EXTENDING BOUNDED HOLOMORPHIC FUNCTIONS FROM CERTAIN SUBVARIETIES OF A WEAKLY PSEUDOCONVEX DOMAIN

Kenzō Adachi

Let D be a weakly pseudoconvex domain in C^{n} with C^{∞}-boundary and Δ be a hypersurface in D which intersects ∂D transversally. If $\partial \Delta$ consists of strictly pseudoconvex boundary points of D, then any bounded holomorphic function in Δ can be extended to a bounded holomorphic function in D.

1. Introduction. G. M. Henkin [5] proved that any bounded holomorphic function defined on an analytic closed submanifold in general position in a strongly pseudoconvex domain can be continued to a bounded holomorphic function in the entire domain. The related results have been given by the author [1] and J. E. Fornaess [4]. In this paper, we extend this problem to the weakly pseudoconvex case. Our proof depends on the integral formula constructed by E. L. Stout [8], and the kernel function constructed by F. Beatrous, Jr. [3] which was used to obtain a Hölder estimate for solutions to $\bar{\partial}$-problem in weakly pseudoconvex domains.
2. Let Ω be a bounded domain in C^{N+1} with C^{∞}-boundary. We shall denote by $O(\Omega)$ the space of holomorphic functions in Ω. We shall also denote by $H^{\infty}(\Omega)$ the space of bounded holomorphic functions on Ω and by $A(\Omega)$ the subspace of $H^{\infty}(\Omega)$ of functions which extend continuously to $\bar{\Omega}$.

Definition 1. (R. M. Range [7]) A point $\lambda \in \partial \Omega$ is a strictly pseudoconvex boundary point if there are a neighborhood U of λ and a C^{∞} function $\phi: U \rightarrow R$ such that:
(a) $U \cap \Omega=\{z \in U: \phi(z)<0\}$;
(b) $\Sigma\left(\partial^{2} \phi(\lambda) / \partial z_{i} \partial \bar{z}_{j}\right) w_{i} \bar{w}_{j}>0$ for all $w \in C^{N+1}-(0)$;
(c) $d \phi(\lambda) \neq 0$.

The set of strictly pseudoconvex boundary points of Ω will be denoted by $S(\Omega)$. It follows from Definition 1 that $S(\Omega)$ is an open subset of the boundary $\partial \Omega$.

Let D be a pseudoconvex domain in C^{N+1} with C^{∞}-boundary. We fix a function $F \in O(\bar{D}), F \neq 0$. Then F is holomorphic in a domain \tilde{D} with $\bar{D} \subset \tilde{D}$. We set $\tilde{\Delta}=\{z \in \tilde{D}: F(z)=0\}$ and $\Delta=\tilde{\Delta} \cap D$. We make the following assumptions:
(a) Δ is a non-empty connected set;
(b) $d F \neq 0$ on $\partial \Delta$;
(c) $\tilde{\Delta}$ meets ∂D transversally;
(d) $\partial \Delta \subset S(D)$.

In this setting, we have the following:

Theorem. Under hypotheses (a)-(d), there exists a continuous linear extension operator L : $H^{\infty}(\Delta) \rightarrow H^{\infty}(D)$. Moreover if Δ has no singular points then $L(A(\Delta)) \subset A(D)$.

In order to prove this theorem, we use the function $\Phi(\zeta, z)$ in the following proposition which was constructed by F. Beatrous, Jr. ([3], Theorem 2.1).

Proposition 1. Let k be a positive integer $(k \geq 3)$. There are a neighborhood U of $\partial \Delta$, a smooth positive function r on U, and a C^{k} function Φ on $U \times \bar{D}$ with the following properties:
(i) For each $\zeta \in U, \Phi(\zeta, \cdot) \in C^{k}(\bar{D}) \cap O(D)$.
(ii) $G(\zeta, z)=\Phi(\zeta, z) / T(\zeta, z)$ is a non-vanishing C^{k} function on $\{(\zeta, z) \in U \times \bar{D}:|\zeta-z| \leq r(z)\}$.
(iii) $\Phi(\zeta, z) \neq 0$ if $|\zeta-z| \geq r(z)$.
(iv) $\operatorname{Re} T(\zeta, z)>\rho(\zeta)-\rho(z)+r(z)|\zeta-z|^{2}$ if $|\zeta-z| \leq r(\zeta)$, where ρ is the defining function for the domain D constructed by F. Beatrous, $J r$., and

$$
T(\zeta, z)=-2 \sum_{i} \frac{\partial \rho}{\partial z_{i}}(\zeta)\left(z_{i}-\zeta_{l}\right)-\sum_{l, \jmath} \frac{\partial^{2} \rho}{\partial z_{i} \partial z_{l}}(\zeta)\left(z_{l}-\zeta_{l}\right)\left(z_{\jmath}-\zeta_{j}\right)
$$

Moreover we can extend $\Phi(\zeta, z)$ to a C^{k} function on a neighborhood of $\partial D \times \bar{D}$, holomorphic in z such that $\Phi(\zeta, z)$ satisfies $\Phi(\zeta, z)=$ $\sum_{j=1}^{N+1} P_{j}(\zeta, z)\left(\zeta_{J}-z_{j}\right)$, and $\Phi(\zeta, z) \neq 0$ if $\rho(\zeta)>\rho(z)$, where $P_{J}(\zeta, z)$ is a C^{k} function on a neighborhood of $\partial D \times \bar{D}$, holomorphic in z.

