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TOPOLOGICAL BOOLEAN RINGS.
DECOMPOSITION OF FINITELY ADDITIVE

SET FUNCTIONS

HANS WEBER

As a basis for the whole paper we establish an isomorphism between
the lattice Ίfls(R) of all abounded monotone ring topologies on a
Boolean ring R and a suitable uniform completion of R; it follows that
Wls(R) itself is a complete Boolean algebra. Using these facts we study
5-bounded monotone ring topologies and topological Boolean rings (con-
ditions for completeness and metriziability, decompositions). In the
second part of this paper we give a simple proof of a Lebesgue-type
decomposition for finitely additive (e.g. semigroup-valued) set functions
on a ring, which was first proved by Traynor (in the group-valued case)
answering a question of Drewnowski. Using the Lebesgue-decomposition
various other decompositions are obtained.

0. Introduction. The first part of this paper (Chapter 2) deals with

an examination of the lattice Ψts(R) of all ^-bounded monotone ring

topologies ( = FN-topologies) on a Boolean ring R. In (2.2) an isomor-

phism is established between Wls(R) and the completion of R for the

finest ^-bounded monotone ring topology Us on R. From this result we get

some consequences (criteria for completeness and metrizability, decom-

position theorems for monotone ring topologies) which are also interesting

for measure theory and which — as far as they are known in special cases

— were before in each case proved with quite different methods.

In the second part of this paper (Chapter 3) a decomposition μ —

Σa(ΞA μa into an infinite sum is given for an ^-bounded content μ: R -> G

defined on a Boolean ring with values in e.g. a complete Hausdorff

topological group (content = finitely additive set function); this decom-

position includes the usual decomposition theorems as special cases. For

an illustration of the method Chapter 3 first deals with the case \A\— 2,

i.e. with the Lebesgue decomposition; this again includes as special cases

decompositions of a Hewitt-Yosida type, decompositions into an atomless

and an atomic content, into a regular and an antiregular content and

others. We explain the arising problems with the Lebesgue decomposition.

The classic Lebesgue decomposition {μ — λ + v, λ J_w, v < u) of a non-

negative (σ-additive) measure on a σ-algebra rests on a decomposition of

the basic set into two disjoint sets of the σ-algebra. The same is still true
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for the Lebesgue decomposition of group-valued measures on a σ-com-
plete Boolean ring satisfying the countable chain condition (CCC) [13,
Corollary 2]. But things are different if measures without CCC or the
finitely additive case are considered. In [20] Traynor — essentially gener-
alizing a method of Rickart [18] — has decomposed ^-bounded group-val-
ued contents on rings with ideals which do not decompose the ring.
Drewnowski asked in [5] if a stronger version of a Lebesgue decomposi-
tion (with a more adequate notion of singularity) is true. In [21] Traynor
obtained such a more general and final version of a Lebesgue decomposi-
tion theorem which cannot be obtained from [20, Theorem 1.7] (s. Chapter
3). In the present paper this theorem of Traynor is also a simple corollary
of the already mentioned Theorem (2.2). For that first the content μ is
continuously extended to a content β on the completion R of (R, Us). The
decomposition β = λ + v of β yields the decomposition μ = λ + v by
restriction λ = λ\R, v = i>\R. The decomposition of β is as in the classic
case based on a decomposition of the Boolean algebra R. It is worth
mentioning that R is (as a lattice) a complete Boolean algebra and β
T-smooth (and so a measure). Considering that the examination of β
instead of μ is in combination with (2.2) comparable to the Stone space
technique as it is used e.g. in [4], [6, Chapter 4], [11], [21, 6.2], [22]. Are
contents with range in a non-metrizable space examined, the method used
here and partly already in [24], [25] is often more suitable. That is due to
the fact that the monotone ring topology induced by the "extension" μ of
μ which the Stone space technique yields (notion as in [21, 6.2]) is in
general not complete in case of non-metrizable range space.

1. Preliminaries, notions. Throughout the paper let R be a Boolean
ring.

We as usual denote the symmetric difference (addition, subtraction),
infimum (multiplication), supremum, difference, natural ordering by Δ,
Λ, V, \, < , respectively, and, if I? is a Boolean algebra, the unit by e. A
subset M of R is called normal (in R) if {a Λ b: a G R, b G M) = :
R Λ M C M φ 0. A topology on R with continuous subtraction and
multiplication and a 0-neighbourhood base of normal sets, is called a
monotone ring topology; we always identify a monotone ring topology with
the 0-neighbourhood system U belonging to it; N(U) := Π ί / G U ί7 is the
closure of {0} with respect to U. The set Wl(R) of all monotone ring
topologies of R forms a complete lattice with the trivial topology as its
minimal element and the discrete topology as its maximal element. For
U G Wt(R) put F(U) : = {V G Wt(R): V C U}. We call U, V G Wl(R)
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singular if inf {U, V} is the trivial topology or equivalent to that £/ V V' — R
for all ί / e U and F G V a s you can see from the first of the following
statements.

(\A)ForV,\

{UW: UGV,VG\) is a base ofV ΛV : = inf{U,V}

{ί/Λ F: ί / G U , F G V ) is a base of V V V : = sup{U,V}.

It follows from (1.1) that Tl(R) is a distributive lattice. For an
arbitrary cardinal number K we call U E %R(R) κ-smooth if every decreas-
ingly directed subset M of R with power | M | < /c and inf M = 0 converges
to 0 with respect to U; for countable K and K = | R | we also say σ-smooth
and τ-smooth, respectively. An ideal A of R is said to be K-complete
provided for any MCA with \M\< K the supremum of M exists and
belongs to A.

(1.2) Lei K Z?e an infinite cardinal number, R κ-complete and \J G Tt(R)
K'Smooth.

Then N(U) and R/N(U) are K-complete and the quotient topology on
is K-smooth.

Proof. The /c-completeness of N(U) is obvious; hence, by [19, 21.1],
R/N(U) is /c-complete. For the proof of the fc-smoothness of the quotient
topology U of R/N(\J) let φ: R -> R/N(U) be the canonical mapping,
MCR, | M | < κ , φ(Af) decreasingly directed and infM = 0. Then
Mo : = {inf £": E C M, | E |< oo} is decreasingly directed and | Mo |< κ; so
Mo converges to a := inf Λf0 with respect to U and therefore φ(M0) to
φ(a) with respect to U. Hence, φ(^) = inf φ(M0) (s. [24, (1.1)]), and,
since φ(M) is a cofinal subset of φ(M0), φ(a) = 0 is the limit of φ(M)
with respect to U.

U G 2ft(i?) is called s-bounded if every disjoint sequence in R con-
verges to 0 with respect to U. The supremum Us of all s-bounded
monotone ring topologies on R is also s-bounded and therefore the finest
s-bounded monotone ring topology on R; so Wls(R) '•= {U G %R(R): U
is s-bounded} = V(\JS). As noted in the proof of [24, (6.8)] Us is Haus-
dorff. The following theorem of [25] is essential for the whole paper.

(1.3) THEOREM (S. [25; (1.7), (2.1.3)]). (a) //U is a complete, s-bounded,
Hausdorff monotone ring topology on R, then (R, <) is (as lattice) complete
and U is τ-smooth.
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(b) //(/?,<) is complete and U and V are τ-smooth monotone ring
topologies on R with N(\5) C N(V)9 then U D V.

