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INTERPOLATION OF BANACH SPACES
AND NEGATIVELY CURVED VECTOR BUNDLES

RICHARD ROCHBERG

Let D be the open disk of the complex plane and T the unit circle.
Let {Beiθ} be a family of Banach spaces parametrized by the points eiθ of
T. The fundamental construction in the theory of complex interpolation
of Banach spaces produces from this data a family of Banach spaces
{#,} which is parametrized by the points z of D and which has the given
{Beiβ} as boundary values. Basic facts about this construction are sum-
marized in §2. B— U z G Z ){J5 z} can be regarded as a complex vector
bundle with base manifold D. In this paper we study the differential
geometry of B and related vector bundles. We show relationships be-
tween interpolation theoretic inequalities for families of Banach spaces
and the signs of certain curvatures of the associated vector bundles.

1. Introduction and Summary. One consequence of the construc-
tion of the {Bz} is that the norm function of the vector space Bz regarded
as a function of the fiber variable and the base variable is plurisub-
harmonic. The general relation between plurisubharmonicity and negative
curvature suggests that B might have non-positive curvature in some
appropriate sense. In fact, if all the Beiβ are Hubert spaces (i.e. have norms
given by inner products) then the bundle B is the unique Hermitian
holomorphic vector bundle over D with curvature zero and with the given
boundary values on T.

In general the bundles produced by the interpolation construction will
be convex Finsler bundles rather than Hermitian bundles; that is, the
norms in the fibers will be Banach space norms but need not be Hubert
space norms. In §3 we present two extensions of the notion of Ricci
curvature to Finsler bundles and develop the elementary properties of
these curvatures. Our main result is that both of the curvatures are
non-positive for the bundle B.

The Ricci type curvatures in §3 describe behavior of the bundle which
involves all fiber directions simultaneously. A more refined notion of
curvature, closely modeled on the curvature of Hermitian holomorphic
bundles, has been presented by Kobayashi [8]. In §4 we develop the
relationship between that curvature and inequalities involving complex
interpolation of Banach spaces. The main results are that the vector
bundles produced by the interpolation construction are exactly those with
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zero curvature and the subinterpolation bundles are exactly those with

non-positive curvature.

§5 contains real variable analogs of the results of §§3 and 4. The

vector bundles considered are real vector bundles and the base space is the

unit interval. The fibers are normed by a version of the ^-functional of

Peetre. (That functional is the starting point for the real variable interpo-

lation theory for Banach spaces.) In that context the results concerning

the signs of Ricci type curvatures are related to the classical geometric

inequalities of Minkowski and of Brunn and Minkowski. The norms of

affine section of such bundles satisfy a local maximum principle. That

maximum principle can be formulated as a differential inequality analo-

gous to the curvature results of §4.

I would like to express my thanks to Gary Jensen for his patience and

his great help with my questions about geometry.

2. Complex interpolation spaces. We now present, without proof

and a bit informally, some of the features of the theory of complex

interpolation of finite-dimensional Banach spaces. More details, including

proofs of the statements of this section and applications of this theory are

in [4], [5], and [6]. A comprehensive view of interpolation theory can be

found in [1] or [3].

Let R be an open subset of C and regard C" X R as a family of vector

spaces parametrized by R. We suppose that for each z in R there is given a

Banach space norm || \\z defined on the vector space Cn X {z} ^ C".

This norm may vary (smoothly) from point to point and need not be given

by an inner product. We denote the normed vector space (C", || | | z) by

Cz. Thus { C } z e Λ is a family of Banach spaces parametrized by points of

R. We will say that such a family of Banach spaces is a subinterpolation

family if given any holomorphic C "-valued function F defined on a

subdomain of i?, logHi^z)^ is a subharmonic function of z. Given a

Banach space C we denote the dual space by C*. We establish the duality

with respect to the bilinear pairing (v 1 ? . . . ,vn) (w,,... ,wn) = Σ viwi and,

if the norm of C is denoted by || ||, we denote the norm on C* by || ||*.

In particular, {C*}Z(ΞR is the family of Banach spaces {C" X {z}} normed

by IMI* — sup{|i) vv| w E C2, \\w\\z = 1}. We say {CJ is an interpola-

tion family if both ( C J and {C*} are subinterpolation families.

The results of [5] insure the existence of interpolation families with

given boundary values. Suppose Γ is a smooth simple closed curve in C

which bounds a region /?, that for each z in Γ a norm function || \\z is

specified on the vector space Cn and this norm varies smoothly with z.

There is a unique interpolation family {CZ}Z(ΞR which gives a continuous
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extension of the norm functions || | |2 from Γ to Γ U R. Furthermore, if
{AIZGΛ *s a n y subinterpolation family which extends continuously to
Γ U R and is smaller than the given family on Γ, that is, for all z in Γ,

(2.1) NU^IMIz vi e c ,

then the inequality (2.1) also holds for all z in R. Finally, given any z0 in
R and any υ in C", there is an extremal function for t) at z0, a
holomorphic C"-valued function FΌ%2Q which satisfies FVZQ(Z0) — υ and
WFv,ziz)\\z ~ IMIz0

 f o r afl z in R\JY. The fundamental step in the
construction of the Cz is to define the norm on CZo for z0 in R by setting,
for v in C",

(2.2) ||t>|| = inf f sup||jF(z)||z; F a C"-valued holomorphic
z£Γ

function on R U Γ for which F(z0) = υ).

Here is a complete description for n— 1. A norm function || | |z is
completely specified if we know w(z) = ||l | |z and w(z) can be any smooth
positive function. The family of Banach spaces (C, || | |z) is a subinterpo-
lation family exactly if log w(z) is subharmonic. | |1| |* = w(z)~ι. Hence the
family is an interpolation family exactly if logvv(z) is harmonic. The
existence theorem of the previous paragraph specializes to the existence of
a function w which satisfies the equation Δ log w = 0 and has specified
boundary values.

