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THE RANGE OF CONVOLUTION OPERATORS

ROBERT A. BEKES

Subject to certain restrictions, convolving on the right by a fixed
function defines a bounded linear operator between spaces of measures
or functions over a locally compact group. For non-compact groups we
show that when the range and domain are different, such operators rarely
have closed range. Applications of these results are made to representa-
tion theory for locally compact groups. We also prove a correspondence
theorem for strictly cyclic vectors for Banach algebras and those for
certain closed left ideals.

Preliminaries. Throughout this paper G denotes a locally compact,
non-compact group with left Haar measure dx. Let M(G) denote the
space of finite Borel measures with total variation norm || ||; Lp(G),
1 </? < oo, the equivalence classes of /?-integrable functions with norm
|| || LJ^G) the essentially bounded measurable functions on G with the
essential supremum norm || H ;̂ C(G) the bounded continuous functions
on G with the uniform norm also denoted by || H ;̂ C0(G) those/in C(G)
that vanish at infinity; C^G) those/in C0(G) with compact support. See
Hewitt and Ross for formal definitions of these objects.

For a function/on G and a fixed x in G the left translation of/by x,
written x/, is defined by xf(y) — f{xy) for all y in G. Note that if the
support of/is K, then the support of xfis x~xK. Let/denote the function
f(x) — f(x']). Continuity of the group operations implies that / has
compact support if and only if /does. If A is a set of functions on <?, then
A — {/: / GA}. The complex conjugate of /, written /, is defined by

fix) =7(30.
Convolution between a measure μ and a function /, when defined, is

given by the following formula:

μ*f(χ)=ff{y-ιχ)dμ(y)

And when defined between two functions of/and g is given by

g*f(χ)=ff{y-ιχ)g(y)4y.

We will need to refer to the following convolution formulas and their
associated norm inequalities. See Hewitt and Ross [6, 20.19].
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(1) Lλ{G)*Lp(G)cLp{G), p>\ and \\g * f\\p<\\g\\w \\P.

(2) M(G) * Lp(G) C Lp(G), p>\ and ||μ * f\\p <||/ι|| | |/||^.

(3) L f ( G ) * [ L f ( G ) ] " c C 0 ( G ) , f o r l < / > < o o , l / p + l / p ' = l

and ||g*/|U<||g|UI/||,,

(4) LX{G) * LJG) C C(G) and ||g * / L <||g[|,||/|U-

(5) U G ) . [ I , ( G ) ] ' C C ( 6 ) and ||g * / | L ^glU/U,.

(6) Lp(G) * {/,,((?) n[L,(G)]"} CLr(G)

where/;, q>l,\/p+ί/q- l/r = 1 and \\g * /| |, <||g|U|/||,.

One more convolution formula is needed. It turns out to be an easy
consequence of (3) and (4).

(7) L,(G)*C 0 (G)CC(G) and ||g * / L <| |g|U|/|L.

Proof. Let / £ L,(G) and g e C0(G). Choose gn, /„ e ^ ( ( 7 ) such
that ||g - gjl^ -> 0 and | | / - / J | , - 0. Now since for any p, C00(G) C
Lp(G) and/, £ Qo(G), we have by (3) that gn * fn e C^G) for all n. By
(4), g * / e C(G)andso

(8) h* f- gn* LlL^h* f- gn* f\L +\\gn* f- gn* fn\L

Therefore g * / E C0(G). The norm inequality follows from (4) since
C0(G) C L J G ) .

Next we collect some facts about linear maps and adjoints. Let M be
a normed linear space. We will write Λf* for the dual space of M. If
φ E M*, the norm of φ will be written as ||<p||M*. For φ E M* and m E M
it will sometimes be convenient to write φ(m) as a bilinear form, φ(m) =
(m, φ). If Jf and Γ are Banach spaces and T: X -* Y is a continuous
linear map the adjoint of Γ, denoted by 7"*, is defined on y* by
(x, T*y*) — (Tx, jμ*> for all x E X. It follows from the continuity of Γ
that Γ*: 7* -» X*. A fact that will be used repeatedly is that if T: X -> Y
is continuous, linear, one-to-one and if the range of T is closed, then Γ*
maps 7* onto X*. See Hewitt and Ross [7, E.8].

