delta_{\nu}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}}$$

where $\tilde{\Psi}(\zeta, z)$ is a $C^{k-1}(0, N-1)$ form in a neighborhood of $\partial D \times \overline{D}$ and, for each ζ near ∂D , coefficients of $\tilde{\Psi}(\zeta, \cdot)$ are holomorphic in D. One could arrange for $\tilde{\Psi}(\zeta, \cdot)$ to be holomorphic on \overline{D} if \overline{D} were assumed to have a pseudoconvex neighborhood basis. $\tilde{\omega}_F$ is given by

$$\tilde{\omega}_F = \sum_{j=1}^{N+1} (-1)^{j-1} \overline{F_j} d\zeta_1 \wedge \cdots \wedge \widehat{d\zeta_j} \wedge \cdots \wedge d\zeta_{N+1},$$

where $F_j = \partial F/\partial z_j$, j = 1, ..., N + 1, and \wedge means the symbol is to be omitted. Therefore $K(\zeta, z)$ is a $C^{k-1}(N, N-1)$ form on a neighborhood of $\partial D \times \overline{D}$ and for each ζ near ∂D , coefficients of $K(\zeta, \cdot)$ are holomorphic in D.

We set

$$H_{\nu}(z) = \int_{\partial \Delta_{\nu}} \frac{f(\zeta)K(\zeta, z)}{\Phi(\zeta, z)^{N}} \quad \text{for } z \in \overline{D_{\nu}} | \partial \Delta_{\nu},$$

and

$$L(f)(z) = H(z) = \lim_{\nu \to \infty} H_{\nu}(z) \text{ for } z \in \overline{D} \mid \partial \Delta.$$

LEMMA 1. H(z) is holomorphic on D and H(z) = f(z) for all $z \in \Delta$.

Proof. For $z \in W \subseteq D_{\nu_0}$, $\nu > \mu \ge \nu_0$, we have

$$H_{\nu}(z) - H_{\mu}(z) = \int_{\partial(\Delta_{\nu} - \Delta_{\mu})} \frac{f(\zeta)K(\zeta, z)}{\Phi(\zeta, z)^{N}} = \int_{\Delta_{\nu} - \Delta_{\mu}} f(\zeta)\overline{\partial}_{\zeta} \left(\frac{K(\zeta, z)}{\Phi(\zeta, z)^{N}}\right).$$

Since the form $\overline{\partial}_{\zeta}(K(\zeta, z)/\Phi(\zeta, z)^N)$ is bounded for $\zeta \in \Delta_{\nu} - \Delta_{\mu}$ and $z \in W$, there exists a constant K such that

$$|H_{\nu}(z) - H_{\mu}(z)| \leq K \sup_{\zeta \in \Delta} |f(\zeta)| \operatorname{Vol}(\Delta_{\nu} - \Delta_{\mu}).$$

Hence $H_{\nu}(z)$ converges locally uniformly on *D*. Therefore H(z) is holomorphic in *D*. By Proposition 2, H(z) = f(z) for all $z \in \Delta$. Therefore Lemma 1 is proved.

We want to show that $H(z) \in H^{\infty}(D)$. Let $S_{z^{0,\sigma}} = \{z: |z - z^0| \le \sigma\}$. Let $z^0 \in \partial \Delta$. Then there exist a constant $\sigma_1 > 0$ and a biholomorphic

KENZŌ ADACHI

change of coordinates on a neighborhood of z^0 such that ρ is strictly convex in a neighborhood of $\overline{D} \cap \overline{S}_{z^{0,\sigma_1}}, \Delta \cap S_{z^{0,\sigma_1}} = \{z \in S_{z^{0,\sigma_1}}: z_{N+1} = 0\}$ and $\partial \rho(z^0) / \partial z_1 \neq 0$. Let $0 < \sigma_2 < \sigma_1$. Let $z \in S_{z^{0,\sigma_2}} \cap D_{\nu}$. We write

$$H_{\nu}(z) = \int_{\partial \Delta_{\nu} \cap S_{z^{0,\sigma_{1}}}} \frac{f(\zeta)K(\zeta,z)}{\Phi(\zeta,z)^{N}} + \int_{\partial \Delta_{\nu}|S_{z^{0,\sigma_{1}}}} \frac{f(\zeta)K(\zeta,z)}{\Phi(\zeta,z)^{N}}.$$