One class of interpolation families is especially simple to describe.
Suppose || || is a given fixed norm on C" and Tz is a family of invertible
linear maps of C" to C" which vary analytically with z for z in R. Define
II II z by II * Hz — ll^ll We will call interpolation families of this form flat.
Every one-dimensional interpolation family is locally flat. That is because
every solution of Δlogw(z) = 0 is locally of the form w(z) —
|/(z) I for some holomorphic function/. The same phenomenon persists in
higher dimension if we restrict our attention to Hubert spaces (i.e. spaces
where the norm is given by an inner product). Let Γ be a smooth simple
closed curve which bounds a region R. Suppose Hubert space norms on
C" are specified for each point of Γ and let {Cz} be the interpolation
family which extends these norms to R. Then all the Cz are Hubert spaces
and they form a flat family. (A differential equation interpretation of this
fact is given at the end of §4.) (This is proved in [5]. The crucial step of the
proof is that in this case the extremal functions FVZQ, which are obtained
by solving the extremal problem implicit in (2.2), depend linearly on t>.)
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Not every interpolation family is flat. For /?, 1 </? < oo, let Iξ be

C"-normed by \\v\\p = \\(v,,...,vn)\\p = ( Σ K Π 1 ^ . Let /" be C"-normed

by Halloo ~ max I ^ I. Suppose R is a region in C and p(z) is a function

defined on R with 1 <p(z) < oo. The family {Cz}zGR, given by Cz = lζ{z\

can be shown to be an interpolation family exactly if l/p(z) is harmonic.

Since the spaces /£' and lζ2, pλ Φpz, are not linearly isometric this cannot

be a flat family.

3. Analogs of Ricci curvature. A family of Banach spaces parame-

trized by points of a domain in C can be regarded as a holomorphic vector

bundle. Even when such bundles are topologically trivial, the presence of

a norm function which may vary from point to point keeps the bundle

from being geometrically trivial. In this section we introduce two measures

of the departure of the bundle from being geometrically trivial. These

measures are modeled on (and in the case of Hermitian bundles reduce to)

the Ricci curvature for Hermitian holomorphic vector bundles.

The considerations in this section are all local. For convenience we

suppose that we have a family of Banach spaces parametrized by the open

disk. That is, we have Banach spaces Cz for z in D and we identify {Cz}zGZ)

with the complex manifold Cn X D.

For any Banach space B we denote by (B)λ the closed unit ball of B

and by (B) x the closed complex ellipsoid of maximum Euclidean volume

contained in Bv (By a complex ellipsoid we mean the image of the

Euclidean unit ball of C" under a complex linear map.) (We will omit the

minor modifications needed to deal with the possible lack of uniqueness

of (B)\.) Let v*(B) — Euclidean volume of (B)\. For the family of

Banach spaces {Cz} define

(3.1) tf*(Cz) = Δlogt;*(C z).

Note that although the definition of v*(Cz) involves a choice of volume

form on Cz, all holomorphically varying choices will produce the same

values of K*.

Suppose Tz, z in D, is a family of invertible linear maps of Cn to Cn.

We define the family of Banach spaces {TzCz}zξΞD by specifying the norm

at each point z: for all υ in Cw, | M | Γ C = HΓ;"^!^.

THEOREM 3.1. For {Cz}, {Tz} as just described:

(a) If all the Cz have the same norm then K*(CZ) = 0.

(b) If the Tz vary analytically with z then K*(TZCZ) = K*(CZ).

(c) If the family {Cz} is flat then K*(CZ) = 0.
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(d) If the family {Cz} consists of Hilbert spaces then K*{CZ) is twice the

Ricci curvature of the Hermitian holomorphic vector bundle {Cz}.

(e) // {CJ 15 a subinterpolation family then K*(CZ) < 0 for all z in D.

Proof, (a) is immediate. To prove (b) note that Tz is a linear map of

(Cz), to (TZCZ)V Hence Tz is a linear map of (Cz)\ to (TZCZ)\. Thus

υJJzCz) = | det(Γz) \2v*(Cz). If Tz varies holomorphically in z then det(Γz)

is a non-vanishing holomorphic function and thus log|det(7^)|2 is

harmonic. Claim (b) follows. Part (c) is an immediate consequence of (a),

(b), and the definition of flat. Suppose now that all of the Cz are Hilbert

spaces and denote the inner product on Cz by ( , ) z. For i = 1,...,« let

eιr = (0,.. .,0,1,0,...,0) be the ίth standard basis vector. The eέ are a

spanning set of holomorphic sections and we may use them in computing

the Ricci curvature. Let gij(z) = (ei9 e>)z, ΐ, j = 1,...,«, and let G(z) =

det( g-(z)). The base manifold of the vector bundle {Cz} has one (com-

plex) dimension. In this case the Ricci curvature is a scalar, namely

-ΔlogG(z) (see, e.g., [7]). Now note that (Cz), = { Σ α ^ ; Σa^g^z) <

1}. Thus the volume of (Cz)x is (G(z))~2C, where C is the volume of the

Euclidean unit ball of C". Because all the Cz are Hilbert spaces, (Cz) λ =

(Cz)λ. Thus i ^ C J = G(zΓ2C and ϋΓ^CJ = -2Δlog(?(z). This yields

(d).

We now prove (e). Pick and fix z0 in D and r with 0 < r < 1 — | z 0 1.

