THE JORDAN DECOMPOSITION AND HALF-NORMS

DEREK W. ROBINSON AND SADAYUKI YAMAMURO

Let \mathfrak{B} be a Banach space, with norm $\|\cdot\|$, ordered by a positive cone \mathfrak{B}_+ and order the dual \mathfrak{B}^* by the dual cone \mathfrak{B}_+^* . We prove that, if \mathfrak{B} is orthogonally generated, each $f \in \mathfrak{B}^*$ has an orthogonal, and norm-unique, Jordan decomposition $f = f_+ - f_-$ with $f_\pm \in \mathfrak{B}^*$,

$$\|f\| = \|f_+\| + \|f_-\|,$$

if, and only if, the norm on \mathfrak{B} has the order theoretic property

 $||a|| = \inf \{ \lambda \ge 0; -\lambda u \le a \le \lambda v \text{ for some } u, v \in \mathfrak{B}_1 \},\$

when \mathfrak{B}_1 is the unit ball of \mathfrak{B} . Various characterizations of the canonical half-norm associated with \mathfrak{B}_+ are also given.

0. Introduction. Let \mathfrak{B} be a Banach space with a positive cone \mathfrak{B}_+ i.e., a norm-closed proper convex cone, and introduce the dual cone \mathfrak{B}_+^* , in the dual \mathfrak{B}^* of \mathfrak{B} , by

$$\mathfrak{B}_{+}^{*} = \{ f \in \mathfrak{B}^{*}; f(a) \ge 0, a \in \mathfrak{B}_{+} \}.$$

It follows that \mathfrak{B}_{+}^{*} is a norm-closed convex cone and if \mathfrak{B}_{+} is weakly generating in the sense that $\mathfrak{B} = \overline{\mathfrak{B}_{+} - \mathfrak{B}_{+}}$, where the bar denotes the closure, then \mathfrak{B}_{+}^{*} is proper. We shall call \mathfrak{B}_{+} orthogonally generating if every $a \in \mathfrak{B}$ admits a decomposition $a = a_1 - a_2$ with $a_i \in \mathfrak{B}_{+}$ (i = 1, 2) and

$$||a_1 + a_2|| = ||a_1 - a_2||.$$

Clearly, every Banach lattice and the hermitian part of a C*-algebra have orthogonally generating positive cones with $a_1 = a_+$ and $a_2 = a_-$ where a_{\pm} denote the usual positive and negative components of a_-

In general, the cones \mathfrak{B}_+ and \mathfrak{B}_+^* define order relations on \mathfrak{B} and \mathfrak{B}^* respectively. If $a, b \in \mathfrak{B}$, one sets $a \ge b$ whenever $a - b \in \mathfrak{B}_+$. Similarly, if $f, g \in \mathfrak{B}^*$, one sets $f \ge g$ whenever $f - g \in \mathfrak{B}_+^*$.

The main purpose of this note is to determine conditions under which a general $f \in \mathfrak{B}^*$ has an orthogonal norm-unique Jordan decomposition, i.e., a decomposition of the form $f = f_+ - f_-$ with $f_+ \in \mathfrak{B}^*_+$ such that

(1) (Jordan decomposition) $||f|| = ||f_+|| + ||f_-||$;

(2) (Orthogonality) $|| f_+ + f_- || = || f_+ - f_- ||;$

(3) (Norm-uniqueness) If $f = g_1 - g_2$ is another decomposition with the property (1), then

 $||f_+|| = ||g_1||$ and $||f_-|| = ||g_2||$.

Our principal result is the following:

THEOREM 1. If \mathfrak{B}_+ is orthogonally generating, the following conditions are equivalent:

1. For every $a \in \mathfrak{B}$

$$||a|| = \inf\{\lambda \ge 0; -\lambda u \le a \le \lambda v, u, v \in \mathcal{B}_1\},\$$

where \mathfrak{B}_1 denotes the unit ball of \mathfrak{B} .