For a comparison with other papers especially with Traynor's we have
to point out the connection between the different singularity conditions.
Here and for the whole paper we use the following notion: For a E R and
U E Wt(R)9 pυ(a) := {(t/Λ a) V (Λ\α): ί / G ϋ } denotes the mono-
tone ring topology on R such that x H> (JC Λ a, x\a) is a topological
isomorphism from (R, pυ(a)) onto (R A a,U\R A a) X (R\a9Ut); here
U, stands for the trivial topology on R\a; pυ(a) is uniquely determined
by the equalities pυ(a) \RΛa = \J\R A a and pυ(a) \ R\a = U r

(1.4) For U, V E 2R(Λ) (SI), (S2), (S3) denote the following singular-
ity conditions:

(51) For all U E U and F E V there exists an element a E F with
{JC E i?: JC Λ a = 0} C U;

(52) U, V are singular;
(53) {a GR:pυ(a)CV)=N(U).
Then we have: (a) (S1)O(S2)O(S3).
(b) If U is ^-bounded or R has a unit, then (SI) and (S2) are

equivalent.
(c) There are s-bounded monotone ring topologies U, V on some

Boolean algebra satisfying (S3), but not (S2).

Proof. (S1)O(S2): Given ί/GU, a normal set V E V and a E V
chosen as in (SI). Then we have x = (x\a) V (x A a) E U V V for all
x G Λ , s o i ? = ί / V K (S2)O(S3): Since U VV is the trivial topology and
pυ(a) C U for all a E R the following statements are equivalent: pυ(a)
C V,/?u(α) C U Λ V^uία) is trivial, α E JV(U).

(b) For the proof of (S2)O(S1) we only need that the completion of
(R, U)/N(U) has a unit. In each case, given U E U, F E V and a normal
set C/o E U with Uo V ί/0 C £/ there exists an element c E: R with {x Gi?:
x Λ c - 0} C £/0. By (S2) there are elements a E F and 6 E ί / 0 with
flVέ^c.So for all JC E i? with x A a = 0 we have JC = ( JC\C) V ( JC Λ b)
E f/0 V ί/0 C U.

(c) For an arbitrary nonnegative content μ: i? -> [0, oo[ we denote by
W0(/A) the monotone ring topology with {x E i?: μ(x) < ε}, ε > 0, as base
of 0-neighbourhoods. Now let R be the Boolean algebra generated by all
finite subsets of the set N of natural numbers and nonnegative contents
μl9 μ2 on R defined by μx(N) = /ι2(N) = 1, μλ({n}) = 0, μ2({n}) = 2~n
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(n G N); put μ = μλ + μ2. Then U : = W0(μ) and V : = W0(μ,) have the

desired properties.

The singularity conditions (SI), (S2), (S3) correspond in [21] to the

notions singular, extremely noncontinuous, nowhere continuous, respec-

tively. The example above shows that the statement (3) of [21, Theorem

3.3] is not true; in [20, Theorem 2.4] the uniqueness statement isn't valid

from which with [21, Theorem 1.2] the statement (3) of [21, Theorem 3.3]

would follows. (μ = 0 + μ = μ} + μ 2 yield different decompositions of μ

with respect to μλ in the sense of [20, Theorem 2.4], μ, μl9 μ2 as above.)

In [23] we introduced the notion of independent topologies which is

important in connection with certain questions of topoloical algebra. It is

interesting that two monotone ring topologies on R are singular iff they

are independent.

2. The lattice of all abounded monotone ring topologies. The key

to the study of WlS(R) is the following lemma and theorem (2.2), part (a)

of which allows one to reduce some examinations to the complete case.

(2.1) KEY LEMMA. Assume U is a Hausdorff monotone ring topology on
R.

(a) i?, ^v2iffpυ(v}) Cpυ(v2)forallvl9v2 G R.

(b) IfR is a Boolean algebra andυ G Λ, V = pυ(υ)9 then N(V) = R\υ9

v = e\sup N(Y) and x ι-» xΔN(Y) is a topological isomorphism from (R Λ

t?,U|Λ Λ Ό) onto (R,Y)/N(\).

(c) // (i?, <) is complete (as lattice) and U τ-smooth, then pv:

υ h-» Pu(v) is a lattice isomorphism from R onto F(U).

Proof (a), (b) are simple consequences of the definition of pv(v). For

(c) we have, because of (a), only to show that/?u(a) is surjective. Let be

V G K(U). Since with U also V is τ-smooth, s : = supN(V) G N(V) (s.

(1.2)). Put v : = e\s, then N(pv(v)) = R\v = N(V)9 hence by (1.3)(b)

Pυ(υ) = v F o r a Hausdorff topology U G Tt(R) the completion (R,IJ)

of (i?,U) is a Boolean ring and its topology U is a monotone ring

topology.

(2.2) THEOREM. J/U is a Hausdorff topology from Wls(R) and(R9ΪJ) is

the completion of(R,U), then we have:

(a) U E 1 ^ ) ; p: V H> \\R is a lattice isomorphism from V(\J) onto

(b) (JR, <) is a complete Boolean algebra and F(U) exactly consists of

all τ-smooth monotone ring topologies on R.
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(c) F(U) is a complete Boolean algebra and π: v \^p{j(υ)\R a lattice

and ring isomorphism from R onto V(XJ).

(d) // υ E R and V = π(υ), x Δ N(\) H> X A υ is a topological

isomorphism from (i?? \)/N(V) onto a dense subring of (R A v,\J\R A v)

(and in this sense (R A v, U | R A υ) is the completion of(R, \)/N(\).)

Proof, (a) is valid by the bit more general result [24, (1.8)].

(b) Since U is s-bounded (s. (a)), by (1.3)(a) (i?, < ) is complete and U

τ-smooth, so every V G F(U) is τ-smooth. Vice versa every τ-smooth

monotone ring topology on R belongs to F(U) by (1.3)(b).

(c) By (a) p is a lattice isomorphism, by (b) and (2.1)(c) p{j is one; so
77 — P ° Pΐ] is also a lattice isomorphism. From this all statements of (c)

follow, (d) follows from (2.1)(b) and the fact that V = pΐj(v)9 x Δ

N(V) h^ x Δ N(\) is a topological isomorphism from (R,\)/N(\) onto a

dense subring of (R,y)/N(V).

(2.3) COROLLARY. L ^ feϋjG 3K5(i?) w//A V C U:

(a) IfXJ is complete, then V is complete, too.

(b) // for a cardinal number K U possesses a ^-neighbourhood base of

power < /c, //zeft V possesses a ^-neighbourhood base of power < K, /OO.

We may assume that U is Hausdorff, otherwise consider

(i?,U)/iV(U) endowed with the corresponding quotient topologies. With

the notation of (2.2) put υ := ^ ( V ) . With U also \J\RAv has a

O-neighbourhood base of power < /c; since (R A υ, U | R A v) is by (2.2)(d)

the completion of (Λ, V)/7V(V), we get (b) from this. Is U complete, then

V = pυ(v) is obviously also complete.

(2.4) COROLLARY. For complete U G$RS(R) two topologies V,,V2 G

iff N(\}) V

For the proof we may assume that U is Hausdorff. With ϋ- : = Ĵ

(/ = 1,2), Λ T O V iV(V2) = R by (2.1)(b) just means that VXAΌ2 = 0.

Now observe that with the isomorphism in (2.2)(c) the singularity in F(U)

corresponds to the disjointness in R.

For U G 2R5(i?) by (2.2) F(U) is isomorphic to the completion of

(Λ,U)/iV(U); specially for U = \JS we get from (2.2) that Λ, F(LJ5) and

V{\JS) = ms{R)zτe isomoφhic.

(2.5) COROLLARY. WS{R) is a complete Boolean algebra.
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It's a reasonable question and of interest in connection with the

Lebesgue decomposition of contents, whether the lattice of all locally

abounded monotone ring topologies on R (for the definition s.e.g. [24])

also forms a Boolean algebra; this, however, isn't true:

(2.6) COROLLARY. For U G Tt(R) the following statements are equiva-

lent:

(1) U is s-bounded.

(2) V(U) is a complete Boolean algebra.

(3) For every V EWl(R) there are uniquely determined Vλ,V2 E:Wl(R)

such that U = U, V U2, Ux C V and U2, V are singular.

(4) F(U) is a complemented lattice.

Proof. (l)O(2) follows from (2.5). (2)O(3): By considering V Λ U

instead of V the assertion in reduced to the case that V G F(U). In this

case the unique decomposition of U in the sense of (3) is yielded directly

by (2).