Let γ = {z0 + reiθ; 0 < 0 < 2ττ}. For f i n γ, let £ f be the Hilbert space

with unit ball ( Q ) j . For ζ interior to γ let {Bς} be the inteφolation

family defined inside γ which agrees with the Bς for f on γ. For ζ on γ,

( ^ ) , - ( q ) v , c ( φ , . Thus, for any £ in γ, t> in Crt, | |t; | |5 ? > | |ϋ | | f . By

hypothesis the {Cz} form a subinterpolation family and hence this in-

equality persists for f interior to γ. Thus for any f0 interior to γ,

(BςQ)x C (Q o ) l β The Bς, ξ in γ, are all Hilbert spaces. Hence the family

{Bξ}, for ζ interior to γ, is a flat family. In particular, Bζo is a Hilbert

space and thus (^ 0 ) i is an ellipsoid. Thus ( ^ o ) , C (Q o ) , . Thus

log v+(BSo) < log v*(Cξo). By part (c), \ogv*(Bζ) is harmonic. By con-

struction log v+(Bς) = log v*(Cς) for £ in γ. Thus we have shown

l o g t ; * ( φ has the super-mean value property and hence is super-

harmonic. This shows K*(CZ) is negative. Ths proof is complete.

We now describe the natural dual of K*. For any Banach space B let

(B)^ be the ellipsoid of minimal volume which contains (2?)j and let

v*(B) be the volume of (B)λ. For any family of Banach spaces {CJ

define

(3.2) .tf
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The close relationship between K* and K* follows from the close relation-
ship between v* and t>*.

LEMMA 3.2. There are constants an, βn which depend only on n so that if
B is any n-dimensional Banach space, then

Proof. Let || || be the usual Euclidean norm on C" and set C = (CΛ,
|| ||). Define an by an — v*(C)υ*(C). If D is any ^-dimensional Hubert
space then there is a linear isometry Γof C to D. T will map (C)} = (C),
to (D)\ = (D)ι and thus v*(D) =|det Tfυ*{C). Similarly

t?*(Z)*) = |det(Γ*- 1 ) |V(C*) = | d e t Γ | " V ( C * ) =|det Γ f V ( C ) .

Thus (a) holds for D. If B is any Banach space and A is the same vector
space with a Hubert space norm, then (A)λ C (B)^ if and only if (A*)} D
(i?*)j. Also volume(yl)1 volume^*), = an. Hence if we select the norm
of A so that (A)Λ = (B)\ then (^*), = (J?*),A will follow. Thus (a) holds
for general B.

Part (b) follows from a result of F. John (Ch. 9 of [18]) which insures
that for any Banach space B, (B)} C (B)} C y/ή(B)x (where yfn{B)λ =

Combining part (a) of the lemma with the previous theorem gives

THEOREM 3.3. Let {Cz} be a family of Banach spaces. Then

(2L)K*(CZ)=K*(CZ*)
(b) If{Cz} is an interpolation family then K*(CZ) < 0 and K*(CZ) < 0.
(c) If {Cz} is a flat interpolation family (in particular an interpolation

family of Hilbert spaces) then K*(CZ) = K*(CZ) = 0.

If all of the {CJ are Hilbert spaces then, by (a) of the lemma,
K*(CZ) = -K*(C*). In particular the dual of a family with negative K*
will have positive K*. There seems to be no reason why this should be true
for general families or even interpolation families. We pose this as a
problem

Question. If {Cz} is an interpolation family must K*(CZ) = K*(CZ) =
0?

Suppose now that {Cz} is an interpolation family. By part (b) of the
theorem log v*(Cz) is subharmonic and log v*(Cz) is superharmonic. Thus
L(z) — logD* — logD* = logu*/!;* is subharmonic. By part (b) of the
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lemma we have bounds on L, Q<L<logβn. Bounds for the sub-
harmonic function L can be used in conjunction with Green's Theorem to
obtain lower bounds on area integrals of -ΔL = K* + K*. However the
full relation between such estimates and the question just posed is not
clear. In the extreme case when {Cz} is an inteφolation family on all of C,
L is bounded, subharmonic, and defined on all of C. Such an L must be
constant and an affirmative answer to the question follows quickly. (In
fact, in that case one can show that the family {CJ is flat.)

Finally, a comment about the choices of v* and v*. Although these
quantities are of some interest in general Banach space theory (e.g. Ch. 2
of [10]) a more tempting choice of a functional to extend the Ricci
curvature would be K(C2) = Δlog(Volume(5z),). However K(CZ) has no
simple relation to K{C*) and K{CZ) need not be negative for inteφolation
families. Here is an example which shows that. Let Λ = { z G C ; 0 < R e z
< 1}. For z in R let Cz = l\/x (with z = x + iy). If K(CZ) were negative
then log(volume((/2/jc),)) would be a convex function of x for 0 < x < 1
and hence also for 0 < x < 1. However, explicit computation of
volume((/2/jc)i) for x — 0, \ 1 shows the three quantities are in the ratio
6:3:1.

4. Curvature of Finsler bundles. A family of ^-dimensional com-
plex vector spaces C — {Cz}zGD parametrized by points of the unit disk D
can be regarded as a holomorphic vector bundle of rank (i.e. fiber
dimension) n over the complex base manifold D. If all the spaces Cz are
Hubert spaces then C is a Hermitian holomorphic vector bundle and can
be studied using the techniques of Hermitian differential geometry. One
could, for example, ask if the inteφolation families of Hubert spaces are
exactly the Hermitian holomorphic vector bundles with zero curvature.
(The answer is yes; Theorem 4.4 below.) When the Cz are Banach spaces
the C is still a holomorphic vector bundle with enough additional geomet-
ric structure to allow the introduction of a natural differential geometric
notion of curvature. The appropriate notion of curvature is presented and
developed by S. Kobayashi in [8]. In this section we present his definitions
and some of his results and we will see a close relation between the
geometric and interpolation-theoretic points of view. In particular, fami-
lies of Banach spaces have negative curvature exactly if they are subinter-
polation families and have zero curvature exactly if they are inteφolation
families.

We assume throughout this section that the norm functions consid-
ered are highly differentiable. That is, we assume that the function

IKf,,...,U\\zis s m o o t h o n c\({(0,...,0)} x z>).
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We now introduce the notation and terminology of [8] as it applies in
this case. The holomorphic vector bundle C = C X ΰ = {(J, z); f G C",
z G D) is said to have a complex Finsler structure if there is a smooth
real-valued function F defined on C which satisfies

(4.1) F{ζ9 z) 2> 0, F(ζ, z) = 0 if and only if f - 0,

and

(4.2) F(λ£,z)=\λ\2F{ξ,z) forλinC.