1. Operators from L}(G) into Lp(G) and C(G). Let / be fixed
function and Tf the operator obtained by convolving on the right by/. If/
belongs to L (G), /? > 1, then (1) implies that Tf is a bounded operator
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from LX(G) into Lp(G). If/belongs to C0(G), it follows from (7) that 7} is
a bounded operator from LX(G) into C0(G).

In this section we will be concerned with the question of when these
operators have closed range. The two cases,/in Lp(G) and/in C0(G), are
considered together because the main computations in both cases are
similar and can conveniently be combined as the following result.

LEMMA 1.1. Let f G Lp(G), p > 1, or C0(G), / ^ 0 , and let M =
L\(G)* /• Then there exists {φn}™=x C M * such that \\φn\\M* -> oo and

llΦn * /lloo is bounded.

Proof. Note that implicit in the conclusion of the lemma is that φn can
be convolved with/. In general there are functionals in m* for which this
convolution is not defined in the usual way.

We have two cases to consider: case (i). / G Lp(G), 1 <p < oo; and
case(ϋ),/GC0(G).

Since C0(G) C LJl^G), the uniform norm on C0(G) will sometimes be
written as || Ĥ  where/? = oo. The conjugate exponents are denoted by/?'
where/?' = /?/(l — p) if 1 <p < oo and/?' = 1 if/? = oo.

For the remainder of this lemma fix an integer n > 1 and k G M,
wherein, = 1.

In case (i) an application of the Hahn-Banach theorem gives us
h G Lq{G) such that / k{x)h(x) dx = 1 and \\h\\p, - 1. In case (ϋ), since
M(G) = C0(G)* and LX(G) is weak* dense in M(G), see Dunford and
Schwartz [3], there exists h G LX(G) such that / k(x)h(x) dx = 1.

Choose k0 G CooίG) such that \\k - ko\\p < \/n. Let Ao = support of
k0. In case (i) k G Lp(G) and h G L^G) so (3) implies that h* k G CQ(G).
In case (ii) k G C0(G) and h G L,(G) so by (7) we also have that
A * £ G C^G). Therefore in either case we can find a compact set Ax such
that \h * k(x)\< l/2n(n — 1) for all x & Ax. The same argument as
above, this time applied to h and / implies that in cases (i) and (ii), h * /
belongs to C0(G). So for any fixed/?, 1 </? < oo, there exists g G Cω(G)
such that ||Λ * /— gib < H/H^/Λ. Let ^42 = support of g and let B — Ao

Uy41U^42U{^}, where e is the identity element of G. Then 5 is
compact. Since e G B, B C AB"1 and so Λ,. C 5 5 " 1 for / = 0, 1, 2. The
continuity of the group operations implies that BB~ι is compact and
hence so is any translation of BB~ι.

Next we choose elements JC,,. .. 9xn in G by induction as follows. Let
xx be any element of G. Since G is not compact the set G\ U^~\ BB~xXj is
not empty for / > 2. So let jcf. G G\ U ^ BB~ιXj. We derive some
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properties of xl9... 9xn. Since x} & BB ιxi for i <j we have that B~ιXj Π
B"xxi = 0 for i <j. And so xjιB Π Λ Γ1^ = 0 for all / ̂ y. Therefore

ι \xJιAmΠ x\Am= 0 for i φj and m = 0, 1,2. This implies, in particular,
that the supports of the functions xtkQ are disjoint.

In case (i), where 1 < p < oo, we get

(9) Xi'C0 = Σ

In case (ii), where/? = oo, we get

(10)
i=\

We also have that

jk, Xjh)= I xih(x)xJk(x) dx

= jh(xιx)k(xjx) dx — ιh(x)k[xjX^x) dx

The JC, were chosen so that xtxjι ς£ JB^"1 for / Φj and, since 4̂, C BB
we get for ι φj that

Jxih(x)xJk(x)dx =\h*k(xixjι)\<l/2n(n- 1).