Then

$$\left|\int_{\partial \Delta_{\nu} \mid S_{z^{0,\sigma_{1}}}} \frac{f(\zeta)K(\zeta,z)}{\Phi(\zeta,z)^{N}}\right| \leq \gamma_{1} \sup_{\zeta \in \Delta_{\nu}} |f(\zeta)|$$

where γ_1 depends only on *D* and Δ . We set

Then it is sufficient to show that $|\tilde{H}_{\nu}(z)| \leq \gamma_2 \sup_{\zeta \in \Delta} |f(\zeta)|$, where γ_2 depends only on D and Δ .

We consider the system of equations for $\zeta^0 = (\zeta_1^0, \dots, \zeta_{N+1}^0)$ of the following form for $z \in S_{z^{0,\sigma_2}}$:

(2)

$$\sum_{i=1}^{N+1} \frac{\partial \rho}{\partial \zeta_i} (\zeta^0) (\zeta_i^0 - z_i) = 0,$$

$$\zeta_i^0 = z_i \qquad (i = 2, 3, \dots, N),$$

$$\zeta_{N+1}^0 = 0$$

Then we have the following lemma which was proved by G. M. Henkin [5]. But we give the proof of E. Amar [2] which is simpler than Henkin's.

LEMMA 2. There exist positive constants σ_3 ($< \sigma_2$), γ_3 and γ_4 , depending only on D and Δ , such that for any $\sigma \leq \sigma_3$ and any $z \in S_{z^{0,\sigma/2}}$ there exists a unique solution $\zeta^0 = \zeta^0(z)$ of system (2) which belongs to the set $S_{z^{0,\sigma}} \cap \tilde{\Delta}$. Here the point $\zeta^0 = \zeta^0(z)$ has the following properties:

(3)
$$|z-\zeta^0|^2 \leq \frac{1}{\gamma_3} \big[\rho(z)-\rho(\zeta^0)\big],$$

(4)
$$|z - \zeta^{0}|^{2} \ge |z_{N+1}|^{2} \ge \gamma_{4} [\rho(z) - \rho(\zeta^{0})],$$
$$\zeta^{0} = z \quad \text{for any } z \in S_{z^{0,\sigma/2}} \cap \tilde{\Delta}.$$

Proof. From (2), we have

$$z_1 = \zeta_1 - \frac{(\partial \rho(\zeta) / \partial z_{N+1}) z_{N+1}}{\partial \rho(\zeta) / \partial z_1} = \zeta_1 - a(\zeta) z_{N+1},$$

where $a(\zeta)$ is C^{∞} in a neighborhood of z^0 . There exists $\sigma_3 > 0$ such that for any $\zeta \in B(z^0, \sigma_3)$, $z \in B(z^0, \sigma_3)$ we have $|\nabla a(\zeta)||z_{N+1}| \leq \frac{1}{2}$. We set by recurrence that

$$\begin{aligned} \xi_1^{(1)} &= z_1, \\ \xi_1^{(j)} &= \left(\xi_1^{(j)}, z_2, \dots, z_N, z_{N+1}^0\right), \\ \xi_1^{(j)} &= z_1 + a(\xi^{(j-1)}) z_{N+1}. \end{aligned}$$

If z and $\zeta^{(1)}$ are in $B(z^0, \sigma_3)$, then

$$|\zeta_{l}^{(j)} - \zeta_{l}^{(j-1)}| < |z_{N+1}| |\nabla a| |\zeta_{l}^{(j-1)} - \zeta_{l}^{(j-2)}| < \frac{1}{2} |\zeta_{l}^{(j-1)} - \zeta_{l}^{(j-2)}|.$$