The function of interest to us is F(ξ9 z) — (||f | | z ) 2 . This function satisfies
an additional condition which is a consequence of the triangle inequality
for the norm || | |z, or, equivalently, the fact that for each z in D the set
(Cz)x = {ζ E Cn; \\ξ\\z < 1} is a convex set. This condition implies

(4.3) The matrix (/)/) = (32F/3£9ζ ) is positive definite.

Such a Finsler structure is called convex. Thus our families of Banach
spaces are holomorphic vector bundles with convex Finsler structure — for
short, convex Finsler bundles.

Not all convex Finsler structures on C correspond to families of
Banach spaces. Given a convex Finsler structure one can define || \\z by

(4.4) F(ζ,z) = (\\ζ\\z)
2.

By (4.1) and (4.2), || \\z is positive semidefinite and has the correct
homogeneity to be a norm function on C". However (4.3) insures that for
each z in D the set {f 6 CM; F(f, z) < 1} is pseudoconvex, but not
necessarily convex. (The extension of the complex interpolation theory to
such quasinormed spaces has not yet been developed.)

In [8] Kobayashi presents a theory of curvature for convex Finsler
bundles. We will take the conclusions of his analysis as the basis of our
definitions and must refer to [8] for the motivation and background of the
definitions. We start with a family of Banach spaces C = {Cz}zBD and by
(4.4) we regard C as a convex Finsler bundle. Given a point (f0, z0) in C
we introduce special coordinates for computation of curvature at (f0, z0).
For / = 1,...,Λ let w,(z) be linear functional on C" which depend
holomorphically on z. We suppose that Wj(z0),..., wπ(z0) are linearly
independent. Thus for z at or near z0 we can regard wx(z)9...9wn(z) as
coordinate functional on Cz. We say that the wt form a normal coordinate
system at (£0, z0) if

a \
7 1 ^ ^ Λ I 7 ^ ^ 1 Yi

> 0 ' ^ 0 / i / ' ' J ' # * * ' '
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and

/ a a a \
Γ 0,z 0) = 0, i, j = 1,...,«.

It is always possible to find such coordinates. In fact the w, can be chosen

as affine (in z) combinations of any given set of n linearly independent

analytic (in z) linear (in ζ) functionals ((3.22) of [8]).

We say that C is negatively curved at (f0, z 0) if given a normal

coordinate system wl9... ,wn at (f0, z 0) the quantity

<4 7 ) l(fo^o)

is negative at (f0, z 0) (positively curved if K is positive, etc.). We refer to

[8], especially to Theorem 4.1, for proof that this definition doesn't

depend on the choice of normal coordinates, and for the relation of this

definition to other, more conceptual, definitions.

We now express K in terms of the norm function on the Banach

spaces Cz. First note that the homogeneity of F forces the derivatives of F

to satisfy certain identities. If (4.2) is differentiated with respect to λ and

then λ and then evaluated at λ = 1 we obtain ((3.3) of [8])

Let £0(z) be the C "-valued function with £ 0(z 0) = ξ0 and which has

constant wt(z) coordinates; wt(z)(ξ0(z)) = wz(z0)(f0). Substituting (4.8)

into (4.7) gives

When this is combined with (4.4) we obtain

(4.9) K(ξ09 z 0) = -2(Δlog| |£ 0(z)| | z + 2 | V

Suppose h(z) is a C"-valued holomorphic function defined in a

neighborhood N of z0. Let [h(z)] be the span of h(z) regarded as a

subspace of Cz. The family H — {[h(z)]}zξΞN forms a line bundle over N

and is an analytic subbundle of {CZ}Z(ΞN. The norm function on Cz induces

a norm on the vector space [h(z)]. With this norm H is a convex Finsler

bundle and we may consider its curvature. The curvature of H can be

computed using the analog of (4.9) or by noting that a Finsler line bundle

is also a Hermitian line bundle and the curvature defined by (4.9) agrees
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in this case with the curvature for Hermitian line bundles. Thus the

curvature of H at z 0 is proportional to

(4.10) KH(h(z0),z0) = -Moφ(z)\\z.

A fundamental fact in the geometry of Hermitian holomorphic vector

bundles is that curvature decreases on passage to subbundles. This feature

is also present in the theory of [8]. By Theorem 6.1 of [8] we know that

there is a universal positive constant C so that, if ||Λ(zo)||Zo = 1,

(4.11) KH(h(z0),z0)<CK(h(z0)9z0).

In §2 we defined subinterpolation families. We now define the dual

notion. We will call a family of Banach spaces {Cz} a superinteφolation

family if {Cz*} is a subinteφolation family. Thus {CJ is an inteφolation

family exactly if it is both a superinteφolation family and a subinteφola-

tion family. The choice of terminology is supported by the following

lemma.

LEMMA 4.1. Let {Cz}zGD be a family of Banach spaces. The following

are equivalent:

(a) {Cz} is a superinterpolation family.

(b) Given any smooth simple closed curve y in D, let {Dz} be the

interpolation family defined on the interior of y which agrees with Cz on y.

Then for all z interior to y and all v in C", | | ϋ | | c ^ IMIzv

(c) For any z 0 in D9 and ζ0 in Cn there is an ε = ε(f0, z0) > 0 so

that for all r, 0 < r < ε, // Dz is the interpolation family defined on (z;

\z — zQ\<r) which agrees with Cz on (z; \z — zo\= r], then \\ξo\\c ^

Proof. These equivalences follow directly from the corresponding

facts about subinteφolation families and the fact that the passage to dual

spaces reverses inequalities (i.e. if the inclusion of A into B is norm

decreasing then the same is true for the inclusion of the dual spaces B*

into A*).