(3)O(4) is obvious.

(4)O(l): If U is not s-bounded, then, for some U G U, there is a

disjoint sequence (an) in R\U. Let Uo be a normal set from U with

Uo V Uo C U. For W : = supn pv(an) there exists by (4) a topology V G

F(U) such that U = VV W and V, W are singular. Since U = VV W

there is a normal set V G V and sets Ul9..., Um G U with U0D V Π

^T=\(ui Λ ai) v (R\ai) D v Λ am+\ Because of the singularity of V, W

there are elements v G V and w G (Uo Λ am+ι) V ( i ? \ # m + 1 ) with am+x

= ϋ V w. Then ϋ G F Λ α m + 1 C ?70, w G Uo Λ α w + 1 C ί/0, hence amΛ_λ

G ί/0 V Uo C J7, and so we get a contradiction.

The existence statement of (3) for U G ϋft^i?) was first proved by

Traynor [21, Chapter 4], who so could answer a question of Drewnowski

[5, p. 47]. Specially choosing the discrete topology for U the equivalence

(l)O(4) of (2.6) yields: Wl(R) is a complemented lattice iff R is finite. (In

this case 2ft(i?) and R are isomorphic.)

(2.7) COROLLARY. For a Hausdorff topology U G Wl(R) the following

statements are equivalent:

(1) U is s-bounded and complete.

(2) (i?, < ) is complete andU τ-smooth.

(3) pυ: R -> F(U) is α /αtf/ce isomorphism.

(4) pυ: R -> F(U) is surjective.
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Proof. (1)0(2)0(3)0(4) is valid by (1.3)(a), (2.1)(c), (2.1)(a).

(3)O(l): By (3) F(U) is a Boolean algebra, so by (2.6) U is s-bounded.

U is complete: With the notation of (2.2) by (2.2)(c) TΓ"1 O Pχj: R -* R i s

surjective. For v E: R G R the convergence to 0 of a net (xa) in R with

respect topυ(v) as well as with respect to pjj(v) just means that (jcα Λ t))

converges to 0 with respect to U; so pv(v) — p{j(v)\R = π(v) and

(TΓ"1 O pυ)(v) = v. Hence R — R and so U is complete.

We now compare (2.3)(a), (2.7)(l)O(2) with [12; Theorems 4.2, 4.3,

4.5 of Chapter HI]. In [12] in a much more special way than here

monotone ring topologies on a σ-algebra of sets are considered, which are

always generated by a system of real-valued nonnegative measures. [12,
Theorem ΠI.4.5] is a special case of (2.3)(a). Also [12, Theorm IV.7.2]

stating that every indefinite integral with respect to a closed vector

measure is also closed follows from (2.3)(a). (2.7)(l)O(2) generalizes the

first statement of [12, Theorem III.4.2] and (2.7)(2)O(l) [12, Theorem

ΠI.4.3]. Instead of the τ-smoothness in (2.7)(2) the assumption in [12,
Theorem III.4.3] is that no disjoint set of the quotient space of the

σ-algebra by the ideal of nullsets has measurable cardinal; this cardinal

number condition implies in the special situation considered in [12] by

[12, Lemma ΠI.4.1] the τ-smoothness.

Here is a generalization of the "Lebesgue decomposition" for U G

Wls(R) established in (2.6)(3):

(2.8) COROLLARY. Let be \ G Wls(R) and (UJ α G / 4 a family in Wl(R).

Then there are Vα, W G Tis(R) (a G A), such that V = W V supαG/ί Vβ,

for all a G A, \ a C Uα and W, Uα are singular and the \ a are pairwise

singular. Here W and supα(Ξy4 \ a are uniquely determined. If the Uα are

pairwise singular\ then the Vα are uniquely determined^ too.

Proof. We may assume that the Uα are ^-bounded; otherwise consider

VΛU α instead of Uβ. In the ^-bounded case (2.8) follows from (2.5). A

corresponding statement is true in every complete Boolean algebra, you

know. This becomes clear noting the statement [19, 20.2], which will be

formulated in (2.9)(a) specially for Wls(R).

(2.9) PROPOSITION, (a) For every family (Ua)a(ΞA in fflls(R) there is a

family (Vα)α €y ί of pairwise singular, s-bounded monotone ring topologies on

R with supα€Ξ/4 Uα = supα G / 4 \ a and V α C U Λ ( α G A).

(b) For every V G 2ft 5( R) there is a family (Vα)α€Ξ/ί of pairwise singu-

lar, s-bounded monotone ring topologies, each of which possesses an at most

countable ^-neighbourhood base, with V = supα€Ξ/ί Vα.
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Proof, (a) follows from (2.5) and [19, 20.2].

(b) Every V G Tts(R) is the supremum of a family (U α ) α G / ί in

$RS(R), each of which possesses an at most countable 0-neighbourhood

base. We then choose (Vβ)β€Ξyί for (Ua)aξΞA according to (a) and observe

that for every a G A by (2.3)(b) also Vα has an at most countable

0-neighbourhood base.

For an arbitrary cardinal number K a Boolean ring is said to satisfy

the κ-chain condition provided every set of disjoint elements in it has

power < K. The proof of the following theorem is also essentially based on

the isomorphism established in (2.2)(c).

(2.10) THEOREM. For U G TtS(R) and an infinite cardinal number K the

following statements are equivalent:

(1) JJ possesses a ̂ -neighbourhood base of power < K.

(2) The completion of(R, U)/iV(U) satisfies the κ-chain condition.

(3) V(U) satisfies the κ-chain condition.

Proof. Let (R, U) be the completion of the quotient space

(Λ,U) : = (i?,U)/iV(U). Since F(U) and F(U) are evidently isomorphic

(s. [24, (19)]) and by (2.2)(c) V(U) and R are isomorphic, (2) and (3) are

equivalent.

(3)O(l): By (2.9)(b) there are pairwise singular Uα G Wts(R)9 each of

which has an at most countable basis ( ί / α / 2 ) Λ e N (α EίA), with U =

Since by (3) \A | < K the subbase [Uan: α G i , n G N } o f U has power

< K. So U has also a base of power < K.

(l)O(2): Since with U also LJ possesses a base of power < fc we may

assume that U is Hausdorff and complete. Let (Ua)aξΞA be a base of U of

power < K and D a disjoint subset of R. Since U is Hausdorff D =

UaξΞA(D\Ua). Because of the s-boundedness of U each of the sets D\Ua

is finite, hence | D | < K.

From the equivalence (l)O(3) we get (2.3)(b) once again.

(2.11) COROLLARY. Assume for an infinite cardinal number K R is

κ-complete, U a κ-smooth monotone ring topology on R. Then the following

statements are equivalent:

(1) U possesses a 0-neighbourhood base of power < K.

(2) R/N(U) satisfies the κ-chain condition.

7/(1), (2) hold, U is complete, the quotient topology on R/N(\J) induced

by U is τ-smooth and R/N(U) is complete as lattice.
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Proof. In view of (1.2) we may assume that U is Hausdorff. By (2.10)

(2) follows from (1). Now assume (2). By [19, 20.5] R is complete. We

repeat the proof from [19] because it also yields the τ-smoothness of U:

Let M be an increasingly directed subset of R. With [19, 20.2] it is easy to

see that M has a cofinal subset Mo of power < K. SO there is an element

a E R with a — sup Mo = sup M, Mo converges to a with respect to U and

so M converges to a, too. Now it follows by (2.7)(2)O(l) that U is

complete and by (2.10) that U has a base of power < K.

Drewnowski [6, Theorem 1.2] proved the equivalence (1)^(2) of

(2.11) in case that K is countable and R is a σ-ring of sets.