Therefore $\zeta^{(j)}$ converges. Then $\lim_{\nu \to \infty} \zeta^{(j)} = \zeta^0$ is the soution of (2). The strict convexity of the function ρ and equations (2) imply the inequalities:

(5)
$$\rho(\zeta^{0}) - \rho(z) + \gamma_{3} |\zeta^{0} - z|^{2} \leq 2 \operatorname{Re} \sum_{i=1}^{N+1} \frac{\partial \rho}{\partial \zeta_{i}} (\zeta^{0}) (\zeta_{i}^{0} - z_{i}) = 0,$$

(6)
$$\rho(\zeta^{0}) - \rho(z) + \gamma'_{4} |\zeta^{0} - z|^{2} \ge 2 \operatorname{Re} \sum_{i=1}^{N+1} \frac{\partial \rho}{\partial \zeta_{i}} (\zeta^{0}) (\zeta^{0}_{i} - z_{i}) = 0,$$

where $z \in S_{z^{0,\sigma_{3/2}}}$. From (5) we have (3). From (6) we have

$$|\zeta^{0}-z|^{2} \ge \frac{1}{\gamma'_{4}} [\rho(z)-\rho(\zeta^{0})].$$

But

$$|\zeta^{0} - z|^{2} \ge |z_{N+1}|^{2} + |\zeta_{1}^{0} - z_{1}|^{2} \le \gamma_{4}^{\prime\prime}|z_{N+1}|^{2}.$$

Therefore we have $|z_{N+1}|^2 \ge (1/\gamma_4)[\rho(z) - \rho(\zeta^0)]$. Therefore Lemma 2 is proved.

For any $z \in \overline{D_{\nu}} \cap S_{z^{0,\sigma_2}} | \partial \Delta_{\nu}$ and any vector $w = (w_1, \dots, w_{N+1}) \neq 0$, we have

(7)
$$\frac{d\tilde{H}_{\nu}(z+\lambda w)}{d\lambda}\Big|_{\lambda=0} = \int_{\partial \Delta_{\nu} \cap S_{z^{0,\sigma_{1}}}} \frac{f(\zeta) \Sigma_{j=1}^{N+1} (\partial/\partial z_{j}) K(\zeta, z) w_{j}}{\Phi(\zeta, z)^{N+1}} - \int_{\partial \Delta_{\nu} \cap S_{z^{0,\sigma_{1}}}} \frac{N \Sigma_{j=1}^{N+1} (\partial \Phi(\zeta, z)/\partial z_{j}) w_{j} K(\zeta, z)}{\Phi(\zeta, z)^{N+1}}$$

LEMMA 3. Let $f(\zeta) \in H^{\infty}(\Delta)$. Then for any point $z^0 \in \partial \Delta$ and any point $z \in \partial(S_{z^{0,\sigma}} \cap D_{\nu}) | \partial \Delta_{\nu} (\sigma < (\sigma_3/2))$, we have

$$\left|\frac{d\tilde{H}_{\nu}(\zeta^{0}+\lambda(z-\zeta^{0}))}{d\lambda}\right|_{\lambda=1}\right| \leq \gamma_{5} \sup_{\zeta \in \Delta} |f(\zeta)|,$$

where $\zeta^0 = \zeta^0(z)$ and γ_5 depends only on D and Δ .

Proof. We set $\varepsilon = |z_{N+1}|$, where

$$z = (z_1, \ldots, z_{N+1}) \in \partial(S_{z^{0,\sigma}} \cap D_{\nu}) | \partial \Delta_{\nu}.$$

Then Lemma 2 implies the inequalities

$$\varepsilon \leq |\zeta^0 - z| \leq \left\{ \frac{\rho(z) - \rho(\zeta^0)}{\gamma_3} \right\}^{1/2} \leq \frac{\varepsilon}{(\gamma_3\gamma_4)^{1/2}}$$