THEOREM 4.2. Let {CZ}Z^D be a family of Banach spaces and C the

corresponding convex Finsler bundle. Let C* = C\({0} X D). Then:

(a) K{ζy z) < 0 on C* if and only if{Cz} is a subinterpolation family.

(b) IfK(ξ, z) > 0 on C* then {Cz} is a superinterpolation family.

(c) K(ζ, z) = 0 on all of C* // and only if {Cz} is an interpolation

family.



INTERPOLATION OF BANACH SPACES 365

Proof. If (Cz) is a subinterpolation family then, by definition, if /is
any holomorphic C "-valued function then log||/(z)||z is subharmonic.
Thus, by (4.9), K<0. If K<0 then, by (4.11), the curvature of all
one-dimensional holomorphic subbundles is negative. Hence, by (4.10)
log||/(z)||z is subharmonic for any holomorphic C"-valued function/. This
proves (a).

To prove (b) we first suppose that the curvature is strictly positive,
K(ζ, z) > 0 on C*. Given (f0, z0) in C* we can, by (4.9), find a holomor-
phic C"-valued function / such that f(z0) = ξ0 and Δlog||/(z)||z < 0 at
z — z0. Pick r so small that Δlog||/(z)||z < 0 interior to γ = {z;
\z - z o | = r). For any r', 0 < r' < r, let γ' = {z; \z - zo\= r'}. Let {Dz}
be the interpolation family defined inside γ' which agrees with {Cz} on γ'.
Thus, for z on γ', log||/(z)||z = logH/ίz)!!^. For z interior to γ' the first
term is superharmonic (because its Laplacian is negative) and the second
is subharmonic (because {Dz} is an interpolation family). Hence at z0,
ll/(zo)llzo ~ H/(ZO)IIDZ We have verified condition (c) of Lemma 4.1 and
hence {Cz} is a superinterpolation family. We now pass to the general case
by approximation. Let h(z) be a fixed smooth positive superharmonic
function and let {Cz} be the family of Banach spaces C"X{z},zinZ),
normed by | |υ| |£ = Λ(z)||t;||z. Suppose K(ξ, z) > 0 on C*. Hence by (4.9),
given (f, z) in C* there is a holomorphic C"-valued function / with
f(z) = £ and Δlog||/(z)||z < 0. Thus

Δlog||/(z)||£ - Δlog h(z) + Δlog||/(z)||Q < 0.

By (4.10) and (4.11), -Δlog||/(z)||£ gives a lower bound for K, the
curvature of {CJ. Thus K is strictly positive. Hence, by the first half of
the argument, {Cz} is a superinteφolation family. {Cz} is a limit of such
families (as h is chosen near 1) and, hence, is a superinteφolation family.

Now suppose K = 0 on C*. By (a) and (b) {Cz} is both a subinteφo-
lation family and a superinteφolation family; hence it is an inteφolation
family. On the other hand, if {Cz} is an inteφolation family then, by (a),
K < 0. Also, given (f0, z0), the extremal function F — Fς z£z) is holomor-
phic, F(zQ) = f0 and ||.F(z)||z is constant. Thus the span of F(z) forms a
one-dimensional holomoφhic subbundle with zero curvature. Thus, by
(4.11), K > 0. This proves (c).

There is an obvious asymmetry in the theorem which we conjecture
can be removed.

Conjecture. If {Cz} is a superinteφolation family then K> 0 on C*.
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In light of the lemma and the other parts of the theorem, this is

closely related to the question raised in [8] of whether the dual of a

negatively curved convex Finsler bundle has positive curvature.

The following is a partial result which also suggests an interesting

question in the interpolation theory.

THEOREM 4.3. Suppose {Cz}zfΞD is a superinterpolation family and C the

corresponding convex Finsler bundle. Then for all z, sup{Λχf, z); ξ E Cz,

Proof. Pick and fix z 0 in D. Let yn be a small circle inside D with

center z0. Let [Dn z) be the interpolation family defined interior to yn

which agrees with {C2} on yn. Pick ξ0 in CZQ, \\ξo\\2o = 1. Let Fn be the

corresponding extremal function; Fn is a C"-valued holomorphic function,

Fn(
zo) = ίo> a n d WFn(z)\\Dn, is constant inside and on yn. lo$\Fn(z)\\z >

loglJF^z)!!^ ϊZ interior to γrt (because {CJ is a superinterpolation family)

and equality holds on the boundary. Hence it cannot be true that

log||/^(z)||z is strictly subharmonic interior to yn. Thus there is a zn interior

to yn such that Δlog||Fπ(z)| |z < 0 at z = zn. By (4.9) and (4.10) this gives

K(Fn(zn)9 zn) > 0. As the yn shrink to z0, zn must converge to z0. For large

Hence there is a subsequence of {(Fn(zn), zn)} which converges to a point

(f0, z 0) with llfollzo ~ l β y continuity ΛΓ(f0, z 0) > 0 and the proof is

complete.

This proof fails to give the full conjecture because we are unable to

show that f0 = f0. What is missing is an appropriate uniform convergence

theorem for the extremal functions. If such a result were available we

would also be able to localize Theorems 4.2 and 4.3 in the fiber variable.

That is, we would be able to show that K(ξ, z) < 0 near (f0, z 0) if and

only if the {CJ form a local subinterpolation family at (f0, z 0) (defined in

the obvious way).

Finally, we note that if all the {Cz} are Hubert spaces then there is a

complete pairing between the interpolation properties of {Cz} and the

curvature of C, now regarded as a Hermitian holomorphic vector bundle.

(See [7] for appropriate definitions.)
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THEOREM 4.4. Let [CZ}Z(ΞD be a family of Hubert spaces and C the

associated Hermitian holomorphic vector bundle.

(a) {Cz} is a subinterpolation family if and only if C is negatively

curved;

(b) {Cz} is a superinterpolation family if and only if C is positively

curved; and

(c) {Cz} is an interpolation family if and only if C has zero curvature.