2. Every $f \in \mathfrak{B}^*$ has an orthogonal norm-unique Jordan decomposition. 3. If $a = a_1 - a_2$ is an orthogonal decomposition of $a \in \mathfrak{B}$, then

 $||a|| = ||a_1|| \vee ||a_2|| = N(a) \vee N(-a)$

where N is the canonical half-norm associated with \mathfrak{B}_+ .

Before giving the definition of half-norms, we note that condition 1 is easily verified if \mathfrak{B} is the hermitian part of a C*-algebra. First set

$$||a||_1 = \inf\{\lambda \ge 0; -\lambda u \le a \le \lambda v, u, v \in \mathfrak{B}_1\}$$

and note that $||a||_1 \le ||a||$. Next adjoin an identity element 1 if necessary, and remark that in principle this reduces $||\cdot||_1$. But, if $-\lambda u \le a \le \lambda v$ with $u, v \in \mathfrak{B}_1$, then $(1-u) \le (1 + a/\lambda) \le 1 + v$ and $0 \le 1 + a/\lambda \le 21$. Therefore, $||a|| \le \lambda$ and $||a|| = ||a||_1$.

The situation is quite different for order complete Banach lattices. Theorem 1 then implies (see [7], Example 1.5) that \mathfrak{B}^* has such a Jordan decomposition if, and only if, \mathfrak{B} is an AM-space.

The proof of Theorem 1 is based upon the notion of a *half-norm*, i.e., a function N over \mathfrak{B} with the properties:

(N1) $0 \le N(a) \le k ||a||$ for some k > 0,

(N2) $N(a_1 + a_2) \le N(a_1) + N(a_2)$,

(N3) $N(\lambda a) = \lambda N(a)$ for all $\lambda > 0$,

(N4) $N(a) \vee N(-a) = 0$ if, and only if, a = 0.

The existence of a half-norm over \mathfrak{B} is equivalent to the existence of a positive cone \mathfrak{B}_+ in \mathfrak{B} . In fact, if N is a half-norm on \mathfrak{B} , then

$$\mathfrak{B}_+ = \{a \in \mathfrak{B}; N(-a) = 0\}$$

is a positive cone. Conversely, if \mathfrak{B}_+ is a positive cone in \mathfrak{B} , then

$$N(a) = \inf\{||a+b||; b \in \mathfrak{B}_+\}$$

defines a half-norm over \mathfrak{B} . Following Arendt, Chernoff and Kato [2] we call this latter half-norm the *canonical half-norm* associated with \mathfrak{B}_+ . Note that it automatically satisfies

$$0 \leq N(a) \leq ||a||.$$

Half-norms are particularly useful for studying positive semigroups [2], [3], [9]. We derive various properties of half-norms in §2, after discussing the Jordan decomposition property in §1.

1. The Jordan decomposition. Throughout this section, let \mathfrak{B} be a Banach space ordered by a positive cone \mathfrak{B}_+ and let N be a half-norm associated with \mathfrak{B}_+ , i.e., N is such that

$$\mathfrak{B}_+=\{a;N(-a)=0\}.$$

LEMMA 2. Let f be a linear functional on \mathfrak{B} . If there exists a constant $\alpha > 0$ such that

$$f(a) \le \alpha N(a)$$
 for all $a \in \mathfrak{B}$

then f is positive and continuous. Conversely, if N is the canonical half-norm associated with \mathfrak{B}_+ and $f \in \mathfrak{B}^*$ is positive, then

$$f(a) \leq ||f|| N(a)$$
 for all $a \in \mathfrak{B}$.

Proof. If $f(a) \le \alpha N(a)$ for all $a \in \mathfrak{B}$, then $-f(a) \le \alpha N(-a)$, and f is obviously positive. But by condition (N1),

$$|f(a)| \le \alpha N(a) \lor N(-a) \le \alpha k ||a||$$

i.e., f is continuous. Conversely, if $f \in \mathfrak{B}^*$ is positive and N is canonical, we choose $b_n \in \mathfrak{B}_+$ such that $||a + b_n|| < N(a) + 1/n$. Then,

$$f(a) \le f(a + b_n) \le ||f|| ||a + b_n|| \le ||f|| \left(N(a) + \frac{1}{n} \right).$$

Hence, $f(a) \leq || f || N(a)$.