Since $\sum_{i=1}^{N+1} (\partial \rho / \partial \zeta_i)(\zeta^0)(\zeta_i^0 - z_i) = 0$, it follows that

$$\begin{vmatrix} \sum_{i=1}^{N+1} \frac{\partial \Phi}{\partial z_i}(\zeta, z)(\zeta_i^0 - z_i) \end{vmatrix} = \begin{vmatrix} \sum_{i=1}^{N+1} \left(\frac{\partial \Phi(\zeta, z)}{\partial z_i} + 2 \frac{\partial \rho}{\partial \zeta_i}(\zeta^0) \right)(\zeta_i^0 - z_i) \end{vmatrix}$$
$$\leq \begin{vmatrix} \sum_{i=1}^{N+1} \left(\frac{\partial \Phi}{\partial z_i}(\zeta, z) - \frac{\partial \Phi}{\partial z_i}(\zeta^0, z) + O(|\zeta^0 - z|) \right)(\zeta_i^0 - z_i) \end{vmatrix}$$
$$\leq \gamma_6 \varepsilon (|\zeta - z| + \varepsilon).$$

Here we have used the equation

$$\frac{\partial \Phi}{\partial z_i}(\zeta^0, z) = -2 \frac{\partial \rho}{\partial \zeta_i}(\zeta^0) + O(|\zeta^0 - z|).$$

By (7), we have

$$\left|\frac{d\tilde{H}_{\nu}(\zeta^{0}+\lambda(z-\zeta^{0}))}{d\lambda}\right|_{\lambda=1} = \left|\frac{d\tilde{H}_{\nu}(z+\lambda(z-\zeta^{0}))}{d\lambda}\right|_{\lambda=0} \\ \leq \gamma_{7} \int_{\partial\Delta_{\nu}\cap S_{z^{0,\sigma_{1}}}} \frac{|f(\zeta)||z-\zeta^{0}|}{|\Phi(\zeta,z)|^{N+1}} d\lambda + \gamma_{8} \int_{\partial\Delta_{\nu}\cap S_{z^{0,\sigma_{1}}}} \frac{|f(\zeta)|\varepsilon(|\zeta-z|+\varepsilon)}{|\Phi(\zeta,z)|^{N+1}} d\lambda.$$

We can choose coordinates $(\eta_1(\zeta), \dots, \eta_{N+1}(\zeta))$ in $S_{z^{0,\sigma_3}}$ such that $\eta_1(\zeta) = \rho(\zeta) - \rho(z) + i \operatorname{Im} \Phi(\zeta, z)$. Then

$$|\Phi(\zeta, z)| \ge \gamma_9 \Big[(t_1 + |\zeta - z|^2)^2 + t_2^2 \Big]^{1/2}$$

and

$$|\zeta - z| \ge \gamma_{10} (t_1^2 + \cdots + t_{2N}^2 + \varepsilon^2)^{1/2} \ge \gamma_{11} |\zeta - z|,$$

where we have written $\eta_i(\zeta) = t_{2i-1} + \sqrt{-1} t_{2i}$ (i = 1, 2, ..., N + 1). Then we have

$$\begin{aligned} \left| \frac{dF(\zeta^{0} + \lambda(z - \zeta^{0}))}{d\lambda} \right|_{\lambda=1} &| \leq \gamma_{12} \sup_{\zeta \in \Delta} |f(\zeta)| \\ \times \left\{ \varepsilon \int_{\substack{t_{2}^{2} + \dots + t_{2N}^{2} \leq 1}} \frac{dt_{2}dt_{3} \cdots dt_{2N}}{\left[\left(t_{1} + t_{2}^{2} + \dots + t_{2N}^{2} + \varepsilon^{2}\right)^{2} + t_{2}^{2} \right]^{N/2}} \right. \\ &+ \varepsilon \int_{\substack{t_{2}^{2} + \dots + t_{2N}^{2} \leq 1}} \frac{\left(t_{1}^{2} + t_{2}^{2} + \dots + t_{2N}^{2} + \varepsilon^{2}\right)^{1/2} dt_{2} \cdots dt_{2N}}{\left[\left(t_{1} + t_{2}^{2} + \dots + t_{2N}^{2} + \varepsilon^{2}\right)^{2} + t_{2}^{2} \right]^{N+1/2}} \\ &+ \varepsilon^{2} \int_{\substack{t_{2}^{2} + \dots + t_{2N}^{2} \leq 1}} \frac{dt_{2} \cdots dt_{2N}}{\left[\left(t_{1} + t_{2}^{2} + \dots + t_{2N}^{2} + \varepsilon^{2}\right)^{2} + t_{2}^{2} \right]^{N+1/2}} \end{aligned}$$