As in [24] we call a monotone ring topology U on R atomless (atomar)

if the completion of (/?, U)/N(U) is an atomless (atomar) Boolean ring,

respectively. In accordance with [14, 2.3, 2.4] we call U an ultrafilter

topology, if N(\J) is a maximal ideal in R. If N is a maximal ideal in R,

μ(x) = 0 (x E N) and μ(x) — 1 (x E R\N) defines a content μ: R ->

[0, oo[; W0(μ) = {U: N C U C R} is the only topology U E 3K(Λ) with

N(\J) = N; since \R/N\= 2, W0(μ) is complete, atomar and ^-bounded.

For an illustration we note that for a non-empty subset N of R the

following statements are equivalent, as well-known (for definitions s. [19]):

(1) N is a maximal ideal in R.

(2) N is an ideal in R and | R/N \ = 2.

(3) N is an ideal in R and {x E R: x £ N} is a filter.

(4) {JC E Λ: x ί iV} is an ultrafilter.

If R is a Boolean algebra, a further equivalence is

(5) {e\x: x EL N) is an ultrafilter.

In the following we clarify in some cases, which properties of topolo-

gies from V(U) and of elements from R correspond each other by the

isomorphism established in (2.2)(c).

(2.12) PROPOSITION. By the same assumptions and notations as in (2.2)

let k V E F(U) andυ E R with π(v) = V.

(a) For an infinite cardinal number K V has a ^-neighbourhood base of

power < K iff R Λ υ satisfies the κ~chain condition.

(b) V is atomless {atomar) iff R Λv is atomless (atomar) (i.e. the

Boolean algebra V(V) is atomless (atomar)), respectively.

(c) V is an ultrafilter topology iffv is an atom of R (i.e. V is an atom of

the Boolean algebra V(U)).

Proof. Use that by (2.2)(d) the completion of (R9V)/N(V) and

(R Λ v9ΪJ\R Λ υ) are isomorphic. From this follows (b) and by (2.10)
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also (a). For the proof of (c) check the equivalence of the following

statements one after the other: V is an ultrafilter topology, \R/N(\) \— 2,

IR Λ v | = 2, υ is an atom of R.

(2.13) COROLLARY, (a) The set of all atomless topologies from

and the set of all atomic topologies from WS(R) each form a complete ideal

in Wls{R). WS(R) is the direct sum of these ideals.

(b) U E ϋi(Λ) /5 s-bounded and atomar iff U is the supremum of a

family of ultrafilter topologies on R.

Proof. Any complete Boolean algebra is the direct product of an

atomless and an atomic complete Boolean algebra; further the unit of an

atomic Boolean algebra is the supremum of its atoms. Translate this by

the isomorphism of (2.2)(c) observing (2.12).

(2.13) (a) we proved in [24] in a different way. By (2.13)(a) every

U E Wls(R) can be written in the form U = Ua V U, with an atomic

\Ja E Wts(R) and an atomless U7 E Tls(R); if \Ja is further decomposed

according to (2.13)(b) and U, according to (2.9)(b), so we get:

(2.14) COROLLARY. For every U E Wls(R) there is a family (Uα)α€Ξ / < of

ultrafilter topologies in Wls(R) and a family (Vβ)βGB of atomless topologies

in Tts(R), each of which possesses a countable ^-neighbourhood base, such

that U = (supαG/4 Uβ) V (sup£e z ? Uβ) and the U γ(γ E A U B) are pairwise

singular.

Given a decomposition for U E $RS(R) in the sense of (2.14), then

V = supα G y ί (Uα Λ V) V sup0e β(Uβ Λ V) is the corresponding decomposi-

tion for V E F(U); this is easy to see by (2.5), (2.3)(b), (2.12)(c), (2.13)(a).

If U E Wls(R) is Hausdorff and complete, then decompositions of U

correspond to decompositions of R according to (2.2)(c). The decomposi-

tion given in (2.14) corresponds to the following:

(2.15) THEOREM. // U E 3W5(i?) is Hausdorff and complete, then

(i?,U) is topological isomorphic to a product {2A,Vp) X Uβ

where Up is the product topology on 2A = {0,\}A, (0,1} endowed with the

discrete topology, and, for β E B, Uβ is a metrizable, atomless, τ-smooth

monotone ring topology on a complete Boolean algebra satisfying CCC.

Proof. Starting from the decomposition of U given in (2.14)

xa '.— π~\\Ja) (a E.A) are all atoms of R, \J\R Λ χa is the discrete
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topology; for xβ := T Γ " 1 ^ ) (β E B) Rβ' = R Λ χβ satisfies CCC by
(2.12)(a), by the definition of π we have U\R A χβ = Uβ\R A χβ and
these topologies are metrizable, atomless and by (2.2)(b) τ-smooth. Fur-
ther xy (y G A (j B) are pairwise disjoint elements with supγxγ = e. The
assertion is now a consequence of the following lemma.

(2.16) LEMMA. 7/U G 2)ϊ5(i?) is Hausdorff and complete and(xy)yeΓ is
a disjoint family in R with supγxγ = e, then x \-+ (x A x γ ) γ e Γ w a topologi-
cal isomorphism from (Λ,U) onto Πγ ( Ξ Γ(i? Λ xy, \J\R Λ x γ).

Proof. Since (JR, <) is complete by (1.3)(a), the given mapping is an
algebraic isomorphism. That this is also a topological mapping, follows
from U - supyPυ(xy) (s. (2.2)(c)).

If there exists a complete, ^-bounded, Hausdorff monotone ring
topology on R, then by (2.15) R is the product of complete Boolean
algebras, each of which satisfies CCC. (This is not true for every complete
Boolean algebra.) From this we also get that R contains a disjoint subset
of maximal power. On the other hand, if one assumes the existence of
uncountable regular cardinal numbers, there are complete Boolean alge-
bras, which contain no disjoint subset of maximal power (s. [7]).

3. Decomposition of finitely additive set functions. Now we give a
new, simple proof for decomposition theorems of contents based on
theorem (2.2). Here the structure of the range space is of subordinate
importance. To emphasize this we choose the range space in the following
generality (compare [24, Chapter 6]). Throughout this chapter let

(G, W) be a separated uniform space, W its uniformity,

+ : (G, W) X (G, W) -> (G,W) a uniformly continuous operation,

μ: R -» G a content {i.e. μ(a V b) = μ(a) + μ(b) for disjoint a, b G R).

W(μ) stands for the coarsest monotone ring topology on R such that
μ: (i?,W(μ)) -> (G,W) is continuous; then μ is even uniformly continu-
ous. With 0 := μ(0) N(μ) : = N(W(μ)) = {a E R: μ(R A a) = {0}} is
the system of "μ-null sets"; the sets [a G R: μ(R A a) C Wo}, where Wo

runs through the neighbourhood system of μ(D), from a 0-neighbourhood
base of W(/x). μ is called s-bounded, κ-smooth, atomless, atomic (with
respect to W), iff W(μ) is s-bounded, κ-smooth, atomless, atomic, respec-
tively. It is easy to see that μ is ^-bounded iff for each disjoint sequence
(an) in R (μ{an)) converges to 0. An analogic transformation of /c-smooth-
ness is possible; for a somewhat more general statement see lemma (3.6.2).
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For U G%R(R) μ is called V-continuous (with respect to W), if
W(/ι) C U, i.e. if μ: (Λ,U) -> (G,W) is continuous, and U-singular (with
respect to W), if W(μ) and U are singular. If μf is another content with
values in a separated uniform space (G',W) carrying a uniformly con-
tinuous operation + : ( C , W) X (G', W) -* ( C , W), μ and μ' are called
singular (written μ ± μ'), if W(μ) and W(μ') are singular. All decomposi-
tions of μ given in the following are produced by a decomposition of the
completion of (R,US).

(3.1) PROPOSITION. Let μ be s-bounded, (G,W) complete, (R9IJS) the
completion of(R,Us) and u G R.

(a) Then there is a unique continuous extension μ: (R9JJS) -> (G9W) of
μ; μis a s-bounded content and W(μ) | R — W(μ).