Let $D_{\nu}=\left\{z \in D: \rho(z)<-\varepsilon_{\nu}\right\}$ and $\Delta_{\nu}=\Delta \cap D_{\nu}$, where $\left\{\varepsilon_{\nu}\right\}$ is a sequence of sufficiently small strictly decreasing positive numbers converging to 0 . By E. L. Stout [8], we have the following:

Proposition 2. If $f \in H^{\infty}(\Delta)$, then the following formula holds for all $z \in \Delta_{\nu}$ and all sufficiently large ν :

$$
\begin{equation*}
f(z)=\int_{\partial \Delta_{\nu}} f(\zeta) \frac{\tilde{\Psi}(\zeta, z) \tilde{\omega}_{F}}{\Phi(\zeta, z)^{N}\|\operatorname{grad} F(\zeta)\|}=\int_{\partial \Delta_{\nu}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}} \tag{1}
\end{equation*}
$$

where $\tilde{\Psi}(\zeta, z)$ is a $C^{k-1}(0, N-1)$ form in a neighborhood of $\partial D \times \bar{D}$ and, for each ζ near ∂D, coefficients of $\tilde{\Psi}(\zeta, \cdot)$ are holomorphic in D. One could arrange for $\tilde{\Psi}(\zeta, \cdot)$ to be holomorphic on \bar{D} if \bar{D} were assumed to have a pseudoconvex neighborhood basis. $\tilde{\omega}_{F}$ is given by

$$
\tilde{\omega}_{F}=\sum_{j=1}^{N+1}(-1)^{j-1} \bar{F}_{j} d \zeta_{1} \wedge \cdots \wedge \widehat{d \zeta_{j}} \wedge \cdots \wedge d \zeta_{N+1}
$$

where $F_{j}=\partial F / \partial z_{j}, j=1, \ldots, N+1$, and \wedge means the symbol is to be omitted. Therefore $K(\zeta, z)$ is a $C^{k-1}(N, N-1)$ form on a neighborhood of $\partial D \times \bar{D}$ and for each ζ near ∂D, coefficients of $K(\zeta, \cdot)$ are holomorphic in D.

We set

$$
H_{\nu}(z)=\int_{\partial \Delta_{\nu}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}} \quad \text { for } z \in \bar{D}_{\nu} \mid \partial \Delta_{\nu}
$$

and

$$
L(f)(z)=H(z)=\lim _{\nu \rightarrow \infty} H_{\nu}(z) \quad \text { for } z \in \bar{D} \mid \partial \Delta
$$

Lemma 1. $H(z)$ is holomorphic on D and $H(z)=f(z)$ for all $z \in \Delta$.
Proof. For $z \in W \Subset D_{\nu_{0}}, \nu>\mu \geq \nu_{0}$, we have

$$
H_{\nu}(z)-H_{\mu}(z)=\int_{\partial\left(\Delta_{\nu}-\Delta_{\mu}\right)} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}}=\int_{\Delta_{\nu}-\Delta_{\mu}} f(\zeta) \bar{\partial}_{\zeta}\left(\frac{K(\zeta, z)}{\Phi(\zeta, z)^{N}}\right)
$$

Since the form $\bar{\partial}_{\zeta}\left(K(\zeta, z) / \Phi(\zeta, z)^{N}\right)$ is bounded for $\zeta \in \Delta_{\nu}-\Delta_{\mu}$ and $z \in W$, there exists a constant K such that

$$
\left|H_{\nu}(z)-H_{\mu}(z)\right| \leq K \sup _{\zeta \in \Delta}|f(\zeta)| \operatorname{Vol}\left(\Delta_{\nu}-\Delta_{\mu}\right)
$$

Hence $H_{\nu}(z)$ converges locally uniformly on D. Therefore $H(z)$ is holomorphic in D. By Proposition 2, $H(z)=f(z)$ for all $z \in \Delta$. Therefore Lemma 1 is proved.

We want to show that $H(z) \in H^{\infty}(D)$. Let $S_{z, 0}=\left\{z:\left|z-z^{0}\right|<\sigma\right\}$. Let $z^{0} \in \partial \Delta$. Then there exist a constant $\sigma_{1}>0$ and a biholomorphic
change of coordinates on a neighborhood of z^{0} such that ρ is strictly convex in a neighborhood of $\bar{D} \cap \bar{S}_{z^{0 . \sigma_{1}}}, \Delta \cap S_{z^{0 . \sigma_{1}}}=\left\{z \in S_{z^{0 . \sigma_{1}}}: z_{N+1}=0\right\}$ and $\partial \rho\left(z^{0}\right) / \partial z_{1} \neq 0$. Let $0<\sigma_{2}<\sigma_{1}$. Let $z \in S_{z} 0 . \sigma_{2} \cap D_{\nu}$. We write

$$
H_{\nu}(z)=\int_{\partial \Delta_{\nu} \cap S_{z^{0.0}}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}}+\int_{\partial \Delta_{\nu} \mid S_{z^{0} .0 \sigma_{1}}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}}
$$