(by G. M. Henkin [5])

$$\leq \gamma_{13} \sup_{\zeta \in \Delta} |f(\zeta)|.$$

We want to have

$$\sup_{z\in D_{\nu}}|H_{\nu}(z)|\leq \gamma_{14}\sup_{\zeta\in\Delta}|f(\zeta)|,$$

where γ_{14} depends only on D and Δ . We shall denote by $(\partial \Delta_{\nu})_{\sigma}$ the σ -neighborhood of $\partial \Delta_{\nu}$. Since the function $H_{\nu}(z)$ is holomorphic at all points $z \in \overline{D_{\nu}} | \partial \Delta_{\nu}$, we have

$$\sup_{z \in D_{\nu}} |H_{\nu}(z)| \leq \sup_{z \in \partial D_{\mu}(\partial \Delta_{\nu})_{\sigma}} |H_{\nu}(z)| + \sup_{z \in [(\partial \Delta_{\nu})_{\sigma}|\partial \Delta_{\nu}] \cap \partial D_{\nu}} |H_{\nu}(z)|.$$

We obtain

$$\sup_{z \in \partial D_{\mu}(\partial \Delta_{\nu})_{\sigma}} |H_{\nu}(z)|$$

$$\leq \gamma_{15} \left[\int_{t_{2}^{2} + \cdots + t_{2N}^{2} \leq 1} \frac{dt_{2} \cdots dt_{2N}}{\left[\left(t_{2}^{2} + \cdots + t_{2N}^{2} + \sigma^{2} \right)^{2} + t_{2}^{2} \right]^{N/2}} \right] \sup_{\zeta \in \Delta} |f(\zeta)|$$

$$\leq \gamma_{16} \sup_{\zeta \in \Delta} |f(\zeta)|.$$

Let $\sigma < 16\sigma_3$. We now fix $z \in [(\partial \Delta_{\nu})_{\sigma} - \partial \Delta_{\nu}] \cap \partial D_{\nu}$. We take ν so large that one can find $z^0 \in \partial \Delta$ such that $z \in S_{z^{0,2\sigma}}$. Then by Lemma 2, there exists a solution $\zeta^0 = \zeta^0(z)$ of system (2) belonging to the set $S_{z^{0,4\sigma}} \cap \tilde{\Delta}$ and satisfying the inequalities

(8)
$$\gamma_3 |z_{N+1}|^2 \leq \rho(z) - \rho(\zeta^0) \leq |z_{N+1}|^2 / \gamma_4.$$

Let $T_{\nu} = \{\lambda \in C : z(\lambda) = \zeta^0 + \lambda(z - \zeta^0) \in D_{\nu} \cap S_{z^{0,4\sigma}}\}$. T_{ν} is a convex domain containing $\lambda = 0$. For any λ we have

$$\sum_{i=1}^{N+1} \frac{\partial \rho}{\partial \zeta_i} (\zeta^0) (\zeta_i^0 - z_i(\lambda)) = 0.$$

From this we have

$$|z(\lambda)-\zeta^0|^2 \leq \frac{1}{\gamma_{17}} \{\rho(z(\lambda))-\rho(\zeta^0)\}.$$