Let φ π = Σ ? = 1 JC, Λ. Then <pn G M * and

~\

Σ * A <P« fψn(x) Σ Xj

Σ */*(*) Σ*y*00

dx
i=\

n jh(x)k(x) dx + ̂ ^ φ ^ 1)

n — n(n — l)/2n(n — 1) > n/2.
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We note here that M is closed under left translation. This fact follows
from the following relation:

for all

Therefore Σ"= 1 Xyk G M. Now

n

y - i

<

p

n

2J Xjfc

7 = 1

Zu j C

y = i

n

^ 7 0
7 = 1

+
^ 7 0

7 = 1

In case (i), where 1 <p< oo, we get from (9) that

n

2 *,* < 1 + 2/J1^ <
J=ι

 P

Therefore a lower bound for HφJIji/. can be computed as

(") IkL-

In case (ii), wherep = oo, we get from (10) that | |Σ" = 1 x ^
lower bound for \\φn\\M* is

^ 3 and so a

(12) -(i)f=?

Next we compute the norm of φn * /. Note that in both cases φn * f

belongs to C0(G) since it is a linear combination of translates of h * /.
By (8) we have xJιA2 Γϊ xfU 2 = 0 for / 7̂ 7 and so the supports of

the functions x,g are disjoint. Therefore | |Σ"= 1 XigW^ = HglL- We also
have that

An application of (3) when 1 < p < oo and an application of (7) when

p — oo yields ||Λ * f)\x < PH^II/Uj,. So from above,

Woo ^11/11^+IIAWI/II,.
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In either case,

Ψn*f~ Σ*il
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(χ,h)*f-

( * Ί
xth*

n

Ύ X

n

i=\

i=\

Putting these inequalities together yields

(13) Ψn * / -
n

i = l 0 0

n

Σ χiS
i=\

φ+\\h\\P]\\fl.
Keeping k and h fixed for all «, we see that φn depends only on n. So

the lower bounds in (11) and (12) hold for each n, while the bound in (13)
is independent of n. This proves the lemma.

Note that when the operator Tf (i.e., convolution on the right by/) is
defined on LX(G)9 its range is the set LX(G) * /.

THEOREM 1.1. (i) Let p > 1, f G Lp(G) andf=£0. Then LX(G) * / is
not closed in Lp(G).

(ii) Let f E C0(G), / Φ 0. Then Lλ(G) * / is not closed in C0(G).

Proof, (i) The remarks prior to Lemma 1.1 show that Tf is a bounded
operator from Lλ{G) into Lp(G) with range LX(G) * /. Let M = LX(G) * /
and suppose M is closed in Lp(G). Since Tf is continuous, £ = 7}~ι{0} is a
closed subspace of LX(G). Consider the map Φ: Lx{G)/t -> Lp{G) defined
by Φ(g + £) = g * /. Then Φ is well defined and one-to-one. We show
that Φ is bounded. Let h G £; then

So taking the infimum over h in £ we get ||Φ(g + £)|| < \\g + ,
Since the range of Φ is M, which we assumed to be closed, the open
mapping theorem gives us that Φ is a bicontinuous map from LX{G) onto
M C Lp(G). As we noted in the preliminaries, the adjoint map of Φ, Φ*,
will then map M* onto (L,(G)/£)* and, since Φ is bicontinuous, so is Φ*.
Now M is embedded as a closed subspace of Lp(G) under the identity
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map /. It follows that the adjoint map, /*, maps (Lp(G))* onto M*. But
{Lp{G))* is isomorphic to Lp,(G), \/p + \/p' — 1. So we can identify
M* with all those elements of Lp,(G) which give rise to non-zero function-
als on M. Furthermore, it follows from Dunford and Schwartz [3, II,
4.18b] that (Lx(G)/£)* is isometrically isomorphic with the closed sub-
space, t1-, of L J G ) , where &1 = {k G L J G ) : (g, k) = 0 for all g G £}.
Therefore Φ* can be realized as bicontinuous from M* onto &1. For an
arbitrary h in Lq(G) we compute Φ*(/c). Since Φ*(λ) G LJ^G) and
LJ^G) is isomorphic to (L^G))*, we compute how Φ*(Λ) acts as a
functional on Lλ{G). So let g G LX(G) be arbitrary. Then

= fjg(y)f(y-ι*)h(χ)dydx

= fg(y)[h*f(y)]~dy.