(b) The maps λ and μ defined by λ(a) : = μ(a\u), v{a) : = μ(a A u)
( β G ί ) are G-valued, s-bounded contents on R with the following proper-
ties: μ = λ + v = v + λ, λ(0) = v(0) = 0;

(c) // by the notation of (2.2) (with U : = Us) we choose m G R with
π(m) = W(μ), /Λe« π(m\u) = W(λ), τr(m Λ w) = W(^) and μ(a) = μ(α
Am) for all a G R.

Proof, (a) The 5-boundedness of μ implies W(μ) C U,, so μ: (i?,U5)
-»(G, W) is uniformly continuous and has a unique continuous extension
μ: (R,IJS) -> (G, W); with μ also μ is finitely additive. Since W(μ) C ΪJS

and Us is ^-bounded by (2.2)(a), μ is also .s-bounded. It is easy to see and
follows from [24, (6.2)] that W(μ) \R = W(μ).

(b), (c). Obviously λ(α) : = β(a\u) and v(a) : = μ(α Λ w) (a G Λ)
define 5-bounded contents on Λ with values in μ(R) (Cμ(i?)) and
μ ^ λ + ί ^ ί ' + λ, λ(0) = P(0) = 0: similar statements are true for λ and
v. Since W(9) \R = W(y) (s. (a)) and e\sup iV(?) = (e\sup N(μ)) ΛM =
w Λ «, we have ττ(/w Λ«) = W(^) (s. (2.1)(b), (2.2)(c)); similarly π(m\u)
= W(λ). Because TΓ is a lattice isomorphism, the equalities m — (m\u) V
(m Λ w) and (m\w) Λ (m A u) = 0 just mean that W(μ) = W(λ) V
W(f) and W(λ), W ( P ) are singular. Finally, e\m — sup JV(μ) implies
μ(α) = μ(α Λ m) + μ(a\m) = μ(a A m) + 0 = μ(α A m) for all a G R.

(3.2) COROLLARY. Assume (G,W) is complete and (R9\JS) the comple-
tion of (i?,Uy). For έwiy s-bounded content v: R -> G denote by v the
Xi-continuous extension ofvonR.
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Then v <-> v defines a bijection between the set of all G-valued, s-bounded
contents on R and the set of all G-valued, τ-smooth contents on R. Moreover,
if (G, + , W) is a commutative topological group, v <-» v defines a group
isomorphism.

This follows from (3.1)(a) and (2.2)(b).

(3.2) clears the connection between our technic and Stone space
arguments mentioned in the introduction.

Now let's illustrate the method of (3.1) for decomposing of contents
by the Jordan decomposition. Suppose, μ is a real-valued content, R, \JS, μ
as in (3.1), P := {a E R: μ(R A a) C [0, oo[} and for u := sup P λ and v
are chosen as in (3.1). Then μ = λ + v, v > 0, and — as can be shown by
usual arguments — λ < 0. So the Hahn decomposition of R (or μ) yields
the Jordan decomposition of μ.

The following Lebesgue decomposition was proved (in the group-val-
ued case) by Traynor [21, Theorem 1.2'] using longer technical arguments.
His theorem, which answered a question of Drewnowski [5, p. 47], is here
an immediate consequence of (3.1).

(3.3) THEOREM. Let μ be s-bounded, (G,W) complete and U G Wl(R).
Then there exist unique G-valued, s-bounded contents λ and v on R such that
λ is V-singular, v is X]-continuous, μ — λ + v and λ(0) = p(0) = 0.

Moreover: W(μ) = W(λ) V W(^), λ ± ι>, λ + v = v + λ, λ(R) U
v(R)

Proof. We may assume that U is s-bounded; otherwise replace U by
U Λ Us. We use the notations R, \JS, μ, π, m as in (3.1). λ and v chosen for
u : = π~\U) as in (3.1) satisfy the desired properties. (Observe that by
(3.1)(c), (2.2)(c) (m\u)Λu = 0 and mΛu<u just mean that λ is
U-singular and v U-continuous.)

For the proof of the uniqueness assertion let λ and v are as stated.
Then the U5-continuous extensions λ, v of λ, v on R are contents with
μ = λ + ?.If/,/iGΛ with π(l) = W(λ) and τr(n) = W(v), the U-singu-
larity of λ and the U-continuity of v just mean that I Λ u = 0 and n < u
(s. (2.2)(c)). Since by (3.1)(c) λ(jc) = λ(x Λ u), v(x) = P(x Λ n) for x E R,
we get for a E R

μ(a Λu) = λ(a Λu) + v(a Λu) = λ(a A u A I) + v(a Au An)

= λ(0) + v(aAn) = 0 + v(a) = v(a),

similarly μ(a\u) — λ(a). This finishes the proof.
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By the notation of this proof there exists a Cauchy net (x γ ) γ ( Ξ Γ *n

(i?,W(/i)), such that (xγ A m ) γ G Γ converges with respect to ΪJS to n
(G R A m) (s. (2.2)(d)); using (3.1)(c) we get

v(a) = μ(a An) — limβ(a Ax Am) — limμ(α Λ JC ) {a G R).
y y

If (i?, W(μ)) is complete, one can choose jtγ = w0 (γ G Γ) for some

n0 G R and so ?(#) — /*(<* Λ w0). An analogic representation of λ is valid.

So we have proved:

(3.4) REMARK. Instead of the completeness of (G, W) it is enough to
assume in (3.3) that each Cauchy net of form (μ(z γ)) γ ( Ξ Γ, where (zy)yEίT is
a Cauchy net in (i?, W(μ)), converges in (G, W).

That is fulfilled, if (i?,W(μ)) is complete; in this case there are
disjoint elements /, n G R such that λ(a) = μ(a A /), v(a) = μ(a A n) for
all a G i?.

The last statement could also be seen directly, if we would work in the
proof of (3.3) with the completion of (i?, W(μ))/N(μ) instead of (R, ΪJS).

The relation W(μ) = W(λ) V W(*>) in (3.3) has the following signifi-
cance: It implies e.g. that μ is "regular" iff both λ and v are "regular" (for
definition s. (3.6)(a)); further that μ is /c-smooth iff both λ and v are
fc-smooth. If μ is a σ-additive set function, so λ and v, too; a further
assumption to U as supposed in [22, Theorem 5] can be dropped. Uhl
proved in [22, Theorem 5] the Lebesgue decomposition of Banach space-
valued contents in case that the topology U of (3.3) is induced by a
nonnegative real-valued content; using Stone space arguments he reduced
the finitely additive case to the σ-additive one; he assumed instead of the
5-boundedness the equivalent condition that μ has a [0, oo[-valued "con-
trol content" or equivalently that μ has a relatively weakly compact range;
(of course, the assumption (3) in [22, Theorem 5] is not — as in [22]
noted — an equivalent condition); for the notion of singularity of [22] s.
(3.7).

The decompositions according to (3.1)(b) are just the decompositions
according to (3.3); the connection between u and U, appearing in (3.1)(b)
and (3.3) respectively, is π(u) = U (π as in (3.1)(c)).

For a comparison we now describe all decompositions, which can be
obtained by ideals in R with the method of Traynor described in [20]. The
decompositions according to [20, Theorem 1.7] exactly correspond to
those decompositions according to (3.1)(b), which are obtained by ele-
ments u G R of form u = supM, MCJ?, sup built in R. (Observe that
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two elements ul9 u2 G R yield the same decomposition according to (3.1)

iff m Λ uλ = m Λ u2 or m Λ uλ — m\u2.) Now we give an example for a

decomposition, which can be obtained by (3.1) (or (3.3) or [21, Theorem

1.2]), but not by [20, Theorem 1.7]: Let R be the ring generated by the

intervals of form [α, β[9 0 < α < ) S < l , G the linear space of all real-val-

ued functions on [0,1[ endowed with the topology of pointwise conver-

gence and for a G R μ(a) : = χa the characteristic function of a defined

on [0,1[, λ(a) = χaΠQ (Q denotes the field of rational numbers),
v(a) : = Xa\Q- Then μ = λ + v is a decomposition with the desired prop-

erties.