We denote by \mathfrak{B}_N^* the set of all $f \in \mathfrak{B}^*$ such that $f(a) \leq N(a)$ for all $a \in \mathfrak{B}$. The importance of this set is due to the following N-extension theorem

LEMMA 3. For every $a \in \mathfrak{B}$, there exists $f \in \mathfrak{B}_N^*$ such that f(a) = N(a).

Proof. We may assume that $N(a) \neq 0$. Let \mathfrak{M} be the linear space spanned by a and define a linear functional g on \mathfrak{M} by

$$g(\xi a) = \xi N(a)$$
 for all $\xi \in \mathbf{R}$.

Then, it is easy to see that

$$g(b) \leq N(b)$$
 for all $b \in \mathfrak{M}$.

It now follows from the subadditivity and homogeneity of N that g has a linear extension f to \mathfrak{B} satisfying the properties of the lemma (see, for example, [4], pages 65-66).

We remark that this lemma implies

$$N(a) = \sup\{f(a); f \in \mathfrak{B}_N^*\}.$$

Next, we define the conjugate N^* of N by

$$N^*(f) = \sup\{f(a); a \in \mathfrak{B}_+, ||a|| \le 1\}$$

for every $f \in \mathfrak{B}^*$. Then, N^* has the following properties;

 $\begin{aligned} &(N1)^* \ 0 \le N^*(f) \le \|f\| \\ &(N2)^* \ N^*(f+g) \le N^*(f) + N^*(g), \\ &(N3)^* \ N^*(\lambda f) = \lambda N^*(f) \ \text{for} \ \lambda \ge 0. \end{aligned}$

In order that N^* is a half-norm on \mathfrak{B}^* it must also satisfy the condition (N4)* $N^*(f) \vee N^*(-f) = 0$ if, and only if, f = 0.

For this we need an assumption on the positive cone \mathfrak{B}_+ . The positive cone \mathfrak{B}_+ is said to be *generating* if every $a \in \mathfrak{B}$ has a decomposition $a = a_1 - a_2$ with $a_i \in \mathfrak{B}_+$ (i = 1, 2). Ando [1], has proved that when \mathfrak{B}_+ is generating there exists a constant $\rho > 0$ such that each $a \in \mathfrak{B}$ has a decomposition $a = a_1 - a_2$ with $a_i \in \mathfrak{B}_+$ (i = 1, 2), and

$$||a_1|| \vee ||a_2|| \le \rho ||a||$$

When this is the case, we shall say that \mathfrak{B}_+ is ρ -generating.

LEMMA 4. When \mathfrak{B}_+ is generating, N^* is a half-norm on \mathfrak{B}^* and, for $f \in \mathfrak{B}^*$, f is positive if, and only if, $N^*(-f) = 0$.

If \mathfrak{B}_+ is $\rho\text{-generating then}$

$$||f|| \le \rho(N^*(f) + N^*(-f)).$$

Proof. If $N^*(f) + N^*(-f) = 0$, we have f(a) = 0 when $a \ge 0$ or $a \le 0$. Since \mathfrak{B}_+ is generating, this implies f = 0 and, hence, N^* is a half-norm on \mathfrak{B}^* . It is obvious that $N^*(-f) = 0$ if f is positive. The converse follows from

$$-f(a) \le N^*(-f) ||a|| \quad \text{for } a \ge 0.$$

Now, to prove the last statement, assume that $\alpha > N^*(f) + N^*(-f)$ and choose α_i (i = 1, 2) such that $\alpha = \alpha_1 + \alpha_2$, $N^*(f) < \alpha_1$ and $N^*(-f) < \alpha_2$.