It follows that Φ*(Λ) = h * /. But by Lemma 1.1 there exists {φM} C M*
such that HΦJIΛ/ -> oo and ||Φ*(φπ)||00 is bounded. This contradicts the
bicontinuity of Φ* and so contradicts the assumption that M is closed in
Lp(G). This proves part (i) of the theorem.

The proof of part (ii) is the same as that for part (i) except that here
M = LX(G) * /is a subspace of C0(G). We define β as in part (i) and we
see that Φ maps L,(G)/β onto M from which it follows that Φ* maps M*
to t1-. Now if M is assumed to be closed in C0(G), Φ* will then be
bicontinuous. Now M* can be identified with those measures in M{G) =
( C 0 ( ( J ) ) * which don't vanish on M and a computation similar to that in
part (i) shows that for μ G M(G), Φ*(μ) = μ * /. At this point Lemma IΛ
can be used to contradict the bicontinuity of Φ* and therefore the
assumption that M is closed in C0(G) can't hold. This proves part (ii) of
the theorem.
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EXAMPLE 1.1. When p — 1 the theorem is not true in general. Let
G — Z, the integers, and let δ0 be point mass at 0. Then /j(Z) * δ0 = ^(Z).
For an example of a non-discrete group where the theorem fails to hold
when /? = 1 is G = Z X Γ, the integers cross the circle group and / the
characteristic function of {0} X T. Then iVs easy to see that L/Z X T) * /
is closed in LX(Z X T) since/is idempotent.

For further discussion of the problem of when μ * L,(G) is closed see
I. Glicksberg's paper [4].

2. An application to representation theory. Let π be a continuous

unitary representation of G on a Hubert space H. See Hewitt and Ross [6,
§21]. Then π can be extended to a continuous representation of LX(G) as
bounded operators on H by the following formula: F o r / E Lλ(G), and
£, η E H, π(f) is the operator defined by

= ff(x)(*(x)yx, η)

It turns out that m is a continuous algebra homorphism of Lλ(G) into the
bounded operators on H. We call a vector ξ E H strictly cyclic for π if
{π(g)£: g E ^(G)} = i/, and we say that π is algebraically irreducible if
every non-zero vector in H is strictly cyclic for π.

When H = L2(G) and TΓ(JC)/ = x~λfίorf E L2(G) then 77 is called the
left regular representation of G. It follows that π(g)f — g * /for g E Lj(g)
and / E L2(G). In Bekes [2] it is shown that no non-zero subrepresenta-
tίon of the left regular representation of a locally compact, non-compact
group can be algebraically irreducible. Note that/ E L2(G) will be strictly
cyclic for a subrepresentation of the left regular representation if and only
if LX(G) * / is closed in L2(G). Therefore a more general result follows
immediately from Theorem 1.1 (i) when/? = 2:

COROLLARY 2.1. No non-zero subrepresentation of the left regular

representation of a locally compact, non-compact group can have a strictly

cyclic vector.

A characterization of compact groups in terms of the existence of a
strictly cyclic vector is possible.

For compact groups the left regular representation decomposes into a
direct sum of irreducible finite-dimensional subrepresentations. And since
every non-zero vector in an irreducible finite-dimensional representation
is strictly cyclic, a consequence of Corollary 2.1 is the following.
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COROLLARY 2.2. A locally compact group is compact if and only if some
non-zero subrepresentation of the left regular representation has a strictly
cyclic vector.

Cyclic vectors for representations of groups have been studied by F.
Greenleaf and M. Moskowitz in [5].

3. Maps from M(G) into Lp(G) and C0(G). We extend Theorem
1.1 to maps from M(G) into Lp(G), 1 <p < oo or C0(G). In doing this we
need a result on the correspondence between strictly cyclic vectors for
Banach algebras and those of closed ideals which have bounded ap-
proximate identities. We prove a more general result in that we only
assume the ideal is one sided.

To begin we record a lemma due to Bade and Curtis [1, 1.2].