A further consequence of (3.3) is

(3.5) COROLLARY. // μ is s-bounded, (G,W) complete and U G

V(W(μ)), then there exists a content v: R -> G with W(v) = U. Moreover, if

G — [0, oo[, then v can be chosen with v < μ.

Proof. Choose λ and v as in (3.3). Then W(/ι) = W(λ) V Vί(r) =

W(λ) V U. The uniqueness statement in (2.6)(3) yields W(v) = U. If a

relation < on G is defined with z <y + z (y9 z G G), then for a G i?

holds *>(#) — λ( f l ) + v(a) = M(α)5 i e ^ — i11-
Special decomposition theorems can be obtained by (3.3), if U is the

supremum of a complete ideal 2ί in Wls(R) (or in 2)?(R)). Then U-con-

tinuity of v just means that W(*>) G 2ί. Transformations of U-singularity

of λ are given in (3.7).

(3.6) Special decomposition theorems.

In (a), (b), (c) let Ro be a Boolean ring (e.g. the power set of some set)

and Z? a subring of Ro; inf and sup are always built in Ro.

(a) Let A and B be subsets of i? 0 with A V yl C A and 5 Λ 5 C B.

V G 2ft(Λ) is called (Λ, B)-regular, if for every x G /? and V G V there

are elements a SA and * G δ with a<x<b and { z E i ? : z < Z>\α} C V.

μ is called (A, B)-regular (with respect to W), if W(μ) is (A, B)-regular.

Evidently %:= {V G Wls(R): \ is (A, £)-regular} is a complete ideal in

yJls(R). With U : = sup 21 (3.3) yields a decomposition μ == λ + J> into a

(-4, ΰ)-regular content ^ and a " ( A 2?)-antiregular" content λ. A much

more special decomposition (of Borel measures on locally compact spaces

with values in normed spaces) was obtained by Ohba [16, Theorem 3].

(b) For an infinite cardinal number κ 9 ί : = { V G 9 f t ( i ? ) : every de-

creasingly directed subset M of R with | Af | < K and inf M — 0 converges

to 0 with respect to V} is a complete ideal in Wl{R). With U ".= sup 3t
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(3.3) yields a decomposition μ = λ + v into a content v, which is "fc-smooth

with respect to l? 0 ", and a "ic-singular" content λ. Specially for countable

K we get a Hewitt-Yosida-type decomposition of μ into a content, which is

"σ-additive with respect to Ro", and a "purely finitely additive" one (s.

[21, Chapter 5]).

(c) Now we consider with regard to [3] a little more general situation

as in (b). Let K be an infinite cardinal number and A a subset of R with

A V A C A. Then 9ί : = {V E $W(i?): V is (Λ, i?)-regular and every de-

creasingly directed subset M of A with | M | < K and inf M — 0 converges

to 0 with respect to V} is a complete ideal in 2JΪ(JR). (Specially for A = i?

we have again the situation of (b)). With U : = sup 21 (3.3) yields a

generalization of the decomposition theorem of [3, Chapter 3]. To see this

we have only to observe Lemma (3.6.2).

(3.6.1) LEMMA. For every neighbourhood WQ of μ(0) there exist a

neighbourhood Vo of μ(0) with x E Wo whenever x E μ(R), y E VQ and
x+yE Fo.

Proof. Let WE W be an entourage, Wo= {z EG: (z,0) E W}.

Choose ί/GW with U ° U C W and a symmetric entourage F E W with

V C U and (*, + j ^ , * 2 + } ' 2 ) G ί / whenever (x^ x2), (yl9 y2) E F. Now

let b e x G μ(Λ) and 7 E Fo := {z E G: (z,0) E F} with x + y E Vo.

(0, j ) , (x, x) E F implies (x, x + j ) G [ / . Since also (x + y, 0) E (7, we

get(x,0) E IF, i.e. x E Wo.

(3.6.2) LEMMA. Suppose A is a lattice and μ is (A, R)-regular; then

W(μ) E 91 iff for every decreasingly directed subset M of A with | M | < K

and inf M = 0 /Λ̂  seί (Mί̂ WαeΛ/ converges to 0.

Proof. One implication holds obviously since μ is W(μ)-continuous.

Suppose now, the condition is fulfilled, but W(μ) ^ 9ί. Then there is a

decreasingly directed subset MoίA with | M | < /c and inf M = 0, further a

closed neighbourhood Ŵ  of μ(0) with μ(R A a) it Wo whenever a E M\

choose Vo according to (3.6.1) and similarly a neighbourhood Uo of μ(0)

with x E Vo whenever x E μ(Λ), y E Uo and x + y E Uo. We show:

(*) For every a E M there are elements ba E A and caE M with

c β < * β < a a n d μ ( ί > β ) £ Fo.

For the proof of (*) let be a E M and d E R A a with μ{d) <£ WQ.

Since μ is (^4, i?)-regular and Wo is closed, there is an element b E A with

6 < d and μ(fe) ^ W .̂ Since by our assumption both (μ(x))x(ΞM and
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(μ(x A b))x(ΞM converge to 0, there is an element ca E A with μ(ca) E Uo

and (μ(ca A b)) E Uo. Since μ(ca) = μ(ca\b) + μ(ca A b) we get
μ(ca\b) E Vo. Put ba:= caV b. Then the relations μ(ca\b) E Fo, μ(b)
£ W09 μ(ba) = μ(b) + μ(ca\b) imply μ(ba) £ Vo.

By (*) (ft; a G M) is a decreasingly directed subset of A with power
< /c and infa(ΞMba = 0, but (μ(ba))aξΞM doesn't converge to 0, and so we
get a contradiction.

(d) For A C R 31 := {V E 2ft5(i?): ,4 C JV(V)} is a complete ideal in
ms(R). If R is a ring of sets and A : = {α E i?: | a |< /c}, then (3.3) yields
with U : = sup 31 a decomposition theorem, which in a more special case
agrees with [17; Theorem 1, Theorem 3].

(e) If 3ί is the complete ideal 31 : = {V E Wls(R): V is atomic} (s.
(2.13)(a)) and U : = sup 31, then (3.3) yields a decomposition μ = λ + J>
into an atomic content P and an atomless content λ (compare [24,
Theorem (6.8)]).

(f) It follows from (2.5) and (3.5) that 3ί0 := {supβW0(μβ): (μa)aGA

is a family of [0, l]-valued contents on R] is a complete ideal in 2)^(7?);
put Uo : = sup 310. Whether it is always λ = 0 and v — μ in a decomposi-
tion μ — λ + v obtained by (3.3) with U : = Uo, this is equivalent to the
unsolved Maharam-problem considered in [2]. If G is a locally convex
space and W its uniformity, then by [25, Theorem (3.3)] W(μ) E 3ί0.

(3.7) Singularities.
For a precise comparison of the decomposition theorems of this paper

with corresponding theorems of other papers we have to clear the connec-
tion between U-singularity of μ and notions such as κ-singularity in the
sense of [3], antiregularity in the sense of [16] etc. In the following let μ be
s-bounded, 31 a complete ideal in Wls(R), U = sup 31 and 93 C 3ί with
sup 93 > W(μ) Λ U (e.g. 93 = (V E 31: V possesses an at most countable
0-neighbourhood base} or in case that μ is σ-smooth 93 = {V E 31: V
possesses an at most countable 0-neighbourhood base and is σ-smooth}).
Then the following statements are equivalent:

(1) μis U-singular.
(2) The trivial topology is the only topology, which belongs to 3ί and

is coarser than W(μ).
(3) μ is V-singular for every V E 93.