Then

$$
\left|\int_{\partial \Delta_{v} \mid S_{z} 0.0 o_{1}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}}\right| \leq \gamma_{1} \sup _{\zeta \in \Delta_{\nu}}|f(\zeta)|
$$

where γ_{1} depends only on D and Δ. We set

$$
\tilde{H}_{\nu}(z)=\int_{\partial \Delta_{\nu} \cap S_{z} 0.0_{1}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}}
$$

Then it is sufficient to show that $\left|\tilde{H}_{\nu}(z)\right| \leq \gamma_{2} \sup _{\zeta \in \Delta}|f(\zeta)|$, where γ_{2} depends only on D and Δ.

We consider the system of equations for $\zeta^{0}=\left(\zeta_{1}^{0}, \ldots, \zeta_{N+1}^{0}\right)$ of the following form for $z \in S_{z^{0 . \sigma_{2}}}$:

$$
\begin{gather*}
\sum_{i=1}^{N+1} \frac{\partial \rho}{\partial \zeta_{l}}\left(\zeta^{0}\right)\left(\zeta_{i}^{0}-z_{i}\right)=0 \\
\zeta_{i}^{0}=z_{i} \quad(i=2,3, \ldots, N) \tag{2}\\
\zeta_{N+1}^{0}=0
\end{gather*}
$$

Then we have the following lemma which was proved by G. M. Henkin [5]. But we give the proof of E. Amar [2] which is simpler than Henkin's.

Lemma 2. There exist positive constants $\sigma_{3}\left(<\sigma_{2}\right), \gamma_{3}$ and γ_{4}, depending only on D and Δ, such that for any $\sigma \leq \sigma_{3}$ and any $z \in S_{z^{0,0 / 2}}$ there exists a unique solution $\zeta^{0}=\zeta^{0}(z)$ of system (2) which belongs to the set $S_{z^{0, \sigma}} \cap \tilde{\Delta}$. Here the point $\zeta^{0}=\zeta^{0}(z)$ has the following properties:

$$
\begin{gather*}
\left|z-\zeta^{0}\right|^{2} \leq \frac{1}{\gamma_{3}}\left[\rho(z)-\rho\left(\zeta^{0}\right)\right] \tag{3}\\
\left|z-\zeta^{0}\right|^{2} \geq\left|z_{N+1}\right|^{2} \geq \gamma_{4}\left[\rho(z)-\rho\left(\zeta^{0}\right)\right] \\
\zeta^{0}=z \quad \text { for any } z \in S_{z^{0.0 / 2}} \cap \tilde{\Delta}
\end{gather*}
$$

Proof. From (2), we have

$$
z_{1}=\zeta_{1}-\frac{\left(\partial \rho(\zeta) / \partial z_{N+1}\right) z_{N+1}}{\partial \rho(\zeta) / \partial z_{1}}=\zeta_{1}-a(\zeta) z_{N+1}
$$

where $a(\xi)$ is C^{∞} in a neighborhood of z^{0}. There exists $\sigma_{3}>0$ such that for any $\zeta \in B\left(z^{0}, \sigma_{3}\right), z \in B\left(z^{0}, \sigma_{3}\right)$ we have $\left|\nabla a(\zeta) \| z_{N+1}\right| \leq \frac{1}{2}$. We set by recurrence that

$$
\begin{aligned}
& \zeta_{1}^{(1)}=z_{1} \\
& \zeta^{(J)}=\left(\zeta_{1}^{(j)}, z_{2}, \ldots, z_{N}, z_{N+1}^{0}\right) \\
& \zeta_{1}^{(J)}=z_{1}+a\left(\zeta^{(J-1)}\right) z_{N+1}
\end{aligned}
$$

If z and $\zeta^{(/)}$are in $B\left(z^{0}, \sigma_{3}\right)$, then

$$
\left|\zeta_{l}^{(J)}-\zeta_{l}^{(J-1)}\right|<\left|z_{N+l}\right||\nabla a|\left|\zeta_{l}^{(j-1)}-\zeta_{l}^{(J-2)}\right|<\frac{1}{2}\left|\zeta_{l}^{(J-1)}-\zeta_{l}^{(J-2)}\right| .
$$

Therefore $\zeta^{(\rho)}$ converges. Then $\lim _{\nu \rightarrow \infty} \zeta^{(\rho)}=\zeta^{0}$ is the soution of (2). The strict convexity of the function ρ and equations (2) imply the inequalities:
(5) $\rho\left(\zeta^{0}\right)-\rho(z)+\gamma_{3}\left|\zeta^{0}-z\right|^{2} \leq 2 \operatorname{Re} \sum_{i=1}^{N+1} \frac{\partial \rho}{\partial \zeta_{l}}\left(\zeta^{0}\right)\left(\zeta_{l}^{0}-z_{l}\right)=0$,
(6) $\rho\left(\zeta^{0}\right)-\rho(z)+\gamma_{4}^{\prime}\left|\zeta^{0}-z\right|^{2} \geq 2 \operatorname{Re} \sum_{i=1}^{N+1} \frac{\partial \rho}{\partial \zeta_{i}}\left(\zeta^{0}\right)\left(\zeta_{i}^{0}-z_{i}\right)=0$,
where $z \in S_{z} 0,0_{3} / 2$. From (5) we have (3). From (6) we have

$$
\left|\zeta^{0}-z\right|^{2} \geq \frac{1}{\gamma_{4}^{\prime}}\left[\rho(z)-\rho\left(\zeta^{0}\right)\right]
$$