LEMMA 3.1. Let T be a bounded linear map from X into Y where X is a
Banach space. Suppose there exists c > 0 and 0 < a < 1 such that given
y G Y, \\y\\ < 1, there exists x G l , ||JC|| < c, such that \\Tx ~ y\\ < a. Then
T is subjective.

Let 21 be a Banach algebra and X a Banach space. Suppose there is a
mapping of 21 X X into X, the image of (a, x) denoted by ax, such that
forα G C , f l , i G 3 ( , x E l :

(i) (aa)x = a(ax) = a(ax);
(ii) (ab)x = a(bx);

(iii) there exists K > 0 such that ||αx|| < A]|fl||||jc||;
then X is called a left Banach 2ί module (see Hewitt and Ross [7, 32.14]).

A net {hδ}δfΞA in a normed algebra B is called a bounded left
approximate identity if given any b E: B, \\hδb — b\\ -> 0 and supδ||Λδ|| <
oo.

LEMMA 3.2. Let 91 be a Banach algebra and X a left Banach module.
Suppose $ is a closed left ideal of 21 which as a Banach algebra has a
bounded left approximate identity. Let x G } I Then 2ί.x is closed if and
only if $x is closed and they are equal.

Proof. By the factorization theorem for left Banach modules, Hewitt
and Ross [7, 32.22], we have fyX closed in X and there exists a0 E £ and
x0 E: X such that x = aoxo. Let {hδ}δξΞA be a bounded left approximate
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identity for £. Then

\\hsx - x|| = ||Aδ0oxo ~ ^o^oll - κ\\hδao ~ ao\\ \\xo\\ -* 0.

Now suppose that %x is closed in X. Let a E Sί. Then ox = lim αA x̂
and ahδx E ^x implies that ax E^x. But £JC = %x so ^x C Six C fx and
equality follows.

Suppose now that Six is closed in X. Let ί = {# E 31: ox = 0}. Then
the map a + ί -» αx is a one-to-one continuous linear map of 21/5 onto
31 x. By the open mapping theorem, there exists a constant c > 0 such that
\\a + ί|| < c||ax|| for all α E Sί. Let A E (Aδ}δ e Λ

 b e s u c h t h a t \\hx ~ x\\ <

l/4Kc. Consider the map T: a -» ΛΛX. Then T is a continuous map of 9ί
into 91JC. We show that T is surjective. Let ax E 3ίx, ||αx|| < 1. Then
||έi + 5|| < c so there exists b E 3t such that ||α + ό|| < 2c. Then

- ax\\ =||(έi + 6)ΛJC - (α +

JC|| < K(2c)/4Kc - 1/2.

So by Lemma 3.1, T is subjective and therefore %x = ^Λx. But
SI A C ^, therefore Six = SI Ax C £x C 9ίx and equality holds.

We can identify lλ(G) as a closed ideal of M(G) by considering a
function/E L,(G) as the finite regular Borel measure f(x)dx. Further-
more, as is shown in Hewitt and Ross [7, 28.52], LX(G) has a bounded
approximate identity. We can now use Lemma 3.2 to extend Theorem 1.1
to M(G).

COROLLARY 3.1. (i) Let f E Lp(G), 1 < p < oo, / Φ 0. ΓAeπ M(G) * f
is not closed in L (G).

(ii) Lέ?ί / e C0(G). Then M(G) * f is not closed in C0(G).

Proof. It follows from the factorization theorem, Hewitt and Ross [7,
32.22], that LX{G) * Lp{G) = Lp{G) and Lλ(G) * C0(G) = C0(G). Also
since Λί(G) * LX{G) = L,(G) we get that

* C0(G) - M(G) * L,(G) * Q(G) - LX(G) * C0(G) - C0(G).

We apply Lemma 3.2 with 9t = M(G), ̂  = LX(G) and in (i) X - ^
1 < ^ < oo, and in (ii) X- C0(G) to conclude that if M(G) * /is closed
then so is LX(G) * /. But this is impossible by Theorem 1.1.

EXAMPLE 2.1. When/? = 1 and G — Z, we have Af(Z) = ^(Z), so as in
Example 1.1, Λf(Z) * δ0 = ^(Z), which is closed.
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4. Maps from Lp(G) into C0(G). In this section we consider the
closure of the range of operators from Lp{G) to C0(G), 1 <p < oo. These
operators are of the form 7̂ , convolution on the right by /, where
/ <Ξ Lp,(G\ and/(x) = /(x"1), p' = p/(l - p). It follows from (3) that Tj
is a bounded operator with domain Lp(G) and range C0(G).