Hence for $\lambda \in \partial T_{\nu}$ with $z(\lambda) \in \partial D_{\nu}$, we obtain

$$\begin{aligned} |z(\lambda) - z^{0}| &\leq |z(\lambda) - \zeta^{0}| + |\zeta^{0} - z^{0}| \\ &\leq \frac{1}{\sqrt{\gamma_{17}}} \left(\rho(z(\lambda)) - \rho(\zeta^{0})\right)^{1/2} + \frac{\sigma_{3}}{4} \\ &= \frac{1}{\sqrt{\gamma_{17}}} \left(\rho(z) - \rho(\zeta^{0})\right)^{1/2} + \frac{\sigma_{3}}{4} \\ &\leq \frac{\varepsilon}{\sqrt{\gamma_{4}\gamma_{17}}} + \frac{\sigma_{3}}{4} \leq \frac{\sigma}{\sqrt{\gamma_{4}\gamma_{17}}} + \frac{\sigma_{3}}{4} \,. \end{aligned}$$

We impose the further restriction that the constant $\sigma < \sigma_{3\sqrt{\gamma_{4}\gamma_{17}}}/4$. Then $|z(\lambda) - z^{0}| < \sigma_{3}/2$. Therefore $z(\lambda) \in S_{z^{0,\sigma_{3}/2}}$. Since the point $\zeta^{0}(z)$ satisfies system (2) with any $z(\lambda)$ satisfying $\lambda \in \partial T_{\nu}$ and $z(\lambda) \in \partial D_{\nu}$, it follows that $\zeta^{0}(z(\lambda)) = \zeta^{0}(z)$ for any $\lambda \in \partial T_{\nu}$ with $z(\lambda) \in \partial D_{\nu}$. Moreover

$$\begin{aligned} \frac{|\lambda|\varepsilon}{\gamma_{3}\gamma_{4}} &\geq \frac{|\lambda|}{\gamma_{3}} \left(\rho(z) - \rho(\zeta^{0})\right) \geq |\lambda| \left|z - \zeta^{0}\right| = \left|z(\lambda) - \zeta^{0}\right| \\ &\geq \left(\gamma_{4} \left(\rho(z(\lambda)) - \rho(\zeta^{0})\right)\right)^{1/2} \\ &= \left[\gamma_{4} \left(\rho(z) - \rho(\zeta^{0})\right)\right]^{1/2} \geq \left(\gamma_{3}\gamma_{4}\right)^{1/2} \varepsilon. \end{aligned}$$

Therefore $|\lambda| \ge \gamma_3 \gamma_4$ for any $\lambda \in \partial T_{\nu}$ with $z(\lambda) \in \partial D_{\nu}$. If $\lambda \in \partial T_{\nu}$ and $z(\lambda) \in S_{z^{0,4\sigma}}$, there exists $\gamma_{18} > 0$ such that $|\lambda| \ge \gamma_{18}$. Let $\gamma_{19} = \min(\gamma_3 \gamma_4, \gamma_{18})$. Then

(9)
$$|\lambda| \ge \gamma_{19}$$
 for any $\lambda \in \partial T_{\nu}$.

By Lemma 3, we have

(10)
$$\left|\frac{dH_{\nu}(\zeta^{0}+t(z(\lambda)-\zeta^{0}))}{dt}\right|_{t=1} \leq \gamma_{5} \sup_{\zeta \in \Delta} |f(\zeta)|$$

for any $\lambda \in \partial T_{\nu}$. We note that

$$\frac{dH_{\nu}(\zeta^{0}+t(z(\lambda)-\zeta^{0}))}{dt}\Big|_{t=1}=\frac{dH_{\nu}(\zeta^{0}+\lambda(z-\zeta^{0}))}{d\lambda}.$$