But

$$
\left|\zeta^{0}-z\right|^{2} \geq\left|z_{N+1}\right|^{2}+\left|\zeta_{1}^{0}-z_{1}\right|^{2} \leq \gamma_{4}^{\prime \prime}\left|z_{N+1}\right|^{2}
$$

Therefore we have $\left|z_{N+1}\right|^{2} \geq\left(1 / \gamma_{4}\right)\left[\rho(z)-\rho\left(\zeta^{0}\right)\right]$. Therefore Lemma 2 is proved.

For any $z \in \bar{D}_{\nu} \cap S_{z^{0 . \sigma_{2}}} \mid \partial \Delta_{\nu}$ and any vector $w=\left(w_{1}, \ldots, w_{N+1}\right) \neq 0$, we have
(7) $\left.\frac{d \tilde{H}_{\nu}(z+\lambda w)}{d \lambda}\right|_{\lambda=0}=\int_{\partial \Delta_{\nu} \cap S_{z} 0.0 \sigma_{1}} \frac{f(\zeta) \sum_{j=1}^{N+1}\left(\partial / \partial z_{j}\right) K(\zeta, z) w_{j}}{\Phi(\zeta, z)^{N+1}}$

$$
-\int_{\partial \Delta_{\nu} \cap S_{z} 0_{0}} \frac{N \sum_{j=1}^{N+1}\left(\partial \Phi(\zeta, z) / \partial z_{j}\right) w_{j} K(\zeta, z)}{\Phi(\zeta, z)^{N+1}}
$$

Lemma 3. Let $f(\zeta) \in H^{\infty}(\Delta)$. Then for any point $z^{0} \in \partial \Delta$ and any point $z \in \partial\left(S_{z^{0 . \sigma}} \cap D_{\nu}\right) \mid \partial \Delta_{\nu}\left(\sigma<\left(\sigma_{3} / 2\right)\right)$, we have

$$
\left.\left|\frac{d \tilde{H}_{\nu}\left(\zeta^{0}+\lambda\left(z-\zeta^{0}\right)\right)}{d \lambda}\right|_{\lambda=1}\left|\leq \gamma_{5} \sup _{\zeta \in \Delta}\right| f(\zeta) \right\rvert\,
$$

where $\zeta^{0}=\zeta^{0}(z)$ and γ_{5} depends only on D and Δ.
Proof. We set $\varepsilon=\left|z_{N+1}\right|$, where

$$
z=\left(z_{1}, \ldots, z_{N+1}\right) \in \partial\left(S_{z 0, \sigma} \cap D_{\nu}\right) \mid \partial \Delta_{\nu}
$$

Then Lemma 2 implies the inequalities

$$
\varepsilon \leq\left|\zeta^{0}-z\right| \leq\left\{\frac{\rho(z)-\rho\left(\zeta^{0}\right)}{\gamma_{3}}\right\}^{1 / 2} \leq \frac{\varepsilon}{\left(\gamma_{3} \gamma_{4}\right) 1 / 2}
$$

Since $\sum_{i=1}^{N+1}\left(\partial \rho / \partial \zeta_{i}\right)\left(\zeta^{0}\right)\left(\zeta_{i}^{0}-z_{i}\right)=0$, it follows that

$$
\begin{aligned}
\left\lvert\, \sum_{i=1}^{N+1} \frac{\partial \Phi}{\partial z_{i}}(\zeta,\right. & z)\left(\zeta_{l}^{0}-z_{i}\right)\left|=\left|\sum_{i=1}^{N+1}\left(\frac{\partial \Phi(\zeta, z)}{\partial z_{i}}+2 \frac{\partial \rho}{\partial \zeta_{i}}\left(\zeta^{0}\right)\right)\left(\zeta_{i}^{0}-z_{i}\right)\right|\right. \\
& \leq\left|\sum_{i=1}^{N+1}\left(\frac{\partial \Phi}{\partial z_{i}}(\zeta, z)-\frac{\partial \Phi}{\partial z_{l}}\left(\zeta^{0}, z\right)+O\left(\left|\zeta^{0}-z\right|\right)\right)\left(\zeta_{i}^{0}-z_{l}\right)\right| \\
& \leq \gamma_{6} \varepsilon(|\zeta-z|+\varepsilon)
\end{aligned}
$$

Here we have used the equation

$$
\frac{\partial \Phi}{\partial z_{i}}\left(\zeta^{0}, z\right)=-2 \frac{\partial \rho}{\partial \zeta_{i}}\left(\zeta^{0}\right)+O\left(\left|\zeta^{0}-z\right|\right)
$$