THEOREM 4.1. Let 1 <p< oo,/?' = p/{\ -p) and f E Lp,(G), f =£ 0.
Then Lp{G) * f is not closed in C0(G).

Proof. The proof is a consequence of Corollary 3.1 (ii). The range of
the map Tfoΐ Lp(G) into C0(G) is Lp(G) * /. Suppose 7^has closed range.
Let β = 2/ {0} be a closed subspace of Lp(G) so as in the proof of
Theorem 1.1 the map Φ: Lp(G)/t -» C0(G) defined by Φ(g + β) = g * /
is a continuous one-to-one map of the Banach space Lp(G)/£ onto the
Banach subspace Lp(G) * /of C0(G). The open mapping theorem implies
that Φ is bicontinuous. Again as in the proof of Theorem 1.1 (Lp(G)/£)*
is isometrically isomorphic with the subspace £ x of Lp,(G), where t ± = {h
e ^ G ) : ( g , A ) = 0 for all g G £ ) . So the adjoint of Φ, Φ*, is a
bicontinuous map from [Lp(G) * / ] * onto E"1. Now consider the injection
map, /', of Lp(G) * /into C0(G). Since L^G) * /is closed, the adjoint of /,
i*, maps M(G) = (Q(G))* onto [L^G) * / ] * , see Hewitt and Ross [7,
E.8]. It follows that the composition map Φ* o ι*(μ) is a continuous map
of M(G) onto the closed subspace of Lp,{G). We compute Φ* © /*(μ) for a
fixed μ G M(G). Since Φ* o /*(μ) e ^ ( G ) and ̂ ( G ) = [^(G)]*, it's
enough to evaluate Φ* ° /*(μ) acting as a functional on an arbitrary g in
LP(G).

fg(x)Φ*oi*(μ)(χ) dx = ((g + β), i (μ))

= ffg(y)f{y'ιχ)dydμ(x)

= fg(y)[ff(χ'ιy)dfi(χ)jdy

= fg(y)(μ*fY(y)4y.
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Therefore Φ* ° i*(/ι) = /A * / a.e. However &1 is the range of Φ* ° i* so
the above computation shows that t ± = M(G) * / and this subspace is
closed in Lp,(G). By Corollary 3.1 (i) this is impossible. Therefore the
original assumption, that Lp(G) * / is closed in C0(G) can't hold. This
proves the theorem.

EXAMPLE 4.1. Formula (4) shows that if / G LJ^G) then the operator
Tf is a bounded linear operator from Lλ(G) to C(G). If we let / be
identically 1, then for g G L,(G), ψg)(x) = g * 1(JC) = jg(y) dy.
Therefore the range of T\, LX(G) * 1, is {a\: a G C} which is closed in
C(G).

Formula (5) shows that if / G LX(G) then the operator 7ps a bounded
linear operator from LJ^G) to C(G). Let G = Z and/ = δ0, point mass at
0. Then δ0 = δ0 and IJZ) = c(Z) so /JZ) * δ0 = c(Z) is closed.

5. Maps from Lp(G) into Lr(G). The last convolution formula is
(6). From it we see that if p, q > 1, 1//? + \/q — 1/r = 1 and/ G L^g)
Π [Z^(G)] , then Tf is a bounded operator from Lp(G) into Lr(G). We are
interested in whether these operators can have closed range. It will turn
out that if / ¥= 0, the range of Tf is not closed. Before proving this we need
a lemma which is similar in idea to Lemma 1.1, but the details of the
proof are somewhat different.

First note that since /?, q > 1, we have 2 — 1/r > \/p + \/q — 1/r
= 1 and so r > 1. Let/?', q' and r' be the conjugate exponents of/?, # and
r respectively. Let / G L^G) Π [L^(G)]~, / ^ 0, and let M = ^ ( G ) * /.
Then (6) implies that M C Lr(G). Also

\/p + 1/// + l/
?
 + 1/0' - 1/r - l/r

r
 = -1/r - \/r' = 1

and

\/p + \/q - 1/r - 1

imply that

I//*' + 1/*' ~ 1 A' = 0.