From (8), (9) and (10), we have

$$\left|\frac{dH_{\nu}(\zeta^{0}+\lambda(z-\zeta^{0}))}{d\lambda}\right| \leq \frac{\gamma_{5}}{|\lambda|} \sup_{\zeta \in \Delta} |f(\zeta)| \leq \frac{\gamma_{5}}{\gamma_{19}} \sup_{\zeta \in \Delta} |f(\zeta)|$$

for any $\lambda \in \partial T_{\nu}$. Since the function $dH_{\nu}(\zeta^0 + \lambda(z - \zeta^0))/d\lambda$ is holomorphic in λ for all $\lambda \in \overline{T}_{\nu}$, it follows that

$$\sup_{\lambda \in T_{\nu}} \left| \frac{dH_{\nu}(\zeta^{0} + \lambda(z - \zeta^{0}))}{d\lambda} \right| \leq \frac{\gamma_{5}}{\gamma_{19}} \sup_{\zeta \in \Delta} |f(\zeta)|.$$

Consequently

$$|H_{\nu}(z) - H_{\nu}(\zeta^{0})| = \left| \int_{0}^{1} \frac{d}{d\lambda} H_{\nu}(\zeta^{0} + \lambda(z - \zeta^{0})) d\lambda \right| \leq \frac{\gamma_{5}}{\gamma_{19}} \sup_{\zeta \in \Delta} |f(\zeta)|.$$

From (8), $\zeta^0 \in \Delta_{\nu}$. Since $H_{\nu}(\zeta^0) = f(\zeta^0)$, we have

$$|H_{\nu}(z)| \leq \left(\frac{\gamma_5}{\gamma_{19}}+1\right) \sup_{\zeta \in \Delta} |f(\zeta)|.$$

Therefore

$$\sup_{z\in D_{\nu}}|H_{\nu}(z)|\leq \gamma_{20}\sup_{\zeta\in\Delta}|f(\zeta)|.$$

Hence

$$\sup_{z \in D} |H(z)| \le \gamma_{20} \sup_{\zeta \in \Delta} |f(\zeta)|.$$

The next step is to show that if $f \in A(\Delta)$, then also $H(z) = L(f)(z) \in A(D)$. In this case we have assumed that Δ has no singular points. Therefore by N. Kerzman [6], there exists a sequence $\{f_k\}_{k=1}^{\infty}$ of functions holomorphic in a neighborhood of $\overline{\Delta}$ in $\overline{\Delta}$ such that $||f_k - f||_{\Delta} \to 0$ when $k \to \infty$. By the continuity of L it suffices to prove that each Lf_k is in A(D). Hence we can suppose f is holomorphic in $\overline{\Delta}'$ ($\overline{\Delta} \subset \Delta' \subset \overline{\Delta} \subset \overline{\Delta}$). Let $z^0 \in \partial \Delta$ and let $z \in S_{z^{0,\sigma/2}} \cap (\overline{D_{\nu}} | \partial \Delta_{\nu})$. By Stokes' formula, we have

$$\begin{split} H_{\nu}(z) &= \int_{\partial \Delta_{\nu}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}} \\ &= \int_{\partial \Delta'} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}} - \int_{\Delta' - \Delta_{\nu}} f(\zeta) \overline{\partial}_{\zeta} \left(\frac{K(\zeta, z)}{\Phi(\zeta, z)^{N}} \right) \\ &= \int_{\partial \Delta'} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}} - \int_{(\Delta' - \Delta_{\nu}) \cap S_{z}^{0,2,\sigma}} f(\zeta) \overline{\partial}_{\zeta} \left(\frac{K(\zeta, z)}{\Phi(\zeta, z)^{N}} \right) \\ &- \int_{(\Delta' - \Delta_{\nu}) | S_{z}^{0,2,\sigma}} f(\zeta) \overline{\partial}_{\zeta} \left(\frac{K(\zeta, z)}{\Phi(\zeta, z)^{N}} \right). \end{split}$$

The first and the third term on the left are continuous in z^0 . Therefore it is sufficient to show that, if we set

$$F_{\nu}(z) = \int_{(\Delta'-\Delta_{\nu})\cap S_{z}^{0,2\sigma}} f(\zeta) \overline{\partial}_{\zeta} \left(rac{K(\zeta,z)}{\Phi(\zeta,z)^{N}}
ight),$$

then $F_{\nu}(z)$ is continuous at z^0 .