By (7), we have

$$
\begin{aligned}
& \left|\frac{d \tilde{H}_{\nu}\left(\zeta^{0}+\lambda\left(z-\zeta^{0}\right)\right)}{d \lambda}\right|_{\lambda=1}\left|=\left|\frac{d \tilde{H}_{\nu}\left(z+\lambda\left(z-\zeta^{0}\right)\right)}{d \lambda}\right|_{\lambda=0}\right| \\
& \quad \leq \gamma_{7} \int_{\partial \Delta_{\nu} \cap S_{z} 0 . \sigma_{1}} \frac{|f(\zeta)|\left|z-\zeta^{0}\right|}{|\Phi(\zeta, z)|^{N+1}} d \lambda+\gamma_{8} \int_{\partial \Delta_{\nu} \cap S_{z} 0 . \sigma_{1}} \frac{|f(\zeta)| \varepsilon(|\zeta-z|+\varepsilon)}{|\Phi(\zeta, z)|^{N+1}} d \lambda .
\end{aligned}
$$

We can choose coordinates $\left(\eta_{1}(\zeta), \ldots, \eta_{N+1}(\zeta)\right)$ in $S_{z^{0 . \sigma_{3}}}$ such that $\eta_{1}(\zeta)=$ $\rho(\zeta)-\rho(z)+i \operatorname{Im} \Phi(\zeta, z)$. Then

$$
|\Phi(\zeta, z)| \geq \gamma_{9}\left[\left(t_{1}+|\zeta-z|^{2}\right)^{2}+t_{2}^{2}\right]^{1 / 2}
$$

and

$$
|\zeta-z| \geq \gamma_{10}\left(t_{1}^{2}+\cdots+t_{2 N}^{2}+\varepsilon^{2}\right)^{1 / 2} \geq \gamma_{11}|\zeta-z|
$$

where we have written $\eta_{i}(\zeta)=t_{2 i-1}+\sqrt{-1} t_{2 i}(i=1,2, \ldots, N+1)$. Then we have

$$
\begin{aligned}
& \left.\left|\frac{d F\left(\zeta^{0}+\lambda\left(z-\zeta^{0}\right)\right)}{d \lambda}\right|_{\lambda=1}\left|\leq \gamma_{12} \sup _{\zeta \in \Delta}\right| f(\zeta) \right\rvert\, \\
& \quad \times\left\{\varepsilon \int_{\substack{t_{2}^{2}+\cdots+t_{2 N}^{2} \leq 1 \\
t_{1} \geq 0}} \frac{d t_{2} d t_{3} \cdots d t_{2 N}}{\left[\left(t_{1}+t_{2}^{2}+\cdots+t_{2 N}^{2}+\varepsilon^{2}\right)^{2}+t_{2}^{2}\right]^{N / 2}}\right. \\
& \quad+\varepsilon \int_{\substack{t_{2}^{2}+\cdots+t_{2 N}^{2} \leq 1 \\
t_{1} \geq 0}} \frac{\left(t_{1}^{2}+t_{2}^{2}+\cdots+t_{2 N}^{2}+\varepsilon^{2}\right)^{1 / 2} d t_{2} \cdots d t_{2 N}}{\left[\left(t_{1}+t_{2}^{2}+\cdots t_{2 N}^{2}+\varepsilon^{2}\right)^{2}+t_{2}^{2}\right]^{N+1 / 2}} \\
& \left.\quad+\varepsilon^{2} \int_{\substack{t_{2}^{2}+\cdots+t_{2 N}^{2} \leq 1 \\
t_{1} \geq 0}} \frac{d t_{2} \cdots d t_{2 N}}{\left[\left(t_{1}+t_{2}^{2}+\cdots+t_{2 N}^{2}+\varepsilon^{2}\right)^{2}+t_{2}^{2}\right]^{N+1 / 2}}\right\}
\end{aligned}
$$

(by G. M. Henkin [5])

$$
\leq \gamma_{13} \sup _{\zeta \in \Delta}|f(\zeta)|
$$

We want to have

$$
\sup _{z \in D_{v}}\left|H_{\nu}(z)\right| \leq \gamma_{14} \sup _{\zeta \in \Delta}|f(\zeta)|
$$

where γ_{14} depends only on D and Δ. We shall denote by $\left(\partial \Delta_{\nu}\right)_{\sigma}$ the σ-neighborhood of $\partial \Delta_{\nu}$. Since the function $H_{\nu}(z)$ is holomorphic at all points $z \in \bar{D}_{\nu} \mid \partial \Delta_{\nu}$, we have

$$
\sup _{z \in D_{\nu}}\left|H_{\nu}(z)\right| \leq \sup _{z \in \partial D_{\nu}\left(\partial \Delta_{\nu}\right)_{\sigma}}\left|H_{\nu}(z)\right|+\sup _{z \in\left[\left(\partial \Delta_{v}\right)_{\|} \mid \partial \Delta_{\nu}\right] \cap \partial D_{\nu}}\left|H_{\nu}(z)\right| .
$$