Proof. We will only outline the proof. By direct calculation in local
coordinates (or other ways) one checks that a Hermitian holomorphic
vector bundle over the disk is negatively curved exactly if log||/(z)||z is
subharmonic for any holomorphic section /. This establishes (a). Part (b)
follows from (a) by duality (that the dual of a negatively curved bundle is
positively curved is Proposition 6.2 of [9]). (c) follows by combining (a)
and (b).

The statement in part (c) of the theorem that the curvature vanishes
can be reformulated as a statement that the norm function satisfies a
partial differential equation. If the norm on Cz is described by the positive
definite matrix Ω(z), \\v\\l = (Ω(Z)D, t>), then the equation satisfied by
Ω(z) for the bundle C to have vanishing curvature is

(4.12) 3(Ω-]3Ω) = 0.

This is the π-dimensional analog of the equation Δ log w — 0 dis-
cussed in §2. In this case the interpolation construction is equivalent to
solving (4.12) for Ω with specified boundary data. Ω is obtained in the
form

Ω(z) = A*(z)A(z)

for an appropriate holomorphic family of invertible matrices A(z).

5. Real variable analogs. In the three subsections of this section we
present real variable analogs of the results of the previous three sections.
In §5.1 we define real interpolation and subinterpolation families. In §5.2
we study the volume of the unit balls of such families and their duals. We
obtain a result analogous to, and in some ways sharper than, Theorem 3.3.
In §5.3 we show that quantities analogous to K of §4 are negative for
subinterpolation families.

5.1 Construction of spaces. Given a family of complex Banach
spaces {Ceiθ} defined for points eiθ on the unit circle one can define the
norms for the complex interpolation family having the given spaces as
boundary values by setting, for z in D, v in Cn.
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(5.1) |H|Γ = i

Fa holomoφhic C"-valued function, F(z) = v

It is one of the features of the complex inteφolation theory that several
seemingly different definitions produce the same norms. For example we
could define the intermediate space C2 by specifying their unit balls by

(5.2) U (C2)1 = holomoφhically convex hull of (J (Cz),
z<ΞD z(ΞdD

and this would produce the same norm. Alternatively, for fixed p, 1 </>
< oo, for z in Z), Pz(θ) the Poisson kernel for z and t) in C 1 we could set

(5.3) HI, = inίΠj\\F(e'θψe,<,Pz(θ) dβ}

F a holomoφhic Cn-valued function, F(z) = v>

and obtain the same norm as that given by (5.1).
To form real variable analogs of these constructions we replace

holomoφhic functions by affine functions and considerations of holomor-
phic convexity with considerations of convexity. Rather than work with
the unit ball of R we use the more convenient unit interval / = (0,1). For
the rest of this section we will consider real Banach spaces.

We start with R" X / and suppose that Aι. = R" X {/} are given
Banach spaces with norms || ||7, i ~ 0,1. We wish to construct inter-
mediate spaces An 0<t< 1, by putting norms on R" X {t} in an
appropriate way. One possibility is to mimic (5.1) and set, for υ in R",
0 < ί < 1.

(5.4) | |υ| |, = infί supJ|F(s)||,; Fan affine
sGdD

Rn-valued function, F(t) = υ\.

This gives a norm on Rn which has many of the properties of the complex
interpolation construction. The analog of (5.2) holds, that is, if we denote
the unit ball of At by {At)λ then

(5.5) U (At)x = convex hull of ( J U,)i
t<ΞΪ t<=dϊ

When we need to exhibit the dependence of A t on the boundary data we
write At — (Ao, Ax)r It is a consequence of (5.5) that the construction of
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the At has a stability under repetition (a "reiteration property" in the
language of interpolation theory). If 0 < /0 < ̂  < r, < 1 and θ is defined
by s = t0 + θ(tx - t0) then

(5.6) (Ao.Aj^iA^AX

(Here (A{Q9 Ah)θ is short-hand for the norm on W X {s} given by (BQ9 B{)θ

with Bo the space Rw X {0} normed by the norm of At carried to
R" X {0} by the obvious isomorphism of Rn X {0} with Rn X°{t0}, etc.) It
follows from (5.5) and (5.6) that the norm of affine R"-valued functions
will satisfy a maximum principle. That is, if F is an affine Revalued
function defined on Rn then

(5.7) 11-ft OIL witt n o t have a interior strict local maximum.

We omit the direct verification of these properties.
Although (5.1) and (5.3) produce the same norms, that is not true for

the real variable analogs. For p with 1 </? < oo we define Atp to be
Rn X {t} normed by

(5.8) \\v\\ttP = inf{((l - t)\\F(0ψo + t\\F(\)\\f ) l / p ;

F an affine Rn-valued function, F(t) = t>}.

WesetΛ,f00 = Ar

These norms are not all the same. Another difference between these
spaces and those of the complex variable theory is that in this case the
dual spaces are of a different form. (In the complex theory the duals of
interpolation spaces are the inteφolation spaces of the duals.) For any
norm || || on Rn we denote the dual norm by || ||*. For/?, 1 </? < oo, let
q be the conjugate index defined by \/p + \/q = 1 (with l/oo = 0). For
any linear functional L on R" the norm of L as a functional on Atp is

(5.9) HLH , = ((1 - t)i\\L\\l)q +

In particular note that \\L\\*tO0 = \\L\\* is an affine function of t.
We call a family of Banach spaces {At} a real interpolation family if

they are produced from some Ao and Ax by the construction (5.4). This is
equivalent to requiring (5.6) to hold, that is, if 0 < t0 < tx < 1, 0 < θ < 1,
then

(5.10) .