348

Then, for every $a \in \mathfrak{B}$ and its decomposition $a = a_1 - a_2$ with $a_i \in \mathfrak{B}_+$ (i = 1, 2),

$$f(a) = f(a_1) - f(a_2) < \alpha_1 ||a_1|| + \alpha_2 ||a_2||$$

and

$$-f(a) = f(a_2) - f(a_1) < \alpha_1 ||a_2|| + \alpha_2 ||a_1||.$$

Therefore,

$$|f(a)| < \alpha_1 \rho ||a|| + \alpha_2 \rho ||a|| < \alpha \rho ||a||,$$

and, hence, $||f|| \leq \alpha \rho$.

We remark that, if every element of \mathfrak{B} admits a Jordan decomposition one has $||f|| = N^*(f) + N^*(-f)$.

Now, we start the proof of Theorem 1. We begin with a result of Grosberg and Krein [5].

LEMMA 5. (Grosberg-Krein). If N is the canonical half-norm associated with \mathcal{B}_+ the following two conditions are equivalent;

(1) $||a|| = N(a) \lor N(-a)$ for all $a \in \mathfrak{B}$.

(2) Every element of \mathfrak{B}^* admits a Jordan decomposition.

Proof. Assume that the condition 1 holds and set $P = \{f \in \mathfrak{B}^*; \|f\| \le 1, f \ge 0\}$. Then, since $\mathfrak{B}_N^* \subset P$, we can conclude from Lemma 3 that the polar P^0 of P coincides with the closed unit ball \mathfrak{B}_1 of \mathfrak{B} . Hence, the closed unit ball \mathfrak{B}_1^* of \mathfrak{B}^* coincides with the bipolar P^{00} . Therefore Grothendieck's argument [6] leads us to condition 2. Conversely, if condition 2 holds and $N(a) \lor N(-a) < 1$, we choose an arbitrary $f \in \mathfrak{B}^*$ such that $\|f\| = 1$. Then, for $f_{\pm} \ge 0$ such that $f = f_+ - f_-$ and $\|f\| = \|f_+\| + \|f_-\|$, we have

$$|f_+(a)| \le ||f_+||$$
 and $|f_-(a)| \le ||f_-||$

In fact, since N is canonical, we can find $b, c \in \mathfrak{B}_+$ such that

||a + b|| < 1 and ||-a + c|| < 1.

Then,

 $f_+(a) \le f_+(a+b) \le ||f_+||$ and $-f_+(a) \le f_+(-a+c) \le ||f_+||$.

Therefore, $|f_+(a)| \le ||f_+||$. Similarly, $|f_-(a)| \le ||f_-||$. Then, $|f(a)| \le ||f_+(a)| + |f_-(a)| \le ||f|| = 1$ and, hence, $||a|| \le 1$.

It was proved in [7], Lemma 1.1, that the canonical half-norm N associated with \mathcal{B}_+ satisfies

$$N(a) = \inf\{\lambda \ge 0; a \le \lambda u, u \in \mathcal{B}_1\}.$$

Therefore, condition 1 in Theorem 1 is another expression of $||a|| = N(a) \lor N(-a)$. Hence, by the Grosberg-Krein theorem, Lemma 5, every element of \mathfrak{B}^* admits a Jordan decomposition. We are going to show that this decomposition is orthogonal and norm-unique. Note that, if \mathfrak{B}_+ is orthogonally generating, it is 1-generating. In fact, if $a = a_1 - a_2$ is an orthogonal decomposition, then, since $||a|| = ||a_1 + a_2||$,

$$2\|a_1\| = \|(a_1 + a_2) + (a_1 - a_2)\|$$

$$\leq \|a_1 + a_2\| + \|a_1 - a_2\| = 2\|a\|,$$

which implies $||a_1|| \le ||a||$. Similarly, $||a_2|| \le ||a||$. Therefore, the following two lemmas, together with Lemma 5, prove that condition 1 implies condition 2 in Theorem 1.

LEMMA 6. Assume that \mathfrak{B}_+ is 1-generating and $f = f_1 - f_2$ is a Jordan decomposition of $f \in \mathfrak{B}^*$. Then $||f_1|| = N^*(f)$ and $||f_2|| = N^*(-f)$.