We obtain

$$
\begin{aligned}
& \sup _{z \in \partial D_{\nu}\left(\partial \Delta_{\nu}\right)_{\sigma}}\left|H_{\nu}(z)\right| \\
& \quad \leq \gamma_{15}\left[\int_{t_{2}^{2}+\cdots t_{2 N}^{2} \leq 1} \frac{d t_{2} \cdots d t_{2 N}}{\left.\left[\left(t_{2}^{2}+\cdots t_{2 N}^{2}+\sigma^{2}\right)^{2}+t_{2}^{2}\right]^{N / 2}\right]} \sup _{\zeta \in \Delta}|f(\zeta)|\right. \\
& \quad \leq \gamma_{16} \sup _{\zeta \in \Delta}|f(\zeta)| .
\end{aligned}
$$

Let $\sigma<16 \sigma_{3}$. We now fix $z \in\left[\left(\partial \Delta_{\nu}\right)_{\sigma}-\partial \Delta_{\nu}\right] \cap \partial D_{\nu}$. We take ν so large that one can find $z^{0} \in \partial \Delta$ such that $z \in S_{z 0.2 \sigma \text {. Then by Lemma 2, there }}$ exists a solution $\zeta^{0}=\zeta^{0}(z)$ of system (2) belonging to the set $S_{z} 0,4 \sigma \cap \tilde{\Delta}$ and satisfying the inequalities

$$
\begin{equation*}
\gamma_{3}\left|z_{N+1}\right|^{2} \leq \rho(z)-\rho\left(\zeta^{0}\right) \leq\left|z_{N+1}\right|^{2} / \gamma_{4} \tag{8}
\end{equation*}
$$

Let $T_{\nu}=\left\{\lambda \in C: z(\lambda)=\zeta^{0}+\lambda\left(z-\zeta^{0}\right) \in D_{\nu} \cap S_{z^{0.4 \sigma}}\right\}$. T_{ν} is a convex domain containing $\lambda=0$. For any λ we have

$$
\sum_{i=1}^{N+1} \frac{\partial \rho}{\partial \zeta_{i}}\left(\zeta^{0}\right)\left(\zeta_{i}^{0}-z_{i}(\lambda)\right)=0
$$

From this we have

$$
\left|z(\lambda)-\zeta^{0}\right|^{2} \leq \frac{1}{\gamma_{17}}\left\{\rho(z(\lambda))-\rho\left(\zeta^{0}\right)\right\}
$$

Hence for $\lambda \in \partial T_{\nu}$ with $z(\lambda) \in \partial D_{\nu}$, we obtain

$$
\begin{aligned}
\left|z(\lambda)-z^{0}\right| & \leq\left|z(\lambda)-\zeta^{0}\right|+\left|\zeta^{0}-z^{0}\right| \\
& \leq \frac{1}{\sqrt{\gamma_{17}}}\left(\rho(z(\lambda))-\rho\left(\zeta^{0}\right)\right)^{1 / 2}+\frac{\sigma_{3}}{4} \\
& =\frac{1}{\sqrt{\gamma_{17}}}\left(\rho(z)-\rho\left(\zeta^{0}\right)\right)^{1 / 2}+\frac{\sigma_{3}}{4} \\
& \leq \frac{\varepsilon}{\sqrt{\gamma_{4} \gamma_{17}}}+\frac{\sigma_{3}}{4} \leq \frac{\sigma}{\sqrt{\gamma_{4} \gamma_{17}}}+\frac{\sigma_{3}}{4}
\end{aligned}
$$

We impose the further restriction that the constant $\sigma<\sigma_{3} \sqrt{\gamma_{4} \gamma_{17}} / 4$. Then $\left|z(\lambda)-z^{0}\right|<\sigma_{3} / 2$. Therefore $z(\lambda) \in S_{z^{0, \sigma_{3} / 2}}$. Since the point $\zeta^{0}(z)$ satisfies system (2) with any $z(\lambda)$ satisfying $\lambda \in \partial T_{\nu}$ and $z(\lambda) \in \partial D_{\nu}$, it follows that $\zeta^{0}(z(\lambda))=\zeta^{0}(z)$ for any $\lambda \in \partial T_{\nu}$ with $z(\lambda) \in \partial D_{\nu}$. Moreover

$$
\begin{aligned}
\frac{|\lambda| \varepsilon}{\gamma_{3} \gamma_{4}} & \geq \frac{|\lambda|}{\gamma_{3}}\left(\rho(z)-\rho\left(\zeta^{0}\right)\right) \geq|\lambda|\left|z-\zeta^{0}\right|=\left|z(\lambda)-\zeta^{0}\right| \\
& \geq\left(\gamma_{4}\left(\rho(z(\lambda))-\rho\left(\zeta^{0}\right)\right)\right)^{1 / 2} \\
& =\left[\gamma_{4}\left(\rho(z)-\rho\left(\zeta^{0}\right)\right)\right]^{1 / 2} \geq\left(\gamma_{3} \gamma_{4}\right)^{1 / 2} \varepsilon
\end{aligned}
$$

Therefore $|\lambda| \geq \gamma_{3} \gamma_{4}$ for any $\lambda \in \partial T_{\nu}$ with $z(\lambda) \in \partial D_{\nu}$. If $\lambda \in \partial T_{\nu}$ and $z(\lambda) \in S_{z^{0.4 \sigma}}$, there exists $\gamma_{18}>0$ such that $|\lambda| \geq \gamma_{18}$. Let $\gamma_{19}=$ $\min \left(\gamma_{3} \gamma_{4}, \gamma_{18}\right)$. Then

$$
\begin{equation*}
|\lambda| \geq \gamma_{19} \quad \text { for any } \lambda \in \partial T_{\nu} \tag{9}
\end{equation*}
$$