Let {Bt}t(ΞI be a family of Banach spaces; that is, Bt is the vector space
R" X {/} with norm || | |^. We say Bt is a subinterpolation family if for any
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subinterval of /, the Bt norm is dominated by the norm of the i

lation family which agrees with the family {Bt} at the end points of the

subinterval. This can be written as an inclusion of unit balls similar to

(5.10). For 0 < t0 < tλ < 1, 0 < θ < 1,

(5.11)

There are a number of ways to reformulate this condition.

LEMMA 5.1. Suppose {Bt}tGI is a family of Banach spaces. The following

are equivalent.

(1) {Bt}tlEI is a subinterpolation family.

(2) (Uter(Bt)x) is a convex subset ofRn+ \

(3) If F is an affine W-valued function on I then \\F(t)\\B satisfies the

local maximum principle', that is, (5.7) holds.

(4) For any linear functional L, \\L\\*Bt — \\L\\B* is a concave function oft

{i.e. -\\L\\*Bt is convex).

Proof. If (2) holds then, by (5.2), (5.10) holds, that is, (2) implies (1).

If (1) holds, then (5.7) for inteφolation families yields (5.7) for the {Bt} so

(1) implies (3). If (3) holds and (v0, t0) e (£, o), and (υv tλ) e (Btχ)l9

to<tλ9 then F(t), the affine function which takes the values F(tt) = vi9

i = 0,1, must satisfy \\F(t)\\Bt < 1 for t with t0 < t < tx. This, together

with the observation that each set (Bt)x is convex, establishes (2). If (1)

holds then a reverse inequality holds for the dual spaces. That is, if A t is

an inteφolation family which agrees with Btatt09tλ with to<tl9 then for

any L, \\L\\\ < | | L | | ^ for / between /0 and tλ. By (5.9) \\L\\\ is affine. Thus

\\L\\% sits above the affine function with the same values at t0 and tλ. Thus

| | L | | ^ is concave. Conversely, if | | L | | ^ is concave then \\L\\*Λt < \\L\\*Bt and,

hence, \\v\\At>\\v\\B.

As an example, note that for 1 </? < oo, the spaces Atp form a

subinteφolation family. The quickest way to verify this is to use condition

(4) of the lemma and (5.9) and note that d2\\L\\*p/Λ2 < 0.

We motivated the definitions of At and Atp by the analogy with the

holomoφhic case. However these spaces are also closely related to real

variable inteφolation theory. A common starting point for real variable

inteφolation theory is the ^-functional of Peetre. If Aφ Ax are given

^-dimensional normed spaces and v is in R", λ > 1, then the X-functίonal

KJ^λ, v\ Ao, Ay) is related to our^4, = Ato0 by
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(There are also functional Kp related to our Atp. See page 75 of [1].) Thus
the ΛΓ-method of inteφolation, which consists of constructing new norms
by taking weighted averages of X-functionals, can be formulated in terms
of the At spaces. For more on the real inteφolation theory, see [1] or [3].

5.2 Volumes. The results in §3 involved subharmonicity of loga-
rithms of volumes. The analogs for real spaces involve the convexity of
nth roots of volumes. For any Banach space 2?, let (B)x be the unit ball
and v(B) the Euclidean volume of B. Suppose {Bt}teI is a family of
^-dimensional Banach spaces parametrized by the points / of /. Analo-
gously to (3.1) we define

(5 12) K ( D λ — — fn\l/n
dt2 v "

and, in a similar spirit,

(5.13) K*(B,) = -£v(B )ι/H.
at

THEOREM 5.2. Let {Bt} be given.
(a) If {Bt} is an interpolation family then

(b) If {Bt} is a subinterpolation family then, for all t,

(5.14) *„,*(*,) < 0

and

(5.15)

(c) If {Bt} is a subinterpolation family and equality holds in (5.14) for all
t then {Bt} is an interpolation family. If {Bt} is a subinterpolation family and
equality holds in (5.15) for all t then {Bt} is a constant family (i.e. \\v\\Bι is
independent of t).

Proof. Suppose {Bt} is an inteφolation family. Όt^j(Bt)xϊsa, subset
of Rrt+1. The sets St = {(t>, /); υ G (5,.),}, i = 0,1, are convex sets in
parallel affine hypeφlanes. If the {Bt} form an inteφolation family then,
by (5.5), v(Bt) is the volume of the intersection of the hypeφlane {(t>, /);
t)GR"} with the convex hull of S0U Sx. The Brunn-Minkowski inequal-
ity [2] insures that the nth root of this volume is an affine function of t.
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(This is the equality version of the inequality. It holds because the

hyperplanes containing SQ and S, are parallel.) That proves half of (a).

Let TV be the norm function for the ̂ -dimensional Banach space B.

Let Σ be the Euclidean unit sphere in R". Using polar coordinates we see

that

(5.16) υ(B) = CJN{υ)~n dσ(v),

where C is a normalization which depends only on the dimension and do

is surface measure on Σ. By (5.9) the norm function N{t) on A* satisfies

(5.17) N(t) = (1 - t)N(0) + tN(l).

Using (5.16), we see that the desired conclusion is that

\/n

is a convex function of /. By (5.17) and the inequality between the

harmonic and arithmetic means we have

'&>•

\/n

\/n

We now apply Minkowski's inequality, i.e. the triangle inequality for the

space Ln(Σ9 do), and obtain

\/n

Thus r is convex and (a) is proved. We also note that if r(t) is affine then

equality must hold between the harmonic and arithmetic means and thus

# ( Ί ) ( ϋ ) = N(t2)(v) for all /„ t2, v. That is, {B*} and hence also {Bt}, is

constant.