Proof. By Lemma 4, we have

$$||f|| \le N^*(f) + N^*(-f).$$

On the other hand, we have $N^*(f) \le ||f_1||$, because

$$f(a) = f_1(a) - f_2(a) \le f_1(a) \le ||f_1||$$

if $a \ge 0$ and $||a|| \le 1$. Similarly, $N^*(-f) \le ||f_2||$. Then, since $||f|| = ||f_1|| + ||f_2||$, we must have $N^*(f) = ||f_1||$ and $N^*(-f) = ||f_2||$.

LEMMA 7. Assume that \mathfrak{B}_+ is orthogonally generating and $f = f_1 - f_2$ is a Jordan decomposition of $f \in \mathfrak{B}^*$. Then f_1 and f_2 are orthogonal, i.e.,

$$||f_1 + f_2|| = ||f_1 - f_2||$$

Proof. Let $a = a_1 - a_2$ be an orthogonal decomposition of $a \in \mathfrak{B}$. Then

$$\pm f(a) \leq (f_1 + f_2)(a_1 + a_2).$$

Hence,

$$|f(a)| \le ||f_1 + f_2|| ||a_1 + a_2|| \le ||f_1 + f_2|| ||a||$$

which implies $||f|| \le ||f_1 + f_2||$. On the other hand, if follows from the definition of Jordan decomposition that $||f_1 + f_2|| \le ||f_1|| + ||f_2|| = ||f||$. Therefore f_1 and f_2 are orthogonal.

Next, we prove that condition 2 implies condition 3 in Theorem 1. First, we note that we have

$$||a|| = N(a) \vee N(-a)$$

by Lemma 5. Now, let $a = a_1 - a_2$ be an orthogonal decomposition. Then, as we have shown above, we have $||a_i|| \le ||a||$ (i = 1, 2). On the other hand, since $a \le a_1$, we have $N(a) \le N(a_1) \le ||a_1||$ and, similarly, $N(-a) \le ||a_2||$. Hence,

$$||a|| \ge ||a_1|| \lor ||a_2|| \ge N(a) \lor N(-a) = ||a||.$$

That condition 3 implies condition 1 in Theorem 1 is trivial.

2. Half-norms. Let \mathfrak{B} be an ordered Banach space with a positive cone \mathfrak{B}_+ . The equality

$$N(a) = \inf\{||a + b||; b \in \mathfrak{B}_+\} = \inf\{\lambda \ge 0; a \le \lambda u, u \in \mathfrak{B}_1\}$$

referred to in §1, gives an order theoretic characterization of the canonical half-norm N associated with \mathfrak{B}_+ .

The next theorem gives a criterion for another order theoretic characterization of N.

THEOREM 8. The following conditions are equivalent: (1) $N(a) = \inf\{\lambda \ge 0; a \le \lambda u, u \in \mathfrak{B}_1 \cap \mathfrak{B}_+\},\$ (2) For each $\varepsilon > 0$ and $a \in \mathfrak{B}$ there is a decomposition

$$a = a_+ - a_-$$
 with $a_\pm \in \mathfrak{B}$ and $||a_+|| \le (1 + \varepsilon) ||a||$.

Proof. Assume that condition 1 holds. If $\varepsilon > 0$ and $a \in \mathfrak{B}$, there is $u \in \mathfrak{B}_1 \cap \mathfrak{B}_+$ such that $a \leq N(a)(1 + \varepsilon)u$. Hence, $a = a_+ - a_-$ with $a_+ = N(a)(1 + \varepsilon)u$ and $a_- = a_+ - a$. But, $||a_+|| \leq N(a)(1 + \varepsilon) \leq (1 + \varepsilon)||a||$. Conversely, assume that condition 2 holds. If $a \leq \lambda u$ with $u \in \mathfrak{B}_+$ and u has a decomposition $u = u_+ - u_-$ with $u_{\pm} \in \mathfrak{B}_+$ and $||u_+|| \leq 1 + \varepsilon$, then $a \leq \lambda u_+$ and,

$$N(a) < \inf\{\lambda \ge 0; a \le \lambda u, u \in \mathfrak{B}_1 \cap \mathfrak{B}_+\} \le (1 + \varepsilon)N(a).$$

Since this estimate is valid for all $\varepsilon > 0$, one has the desired identification.