LEMMA 4. Let $z \in S_{z^{0,\sigma/2}} \cap (\overline{D_{\nu}} | \partial \Delta)$. Then

$$\left|\frac{dF_{\nu}(\zeta^{0}+\lambda(z-\zeta^{0}))}{d\lambda}\right|_{\lambda=1}\right| \leq \gamma_{21}\varepsilon |\log \varepsilon| \sup_{\zeta \in \tilde{\Delta}} |f(\zeta)|.$$

Proof. We can write

$$F_{\nu}(z) = \int_{(\Delta'-\Delta_{\nu})\cap S_{z^{0,2\sigma}}} f(\zeta) \frac{A(\zeta, z)}{\Phi(\zeta, z)^{N}}$$
$$+ \int_{(\Delta'-\Delta_{\nu})\cap S_{z^{0,2\sigma}}} \frac{f(\zeta) \sum_{j=1}^{N+1} (\zeta_{j} - z_{j}) B_{j}(\zeta, z)}{\Phi(\zeta, z)^{N+1}}$$

where $A(\zeta, z)$ and $B_j(\zeta, z)$ are (N, N) forms which are continuous in ζ and holomorphic in z. Therefore

$$\left|\frac{dF_{\nu}(\zeta^{0}+\lambda(z-\zeta^{0}))}{d\lambda}\right|_{\lambda=1}\right| \leq \gamma_{22} \int_{(\Delta'-\Delta_{\nu})\cap S_{z^{0,2\sigma}}} \frac{\varepsilon}{\Phi(\zeta,z)^{N+1}} d\lambda$$
$$+ \gamma_{23} \int_{(\Delta'-\Delta_{\nu})\cap S_{z^{0,2\sigma}}} \frac{|\zeta-z|\varepsilon(|\zeta-z|+\varepsilon)}{|\Phi(\zeta,z)|^{N+2}} d\lambda$$

(by the estimates of G. M. Henkin [5])

$$\leq \gamma_{24} \varepsilon |\log \varepsilon| \sup_{\zeta \in \tilde{\Delta}} |f(\zeta)|.$$

Therefore Lemma 4 is proved.

Using the method of Henkin [5], we have

$$|F_{\nu}(z) - F_{\nu}(z^{0})| \leq \gamma_{25}\sigma |\log \sigma| \sup_{\zeta \in \Delta'} |f(\zeta)| + \gamma_{26}\sigma \sup_{\zeta \in \Delta'} |\operatorname{grad} f(\zeta)|.$$

Therefore $F_{\nu}(z)$ is continuous at z^0 . Therefore the theorem is proved.

References

- K. Adachi, Extending bounded holomorphic functions from certain subvarieties of a strongly pseudoconvex domain, Bull. Fac. Sci., Ibaraki Univ., Math., No. 8, (1976), 1-7.
- [2] E. Amar, $\bar{\partial}$ -Cohomologie C^{∞} et applications, preprint.
- [3] F. Beatrous, Jr., Hölder estimates for the δ equation with a support condition, Pacific J. Math., 90, No. 2, (1980), 249-257.
- [4] J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529–569.
- [5] G. M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains, Izv. Akad. Nauk SSSR, 36 (1972), 540-567. (English translation: Math. USSR Izvestija, 6 (1972), 536-563.)
- [6] N. Kerzman, Hölder and L^p -estimates for solutions of $\partial u = f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math., 24 (1971), 301–380.
- [7] R. M. Range, Holomorphic approximation near strictly pseudoconvex boundary points, Math. Ann., 201 (1973), 9–17.
- [8] E. L. Stout, An integral formula for holomorphic functions on strictly pseudoconvex hypersurfaces, Duke Math. J., 42, No. 2 (1975), 347-356.

Received November 19, 1981 and in revised form May 26, 1982.

Nagasaki University Nagasaki 852, Japan