Part (b) follows by using the results in part (a) to obtain support

functions. Suppose {Bt} is a given subinterpolation family, (/0, tx) a given

subinterval of / and {At} is the interpolation family which agrees with

{Bt} at t = t0 and t — tv By the definition of subinterpolation family,
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(5.11), (At)} C (Bt)} for tQ < tλ < ί,. Hence υ(At)^n < t>(£,)1/" for /0 < /
< /, with equality at the end points. By (a), υ{At)

λ/n is affine. Thus
υ(Bt)

ι/n sits above the affine function with which it agrees at the end
points of the subinterval. This shows Kn^(Bt)^0. Also note that if
KnΛ(Bt) = 0 then all of the inequalities must be equalities. This shows the
first part of (c). By part (4) of Lemma 5.2, or by dualizing (5.11),
(£*), C(A*)V Hence υ{(B*)λ)

λ'n < v{(A*)λ)
ι'n. By part (a) the right-

hand side is convex. Thus for any subinterval, υ{{B^)λ)
λ/n is dominate by

a convex function with the same values at the end points of the subinter-
val, hence v((B*)})

l/n is convex. This shows K*(Bt)<0. Finally, if
K*{Bt) = 0 then equality must hold in the previous inequalities and hence
B* = A* and K*(At) = 0. We noted earlier that implies {At} is constant.
The proof is complete.

5.3 Curvature. The maximum principle, (5.7), can be reformulated
as a differential inequality. This gives estimates similar to some of those in
§4. However, the fact that curvature decreases on passage to subbundles
appears to be characteristic of the holomorphic theory. In the absence of
such a principle we obtain only limited results in the real variable case.

If we combine (4.6) and (4.8) we find that the normal coordinates
used in the definition of K in §4 satisfied (among other things)

If we consider affine sections, F(t), of the real vector bundle {Bt}9 an
analogous equation would be

(5.18) £pΐOIUU,β = o.

Analogously to (4.9) we could then define, for any F(t) which satisfies
(5-18),

or, equivalent^, if | |F(ίo)| |,o = 1,

(5.19)

THEOREM 5.3. // {Bt} is a subinterpolation bundle then for any F(t)
which satisfies (5.18), K(F(t0), tθ9 F(t)) < 0. Conversely if
K(F(t0), t09 F(t)) < 0 for all such F(t) then {Bt} is a subinterpolation
bundle.
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Proof. By Lemma 5.1, {Bt) is a subinterpolation family if and only if
ll-FίOlla never has a strict interior local maximum for any affine function
F. The theorem is a reformulation of that condition in terms of the second
derivative test for a local maximum.

If all the {£,} are inner product spaces we can carry the analogy
further. Suppose each {Bt} is an inner product space with inner product
(v9w)t = v'Ω(t)w for column vectors v, w. Let t0 be given. We will say
that a collection of affine sections υx(t)9...9vn(t) give normal coordinates
at t0 if the analogs of (4.5) and (4.6) hold, namely

(5.20)

(5.21) ^ ( O ^ ω ^ U o ^ 0 ' k,j=\9...,n.

We will be interested in the matrix K with components

(5.22) *, , = -

The verification that such sections can be chosen is direct. The curvature
tensor of Hermitian holomorphic vector bundles can be computed by
formulas completely analogous to the previous three (for that and the
relation of the K to Finsler bundle curvature see [8] and [9]).

For / near tQ write t = tQ + ε. Let a dot denote / derivatives evaluated
at t0. Let V{t) be the matrix composed of the column vectors
vι(t)9...9vn(t). Let Vo = V(t0), Vx = K(*o), Ωo = 0(Ό)> Ω i = "Co) a n d

Ω2 = Ω(/o). Then V(t) = Vo + εVλ (this is exact because V(t) is affine)
and the previous three equations become

(5.23) (Vo + eVxy{Q0 + eQ, + iε 2Ω 2)(F 0 + eVλ) - I-^2K + O(e3).

Let Co and C, be two column vectors. Hence F(t) — Co + εCλ is the
general affine section of {Bt}. Write

Co + eC, = (Vo + eK.KKo + eVλY\C0 + εCx)

for ε near 0. Thus, using (5.23) near ε = 0,

IIQ + eCillil0+. = ( Q + eCiϊίCo + εC^-^C^")1KV^C0 + O(ε3).

Thus, in order to have (5.18) for this section F(t) we must have CQCX — 0.
If this is satisfied then the second derivative is

^ = 2cjc, - co'(V
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However C[CX > 0 for any vector. Thus K(F(tQ), t09 F(t)) will be negative

for all F(t) which satisfy (5.18) exactly if the matrix K, defined by (5.22)

or, equivalently, (5.23), is negative definite. That is, we have the following

analog of Theorem 4.4.

THEOREM 5.4. // the family of real inner product spaces {Bt} is a

subinterpolation family then K is negative semidefinite. If K is negative

definite then {Bt} is a subinterpolation family.

Finally, if Ωo, Ω,, and Ω2 of (5.23) can be simultaneously diagonalized

then we can obtain a simple formula for K. If we set Vo = Ω^"1/2 and

Vλ = - ^ΩjΩ^3 / 2 then the zeroth and first order terms in (5.23) match and

we obtain (noting that everything commutes)

In the particular case that Ω(ί) = W(t) ι for some W{t) we write

Wo = W(*o)> w\ = W{t*)> W2 = W(t0). This becomes

(S 94̂  JΓ — W~XW — W~2W2

\J.Z.U*) JY VVQ VV2 VVQ VV I .

Consider now the case of the family At2 defined by (5.8). Suppose the

norms on Ao and Ax are inner product spaces with norms specified by

Ω(0) and Ω(l), and Ω(0) and Ω(l) commute. The spaces At2 are then a

subinteφolation family (by the comment after Lemma (5.1)) of inner

product spaces (this by, for example, (5.9)). Also by (5.9) the matrix giving

the norm of At2 will be Ω(/) = ((1 - OΩ(O)"1 + i Q ( l ) " 1 ) " 1 . When we

use (5.24) we have W(t) = (1 - OΩ(O)"1 + tQ(l)~\ Wx = Ω(l)" 1 -

Ω(O)"1, W2 = 0. Thus, in this case,

K=- ( Ω ( l ) " 1 - Ώ(0)~ι)2((l - to)Ώ(O)~] +

and the negative definite nature of K is apparent.
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