It was proved in [7], Proposition 1.6, that condition 2 with $\varepsilon = 0$ is implied by the following three equivalent conditions:

(i) There is a $u \in \mathfrak{B}_1$ such that

$$\{a: \|u-a\|<1\}\subset \mathfrak{B}_+,$$

(ii) \mathfrak{B}_1 has a maximal element u,

(iii) there is a $u \in \mathfrak{B}_1$ such that $N = N_u$, where

$$N_u(a) = \inf\{\lambda \ge 0; a \le \lambda u\}.$$

COROLLARY 9. If $(\mathfrak{B}, \mathfrak{B}_+)$ is the dual of an ordered Banach space \mathfrak{B}_* with positive cone \mathfrak{B}_{*+} and if N is the canonical half-norm associated with \mathfrak{B}_+ , then the following conditions are equivalent:

(1) $N(a) = \inf\{\lambda \ge 0; a \le \lambda u, u \in \mathfrak{B}_1 \cap \mathfrak{B}_+\},\$

(2) each $a \in \mathfrak{B}$ has a decomposition $a = a_+ - a_-$ with $a_\pm \in \mathfrak{B}_+$ and $||a_+|| \le ||a||$.

Proof. In view of Theorem 8, we only need to show that condition 1 implies condition 2. Now, if condition 1 holds, it follows from Theorem 9 that for $\varepsilon > 0$ and $a \in \mathfrak{B}$ there is a $u_{\varepsilon} \in \mathfrak{B}_1 \cap \mathfrak{B}_+$ such that $a \leq N(a)(1 + \varepsilon)u_{\varepsilon}$. But $\mathfrak{B}_1 \cap \mathfrak{B}_+$ is weak* compact and hence u_{ε} has a weak* limit point u. Therefore

$$N(a)u(\omega) = \lim N(a)(1+\varepsilon)u_{\varepsilon}(\omega) \ge a(\omega)$$

for all $\omega \in \mathfrak{B}_{*+}$ and $a \leq N(a)u$ by the definition of a dual cone. Now, $a = a_+ - a_-$ with $a_+ = N(a)u \in \mathfrak{B}_+$, $a_- = a_+ - a \in \mathfrak{B}_+$, and $||a_+|| \leq N(a) \leq ||a||$.

If \mathfrak{B} is either a Banach lattice or the hermitian part of a C^* -algebra, then each $a \in \mathfrak{B}$ has a canonical decomposition $a = a_+ - a_-$ into positive and negative components $a_{\pm} \in \mathfrak{B}_+$ [8], [4]. In both cases, however $||a_{\pm}|| \le ||a||$ and hence the canonical half-norm has the order theoretic characterization given by condition 1 of Theorem 8.

REFERENCES

- T. Ando, On fundamental properties of a Banach space with a cone, Pacific J. Math., 12 (1962), 1163–1169.
- [2] W. Arendt, P. R. Chernoff and T. Kato, A generalization of dissipativity and positive semigroups, J. Operator Theory, 8 (1982), 167-180.
- [3] O. Bratteli, T. Digernes and D. W. Robinson, *Positive semigroups on ordered Banach spaces*, J. Operator Theory, (to appear).
- [4] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. I, Springer-Verlag (1979).

- [5] J. Grosberg et M. Krein, Sur la décomposition des fonctionnelles en composantes positives, C. R. (Doklady) Acad. Sci., URSS (N.S.) 25 (1939), 723-726.
- [6] A. Grothendieck, Un resultat sur le dual d'une C*-algebra, J. de Math., 36 (1957), 97-108.
- [7] D. W. Robinson and S. Yamamuro, Addition of an identity to an ordered Banach space, J. Australian M.S. (to appear).
- [8] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag (1974).
- [9] S. Yamamuro, Notes on Locally convex spaces with ACK-calibrations, unpublished manuscript.

Received May 13, 1982.

Australian National University Canberra, A.C.T. 2600, Australia