So

1/r + 1/g - \/p' - 1/0 + (1/r' - 1///) - 1/0 + \/q' = 1.

Therefore by applying (6) we get φ * / G Lp(G) for all φ G L^(G) and
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LEMMA 5.1. Let p, q and r be as above, f G Lq(G) Π [Lq(G)]\ fφ 0,
andM = Lp(G) * /. Then there exists {φn}™=ι C L'r{G) such that | |φJ|M* ->
oo and ||φM * f\\p, is bounded.

Proof. Fix n. We saw that M C Lr(G), so pick k G Λf, ||fc||r = 1. By
the Hahn-Banach Theorem, there exists h G Lr,(G), ||λ||Γ, = 1 such that
(k, h)= 1. The remarks before the statement of the lemma show that

/
such thatChoose k0 and g0 in

\\k-ko\\r<\/n and ||A * / - go\\p, <\\f\\/n.

By (3) h * fc G C0(G). Just as we did in the proof of Lemma 1.1, we can
pick xi9... ,xn in G such that:

(i) the supports of the functions x(k09 i— 1,...,«, are disjoint;
(ii) |Λ * /(^.x;1) |< l/n(n - 1) for / Φfr and

(iii) the supports of the functions xέg09 i = 1,... ,w, are disjoint.
Since 1//? + 1 - 1/r > \/p + \/q — 1/r = 1 we get that r >p and

so r' <p\ Let 5 be any number such that r' < s <p\ And let φM =
Σ" = 1 j~λ/sXjh. Then φn G M and

Σ ,̂ *» <pM
f<Pn{X) Σ ^

2 Γι/S[xjh(x)xjk(x)dx+ Σ (ij)'l/sfxih(x)xjk(x)dx
=\ J iφjj=\

y = 1

Since the supports of the χ.k0 are disjoint, and \\kQ\\r < 2 w e get

Xjk0

i=\

<2rn.
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Therefore as in the proof of Lemma 1.1,

y xi

< 1 + 2nλ'r < 3nι".

+
r

n

Σ;Cik0

We have Σ"=1 xtk G M since M is closed under left translation. So a lower
bound for HφJI^ can be computed by

IkL ^

The fact that τ(n) -* oo follows from the integral inequality.

and the fact that s > r' implies \/s + 1/r < 1.
NowinL (G),

wι<ψv
and

Σ y-

7 = 1

7 = 1

< 1 +

*f
p'

n

7 = 1

n

- * ,

n

1
j=

p'

1

' )

n

2

7 = 1

Since the supports of the Xjg are disjoint,

7 = 1

= y i-p'/s\\χ σ\\p <2p'\\fϊ y rp'/s

7 = 1 7=1
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Also since p'/s > 1 the series converges. Denote its limit by a. So we get

that

This bound is independent at n. Therefore keeping k and h fixed for all n,

and choosing appropriate xn...9xn we can construct φn with the desired

properties. This proves the lemma.

THEOREM 5.1. Let p, q> 1, \/p + \/q — 1/r = 1 and f G Lq(G) Π

[Lg(G)]\ f ¥= 0. Then Lp(G) * f is not closed in Lr(G).

Proof. The proof is identical to that of Theorem 1.1 (i) except here

Lp,{G) and M = Lp(G) * / C L£G). So if M were closed, Φ: Lp(G)/£ ->

M would be bicontinuous by the open mapping theorem and then so

would Φ*: M* -» t1- C Lp,(G). A similar computation to that in the proof

of Theorem 1.1 (i) shows that when h E L r,(G), Φ*(A) = h * /. But then

Lemma 5.1 shows that there exists {φn}™={ C Lr,(G) such that | |φ r t | | M * -> oo

but ||Φ*(φ/7)||/7, is bounded. This is impossible if Φ* is bicontinuous.

Therefore M can't be closed.

For an alternate way of stating Lemma 5.1, Theorem 5.1 and formula

(6) the reader is referred to the paper by B. Russo and A. Klein [8].
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