Obviously holds (2)0(1)0(3); (3)O(l) follows from (2.5).
If (G, W) is complete, a further equivalent statement is
(4) μ ± v for every content v\ R -> G with W(v) E 31.
(2)O(4) is evident; for 93 := {V E 31: V C W(μ)} (4)O(3) follows

from (3.5).
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The condition (4) corresponds to the notion of ^-singularity in the

sense of [3] (compare (3.6)(c), (1.4)), the condition (2) (with 23 = 31) to the

notion of purely additivity in the sense of [21, 5.1] (compare (3.6)(b), [21,

1.5(2)]).

In the following we consider the case that W(μ) belongs to 810, 9ί0

defined as in (3.6)(f); this is fulfilled, if the range space of μ is a locally

convex linear space. With 93 : = {W0(ι>): v: R -> [0, oo[ is a content with

V/0(v) G 91} we get a further equivalence to (3):

(5) μ ± v for every content v: R = [0, oof with Vίo(v) G 91.

If μ is a measure ( = σ-additive content), then for 93 : = {Wfo(v): v:

R -* [0, oo[ is a measure with VίQ(v) G 91} the following condition is also

equivalent to (3):

(6) μ ± v for every measure v: R -> [0, oo[ with Vϊo(v) G 91.

(6) corresponds to the notion of antiregularity in the sense of [16].

If G is a locally convex space and G' its topological dual, then by [25,

Theorem (3.3)] W(μ) = s u p ^ ^ , W 0(JC' ° μ) and so the next condition (7)

is equivalent to (5) as can be seen using (2.5).

(7) x' o μ ± v for every xf G G' and every content v: R -> [0, oo[ with

Wo(») G 9ί.

If μ is a real-valued content of bounded variation | μ | , then, because

of (3.5), the next statement is equivalent to (2).

(8) For every content v: R -> [0, oo[ Wo(*>) G 91 and 0 < v < | μ | imply

^ = 0.

(7), (8) correspond to the notion of [4, p. 30] and [22; Theorems 4 and

5].

Brooks [1, Theorem 1] proved a Hewitt-Yosida-type decomposition

μ — λ + v for a bounded content with values in a Banach space X, where

μ is not necessary ^-bounded with respect to the norm topology of X; the

values of λ and v belong to the bidual X" of X. Decompositions of this

kind one can obtain from (3.3) considering μ as Λ^'-valued content, where

X" is endowed with the weak star topology; with respect to this topology

μ is ^-bounded; to prove that the values of λ and v belong to X" (and not

only X'*), observe (3.4) and that every bounded weak Cauchy net in X is

convergent in X".

In the following we consider decompositions of μ into an infinite sum

instead of decompositions into a sum of two contents.

(3.8) PROPOSITION. Let μ be s-bounded and (G, W) complete. We use

the notation R, \JS, μ, m as in (3.1). Let (ua)a(ΞA be a disjoint family in R

with supaua = e. (Observe that R has a unit e by (2.2)(b)). Put
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μa(x) •'= μ(x Λ ua)for a E A and x E R. Then we have:
(a) For a EA μaisa s-bounded content, μa(0) = 0, μa(R) Cμ(R).
(b) μα ± μβ, μa + μβ = μβ + μα, (μΛ + μ^) + μγ = μa + (μ^ + μγ)

/<?r different a, β, γ E ΛL
(c) W(μJ - ττ(m Λ iιβ)/*r α E Λ. W(μ) - supα€Ξ/< W(μα).
(d) μ = Σa&Aμa; ΣaGAμa(x) converges to μ(x) uniformly in x E R,

i.e. for every W E W there exists a finite set Ao C A, such that (μ(x),
Σa(EBμa(x)) E W whenever B is a finite set with Ao C B C A and x E R.

Proof. From (3.1) follows (a) and W(μα) = π(m Λ ua) (a E A). The
equalities m — supα(m Λ ua) and (m Λ uβ) Λ (m Λ wγ) = 0 (for differ-
ent β, γ E A) just mean that W(μ) = supαW(μα) and Vf(μβ), W(μγ) are
singular (s. (2.2)(c)). The associative and commutative statements in (b)
hold obviously.

(d) Let be W E W. Since μ is uniformly continuous, there is a normal
set U E U5 such that (μ(jc), μ(y)) E Wwhenever x, yER and x/\y E U.
Because of the τ-smoothness of U, (s. (2.2)(b)) there is a finite subset Ao of
A with e\supαGv4o ua E U. Now, for x E R and Ao C 5 C A with | £ |<
oo, we have x A (x Λ supα G β wα) < ^\supα e / ί o wα, hence xA (x Λ

α) E ί/ and (μ(x), Σ α E B μ α (x)) = (μ(-x), μ(* A sup α e β wα)) E

The following decomposition in case that μ is a measure on a
σ-algebra with values in a metrizable group goes back to Herer [10].

(3.9) COROLLARY. If μ is s-bounded and (G,W) complete, then there is
a family of s-bounded, pairwise singular contents μa: R -> G (a E A) with
the following properties:

ewί α, /?, γ E v4. μ = Σ Λ G / 4 μα, wΛere 2aμa(x) converges to μ(x) uniformly

in xER. W(μ) = supαG>ί W(μJ.
(2) N(μa) = {xGR: μa(x) = 0} for all a E A.

Proof. We use the notations of (3.8); put No : = μ"1^) and N : = {x
E i?: (Λ Λ ύ) Π iV0 C N(μ)}. First we show that sup N = e.

If 5 : = sup N ^ e, then e\s ς£ Λ (̂μ) C TV and so μ(a) φ 0 for some
a E 7?\.s. Let D be a maximal disjoint subset of No Π (R Λ a). Since JV0 is
closed and Λ: V y E iV0 for disjoint elements x9 y E Nθ9 we have
ί : = sup 2) E iV0 (s. (2.2)(b)). The maximality of D implies a\t E N,
hence a\t < s and therefore / = a because of / < a E R\s. Now we get
a = ί E NQ, μ(α) = 0, a contradiction. Since sup N = e and JV is normal,
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there is by [19, 20.2] a disjoint family (ua)aGA in N with supα ua = e. Now

define μa as in (3.8), then the statements (1) and (2) are satisfied.

(3.10) THEOREM. Let μ be s-bounded, (G, W) complete and Ua E 2H(R)

for a E A. Then there are G-υalued, s-bounded contents λ and μa{a E A)

with the following properties:

(1) μa is \5a-continuous and λ \Ja-singular for a EL A.

(2) μa + μβ = μβ + μα, (μ α + μβ) + μ γ = μa + (μβ + μy) for differ-

ent α , ] 8 , γ E A.

(3) μ = λ + Σ Λ G / ί μ α , wAere Σαμα(.x) converges uniformly in x E i?.

\(0) = μα(0) = 0/or α E Λ.

( 4 ) W(μ) - W(λ) V supβCΞi, W(/ιβ). λ(Λ), μα(i?) Cμ(Λ); λ + μa =

/*« + λ; μα ± λ (α E A). μa ± μβfor different a,β<ΞA.

λ and Σaμa are uniquely determined by (1), (2), (3). If the topologies Uα,

a E: A, are pairwise singular, then the family (μa)a(ΞA is also uniquely

determined by (1), (2), (3).

Proof. As in the proof of (3.3) we may assume that Uα is s-bounded

for all a E A. Put U : = supαUα and choose V E Wls(R) such that VV U

= U5 and V Λ U is trivial (s. (2.5)). That a content λ is Uα-singular for all

a E A, just mean that λ is U-singular or, equivalently to this, that λ is

V-continuous.

To prove the existence statement we may therefore admit V to the

family (Va)aeA such that U, = supαUα; further, in view of (2.9)(a) we may

assume that the topologies Uα, a E A, are pairwise singular. By the

notations of (3.8) ua : = ir~ι(Ua) are pairwise disjoint and e = snpaua.