By Lemma 3, we have

$$
\begin{equation*}
\left.\left|\frac{d H_{\nu}\left(\zeta^{0}+t\left(z(\lambda)-\zeta^{0}\right)\right)}{d t}\right|_{t=1}\left|\leq \gamma_{5} \sup _{\zeta \in \Delta}\right| f(\zeta) \right\rvert\, \tag{10}
\end{equation*}
$$

for any $\lambda \in \partial T_{\nu}$. We note that

$$
\left.\frac{d H_{\nu}\left(\zeta^{0}+t\left(z(\lambda)-\zeta^{0}\right)\right)}{d t}\right|_{t=1}=\frac{d H_{\nu}\left(\zeta^{0}+\lambda\left(z-\zeta^{0}\right)\right)}{d \lambda}
$$

From (8), (9) and (10), we have

$$
\left|\frac{d H_{\nu}\left(\zeta^{0}+\lambda\left(z-\zeta^{0}\right)\right)}{d \lambda}\right| \leq \frac{\gamma_{5}}{|\lambda|} \sup _{\zeta \in \Delta}|f(\zeta)| \leq \frac{\gamma_{5}}{\gamma_{19}} \sup _{\zeta \in \Delta}|f(\zeta)|
$$

for any $\lambda \in \partial T_{\nu}$. Since the function $d H_{\nu}\left(\zeta^{0}+\lambda\left(z-\zeta^{0}\right)\right) / d \lambda$ is holomorphic in λ for all $\lambda \in \bar{T}_{\nu}$, it follows that

$$
\sup _{\lambda \in T_{\nu}}\left|\frac{d H_{\nu}\left(\zeta^{0}+\lambda\left(z-\zeta^{0}\right)\right)}{d \lambda}\right| \leq \frac{\gamma_{5}}{\gamma_{19}} \sup _{\zeta \in \Delta}|f(\zeta)| .
$$

Consequently

$$
\left|H_{\nu}(z)-H_{\nu}\left(\zeta^{0}\right)\right|=\left|\int_{0}^{1} \frac{d}{d \lambda} H_{\nu}\left(\zeta^{0}+\lambda\left(z-\zeta^{0}\right)\right) d \lambda\right| \leq \frac{\gamma_{5}}{\gamma_{19}} \sup _{\zeta \in \Delta}|f(\zeta)|
$$

From (8), $\zeta^{0} \in \Delta_{\nu}$. Since $H_{\nu}\left(\zeta^{0}\right)=f\left(\zeta^{0}\right)$, we have

$$
\left|H_{\nu}(z)\right| \leq\left(\frac{\gamma_{5}}{\gamma_{19}}+1\right) \sup _{\zeta \in \Delta}|f(\zeta)|
$$

Therefore

$$
\sup _{z \in D_{\nu}}\left|H_{\nu}(z)\right| \leq \gamma_{20} \sup _{\zeta \in \Delta}|f(\zeta)|
$$

Hence

$$
\sup _{z \in D}|H(z)| \leq \gamma_{20} \sup _{\zeta \in \Delta}|f(\zeta)|
$$

The next step is to show that if $f \in A(\Delta)$, then also $H(z)=L(f)(z)$ $\in A(D)$. In this case we have assumed that Δ has no singular points. Therefore by N. Kerzman [6], there exists a sequence $\left\{f_{k}\right\}_{k=1}^{\infty}$ of functions holomorphic in a neighborhood of $\bar{\Delta}$ in $\tilde{\Delta}$ such that $\left\|f_{k}-f\right\|_{\Delta} \rightarrow 0$ when $k \rightarrow \infty$. By the continuity of L it suffices to prove that each $L f_{k}$ is in $A(D)$. Hence we can suppose f is holomorphic in $\bar{\Delta}^{\prime}\left(\bar{\Delta} \subset \Delta^{\prime} \subset \bar{\Delta} \subset \tilde{\Delta}\right)$.

Let $z^{0} \in \partial \Delta$ and let $z \in S_{z^{0.0 / 2}} \cap\left(\bar{D}_{\nu} \mid \partial \Delta_{\nu}\right)$. By Stokes' formula, we have

$$
\begin{aligned}
H_{\nu}(z)= & \int_{\partial \Delta_{\nu}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}} \\
= & \int_{\partial \Delta^{\prime}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}}-\int_{\Delta^{\prime}-\Delta_{\nu}} f(\zeta) \bar{\partial}_{\zeta}\left(\frac{K(\zeta, z)}{\Phi(\zeta, z)^{N}}\right) \\
= & \int_{\partial \Delta^{\prime}} \frac{f(\zeta) K(\zeta, z)}{\Phi(\zeta, z)^{N}}-\int_{\left(\Delta^{\prime}-\Delta_{\nu}\right) \cap S_{z}, 2 \sigma} f(\zeta) \bar{\partial}_{\zeta}\left(\frac{K(\zeta, z)}{\Phi(\zeta, z)^{N}}\right) \\
& -\int_{\left(\Delta^{\prime}-\Delta_{\nu}\right) S_{z^{\prime}, 2 \sigma}} f(\zeta) \bar{\partial}_{\zeta}\left(\frac{K(\zeta, z)}{\Phi(\zeta, z)^{N}}\right)
\end{aligned}
$$