Now, choose μa as in (3.8); then the statements (1), (2), (3), (4) (with

λ = 0) evidently hold by (3.8). (Observe that m Λ ua < ua just mean

W(μα) C Uα.) To prove the uniqueness statement let λ, μa be given with

(1), (2), (3). Then v : = ΣaGA μa is a content, v is U-continuous, especially

s-bounded: Let be WEW and Wo:= [z E G: (z,0) E W }̂. Choose

F E W with F o F C ^ , a finite subset 5 of A with (*>(*), ΣαfΞZ?μα(.x;)) E

F for JC E Λ, further t / G ϋ such that U C {a E R: (ΣaGBμa)(R A a) C

Vo) where Vo := {z E G: (z,0) E F}; then ί / C { α G ί : r(R A a) C

W^}. Now the uniqueness of λ and ΣaSA μa follows from the uniqueness

statement in (3.3). If the topologies Uβ, a E A, are pairwise singular, put

ua : = π~\Ua) and v : = T Γ ' ^ V ) ; let be λ, μα the continuous extension of

λ, μa on (R9JJS)9 respectively. Since Σaμa(x) converges uniformly in

x E R, Σaβa(x) converges uniformly in x E R and μ = λ + Σ α G y 4 μa. As

in the proof of (3.3) one can show that λ(x) = β(x A t>), μα(jc) =

μ(x Λ ua) for x E R and a E A.
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For \A | = 1 Theorem (3.10) agrees with Theorem (3.3). A statement

analogic to (3.4) is also true for decompositions according to (3.10). If

W(μ) possesses a 0-neighbourhood base of power < K (this is fulfilled, if

W has a base of power < K), then in the decompositions of (3.8), (3.9),

(3.10) the system of the contents μa different from 0 has a power < K (S.

Special decompositions of contents in an infinite sum were given by

Artemenko (s. [15, 1 on p. 197]), Phillips [17, Theorem 2], Rickart [18,
Theorem 3.8], by Hammer and Sobczyk [9, Theorem 4.1] and in [24,
Theorem (6.9)]; all these theorems can be obtained by (3.10) (or (3.9)).

We only note one special case of (3.10) (compare [9, 4.1], [24; (6.8),

(6.9)]):

(3.11) COROLLARY. If μ is s-bounded and (G, W) complete, then there

are G-valued, s-bounded contents λ, μa (a E A) with the following proper-

ties:

(1) The conditions (2), (3), (4) o/(3.10) are fulfilled; especially μ = λ +

(2) λ is atomless. For all a E A W(μΛ) is an ultrafilter topology;

especially \ μa(R) | = 2.

Further λ can be decomposed in the form λ = ΣβGBλβ, where (λβ)β(ΞB

is a family of G-υalued, s-bounded, pairwise singular contents on R with

the following properties: λa + λβ = λβ + λα, (λ α + λ^) + λ γ = λa +

(λβ + λ γ ) for different a, β, γ E B; Σβ<=Bλβ(x) converges uniformly in

I G J R ; W(λ) = sup0G£W(λβ); for β E B Vf(λβ) possesses a countable

^-neighbourhood base, consequently λβ satisfies CCC (i.e. R/N(λβ) satisfies

the o-chain condition).

(3.11) follows immediately from (3.10), (2.14), (2.10). Because of (3.9)

it is even possible to choose (λβ)βGB in (3.11) in such a way that
N(λβ) = λβl({°}) f o r a 1 1 β G B-

Using the terminology of [14] every content μ: P(N) -> [0, oof on the

power set of N has by (3.11) a decomposition into a "full-valued" content

λ and a "generalized ultrafilter content" ΣaiΞA μa.

In (3.3), (3.6), (3.10), (3.11) we have given decompositions of μ with

respect to W. If we consider except of the uniformity W (which is complete

in these theorems) another separated uniformly W coarser than W, such

that + is also uniformly continuous with respect to W , then the decom-

positions with respect to W established in these theorems are also decom-

positions with respect to Wr. Indeed, if μ is s-bounded with respect to W,

(<?, W) complete and W C W, then by [25, (3.2)] W(/ι) = W'(/ι); similar

statements hold for λ, v, μα, λ^.
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Now we deal with the question, whether a Lebesgue decomposition is
also valid for not necessary ^-bounded, e.g. locally s-bounded contents. As
we will see in (3.13), the answer is no.

(3.12) PROPOSITION. Ifλ and v are G-valued contents on R with λ JL v
andμ = λ + v, then W(μ) = W(λ) V W(*>).

Proof. Obviously we have W(μ) C W(λ) V Vί{v) (s. [24, (6.1)(b)]). If
W(λ) £W(μ), then there is a neighbourhood Uo of μ(0) such that for
every neighbourhood Vo of μ(0) {a G R: μ(R Λ a) C Vo] (jL{a G R:
λ(RΛa) <Z Uo}. Choose a neighbourhood Wo of μ(0) with Wo + Wo C Uo

and then ϊ^ according to (3.6.1). For some a G R it is μ(R Λ α) c ^>, but
λ(α) £ t/0. Since λ ± v there are disjoint elements Z>, c G R such that
a = bV c, λ(b) G Wo and Kc) G Vo. Then μ(c), î (c) G Vo and μ(c) =
λ(c) + v(c) imply λ(c) G Wo (s. (3.6.1)), hence X(Λ) = λ(b) + λ(c) G IF0

+ ff0 C ί/0 and we get a contradiction. This proves W(λ) C W(μ);
similarly W(^) C W(μ).

(3.13) COROLLARY. J/(G,W) W complete, then the following statements
are equivalent:

(1) μ is s-bounded.
(2) i w ^ϋ /̂y U G 9K(i?) ίλere ώ Λ unique decomposition μ — \ + vof

μ into a V-singular content λ: R -» G and a V-continuous content v: R -» G
w/ίΛ λ(0) = μ(0) = 0.

(3) For every U G K(W(μ)) ίΛere w α decomposition μ — \ + vofμ
into a U-singular content λ: R -> G α«J # \]-continuous content v: R -> G.

. (l)O(2) holds by (3.3) and (3.12). (l)O(2) is obvious.
(3)O(l): Let be U G F(W(μ)) and λ, μ chosen according to (3). Then

λ ± v, hence by (3.12) W(μ) = W(λ) V W(^) = W(λ) V U and W(λ), U
are singular. This proves that F(W(μ)) is a complemented lattice; hence
W(μ) is abounded by (2.6).

Finally some words to the work of Graves ([8a], [8b]), starting point
of which is the observation that for a given complete, Hausdorff, locally
convex space W and an algebra R of sets there are natural isomorphisms
φ «-> φ «-> φ between the space sca(i?, W) of all ^-bounded, W-valued
measures on it, the space L((S(R), r), W) of all continuous linear maps
from (S(R), T) into W and the analogically defined space L(S(R), W)\
here the following notations are used: S(R) : = {Ί/ι

i=xoiiχΛ : n G N, at

real, Ai G i?}, φ(f) : = jfdφ for φ G sca(i?, W) and/ G S(R); τ denotes
the coarsest locally convex topology on S(R) such that φ is continuous for
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every ^-bounded measure φ: R -> X into any locally convex X, S(R) the
completion of (S(R), T) and φ the continuous extension of φ on 5(i?).
The aim of [8] is a topologically linearizing of the study of abounded
vector measures by using the isomorphism φ ++ φ. Now to the Lebesgue
decomposition: In the former version [8a] of Graves' theory measures
have decomposed by ideals, following Traynor [20]. In the sketch [8b] of
Graves' refined theory a Lebesgue decomposition for locally convex-
valued, abounded measures is obtained which is (for such contents)
essentially equivalent to (3.3); the proof rests on still unpublished papers
of Brook and Graves, cited in [8b]. The connection to our paper is the
following: Identifying the sets from R with the corresponding characteris-
tic functions it is τ | R — sup{W0(^): v: R -» [0, oo[ is a measure} and the
set 9 of all idempotents in S{R) is the completion of (R, τ\R).
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