The first and the third term on the left are continuous in z^{0}. Therefore it is sufficient to show that, if we set

$$
F_{\nu}(z)=\int_{\left(\Delta^{\prime}-\Delta_{\nu}\right) \cap S_{z} 0.2 \sigma} f(\zeta) \bar{\partial}_{\zeta}\left(\frac{K(\zeta, z)}{\Phi(\zeta, z)^{N}}\right)
$$

then $F_{\nu}(z)$ is continuous at z^{0}.
Lemma 4. Let $z \in S_{z^{0.0 / 2}} \cap\left(\overline{D_{\nu}} \mid \partial \Delta\right)$. Then

$$
\left.\left|\frac{d F_{\nu}\left(\zeta^{0}+\lambda\left(z-\zeta^{0}\right)\right)}{d \lambda}\right|_{\lambda=1}\left|\leq \gamma_{21} \varepsilon\right| \log \varepsilon\left|\sup _{\zeta \in \tilde{\Delta}}\right| f(\zeta) \right\rvert\,
$$

Proof. We can write

$$
\begin{aligned}
F_{\nu}(z)= & \int_{\left(\Delta^{\prime}-\Delta_{\nu}\right) \cap S_{z^{0.2 \sigma}}} f(\zeta) \frac{A(\zeta, z)}{\Phi(\zeta, z)^{N}} \\
& +\int_{\left(\Delta^{\prime}-\Delta_{\nu}\right) \cap S_{z^{0}, 2 \sigma}} \frac{f(\zeta) \sum_{j=1}^{N+1}\left(\zeta_{j}-z_{j}\right) B_{j}(\zeta, z)}{\Phi(\zeta, z)^{N+1}}
\end{aligned}
$$

where $A(\zeta, z)$ and $B_{j}(\zeta, z)$ are (N, N) forms which are continuous in ζ and holomorphic in z. Therefore

$$
\begin{aligned}
\left.\left|\frac{d F_{\nu}\left(\zeta^{0}+\lambda\left(z-\zeta^{0}\right)\right)}{d \lambda}\right|_{\lambda=1} \right\rvert\, \leq & \gamma_{22} \int_{\left(\Delta^{\prime}-\Delta_{\nu}\right) \cap S_{z^{0.2 \sigma}}} \frac{\varepsilon}{\Phi(\zeta, z)^{N+1}} d \lambda \\
& +\gamma_{23} \int_{\left(\Delta^{\prime}-\Delta_{\nu}\right) \cap S_{z^{0.2 \sigma}}} \frac{|\zeta-z| \varepsilon(|\zeta-z|+\varepsilon)}{|\Phi(\zeta, z)|^{N+2}} d \lambda
\end{aligned}
$$

(by the estimates of G. M. Henkin [5])

$$
\leq \gamma_{24} \varepsilon|\log \varepsilon| \sup _{\zeta \in \bar{\Delta}}|f(\zeta)|
$$

Therefore Lemma 4 is proved.
Using the method of Henkin [5], we have

$$
\left|F_{\nu}(z)-F_{\nu}\left(z^{0}\right)\right| \leq \gamma_{25} \sigma|\log \sigma| \sup _{\zeta \in \Delta^{\prime}}|f(\zeta)|+\gamma_{26} \sigma \sup _{\zeta \in \Delta^{\prime}}|\operatorname{grad} f(\zeta)| .
$$

Therefore $F_{\nu}(z)$ is continuous at z^{0}. Therefore the theorem is proved.

References

[1] K. Adachi, Extending bounded holomorphic functions from certain subvarieties of a strongly pseudoconvex domain, Bull. Fac. Sci., Ibaraki Univ., Math., No. 8, (1976), 1-7.
[2] E. Amar, $\bar{\partial}$-Cohomologie C^{∞} et applications, preprint.
[3] F. Beatrous, Jr., Hölder estimates for the $\bar{\partial}$ equation with a support condition, Pacific J. Math., 90, No. 2, (1980), 249-257.
[4] J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569.
[5] G. M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains, Izv. Akad. Nauk SSSR, 36 (1972), 540-567. (English translation: Math. USSR Izvestija, 6 (1972), 536-563.)
[6] N. Kerzman, Hölder and L^{p}-estimates for solutions of $\bar{\partial} u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math., 24 (1971), 301-380.
[7] R. M. Range, Holomorphic approximation near strictly pseudoconvex boundary points, Math. Ann., 201 (1973), 9-17.
[8] E. L. Stout, An integral formula for holomorphic functions on strictly pseudoconvex hypersurfaces, Duke Math. J., 42, No. 2 (1975), 347-356.

Received November 19, 1981 and in revised form May 26, 1982.
Nagasaki University
Nagasaki 852, Japan

