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MINIMAL NONCOMMUTATIVE VARIETIES AND
POWER VARIETIES
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A variety of finite monoids is a class of finite monoids closed under
taking submonoids, quotients and finite direct products. A language L is
a subset of a finitely generated free monoid. The variety theorem of
Eilenberg sets up a one to one correspondence between varieties of finite
monoids and classes of languages called, appropriately, varieties of
languages. Recent work in variety theory has been concerned with
relating operations on varieties of languages to operations on the corre-
sponding variety of monoids and vice versa. For example, passing from a
variety V of monoids to the variety PV generated by the power monoids
of members of V corresponds to the operations of inverse substitution
and literal morphism on varieties of languages. Recall that the power
monoid of a monoid M is the power set PM with the usual multiplication
of subsets. In this paper we consider iterating the operation which assigns
PV to V. We show in particular that P3V = P 4 V for any variety V and
that the exponent 3 is the best possible. In fact if V contains a
non-commutative monoid, then P3V is the variety of all finite monoids.

The proof of this theorem depends upon a classification of the
minimal noncommutative varieties. A variety is minimal noncommutative
if all its proper subvarieties contain only commutative monoids. We show
that such a variety is either generated by a noncommutative metabelian
group or by the syntactic monoid of one of the languages A*a, aA* or
{ab} over the alphabet A — {a, b).

Let L be a language over the finite alphabet A. The syntactic monoid
M(L) of L is the quotient of the free monoid A* by the largest congruence
such that L is a union of classes. L is said to be recognizable if M(L) is
finite. Syntactic monoids have been used extensively to classify recogniz-
able languages. For example, a language is rational if it can be obtained
from the letters of the alphabet by applying the operations union, con-
catenation and star (or submonoid generated) a finite number of times.
Kleene's theorem states that a language L is rational if and only if L is
recognizable. A language is star-free if L can be obtained from the letters
of A by applying the operations union, complement and concatenation a
finite number of times. Schϋtzenberger's theorem says that L is star-free if
and only if M(L) is a finite aperiodic monoid. That is every subgroup in
M(L) is trivial. These two important results are special cases of Eilenberg's
variety theorem. We refer the reader to the books by Eilenberg [1] and
Lallement [2] for details and many more examples.
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The study of the operation V -> PV and its relationship with language

theory appeared first in the work of Reutenauer [10] and Straubing [11].
In particular, Straubing asked whether P 2 V = P 3 V for every variety V

and proved that this is true if V is a variety of commutative monoids, a

result obtained independently by Perrot in [5]. In [6] it was proved that

P 4 V is the variety of all finite monoids, if V contains a noncommutative

monoid and thus P 4 V = P 5 V for every variety V. An example was also

given of a variety V for which P 2 V Φ P 3V. Thus the question remained

opened as to whether P 3 V = P 4 V for all varieties V. Our main result

settles this question.

In §2 we completely classify the minimal noncommutative varieties by

showing that such a variety is either generated by a noncommutative

metabelian group or by the syntactic monoid of one of the languages A*a,

aA* or {ab} over the alphabet A = [a, b}. After reviewing the power

variety operation in §3, we prove the result on the hierarchy P n V in §4.

We will see that the variety J of ^ trivial monoids plays an important role.

1. Some preliminaries. In this paper all monoids are finite, except

in the case of a free monoid A* over a finite alphabet A. All undefined

notions can be found in [1] or [2]. In particular, we assume knowledge of

the Green relations, the syntactic monoid M(L) of a language L, and the

elementary properties of varieties of finite monoids and varieties of

languages.

We will say that the monoid M recognizes a language L C A* if there

exists a morphism φ:A* -> M and a subset P of M such that L — Pφ'\ It

is well known that M recognizes L if and only if M(L) divides M (written

M{L)<M).

We now define some monoids which will play an important role in

what follows. Recall that U2 is the monoid consisting of two right zeroes

and an identity. JJ{ will denote the reverse of U2. For each n > 0, let

n — {0,...,«— 1}. Let BAn denote the monoid consisting of all partial

functions /: n -> n with the property that card(n/~ !) < 1, together with

the identity function on n. BA n is called the aperiodic Brandt monoid of

size n. Finally we let TV be the syntactic monoid of the language {ab} over

the alphabet A ~ [a, b). It is easy to see that the minimal automaton of

{ab} is given by:

and thus N divides BA?
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The importance of the monoid TV is given by the following result of

Pin. We will say that the language L is noncommutative if M(L) is a

noncommutative monoid. A word w G A* is multilinear if every a E A

occurs at most once in w.

PROPOSITION 1.1. Let V be a variety and let Ύ be the corresponding

variety of languages. The following conditions are equivalent.

( l ) J V G V
(2) CV contains a finite noncommutative language.

(3) A*Ύ contains all the languages {w} where w E A* is multilinear.

Proof. See [6].

The variety J consists of all monoids M such that for all m, n E M,

MmM — MnM implies m — n. A language L is piecewise testable if L is

contained in the Boolean closure of the languages A*a}A*a2 * anA*

where at E A i — 1,... ,n.

SIMON'S THEOREM. A language L is piecewise testable if and only if

M(L) E J.

2. Minimal noncommutative varieties. Recall that a group G is

metabelian if its derived group DG is abelian.

THEOREM 2.1. Let V be a variety of monoids. Then V is noncommutative

if and only if V contains a noncommutative metabelian group or one of the

monoids U2, U{ or N.

Recall that N is the syntactic monoid of the language {ab} over the

alphabet {a, b).

The proof of Theorem 2.1 will follow from a sequence of lemmata.

The following lemma is of independent interest.

LEMMA 2.2. Let G be a commutative group which is a tf)-class of a

semigroup S and let w, v E S. If G contains any two of u, v9 uv, vu, then

uv = vu is an element of G.

Proof. Let e be the identity of G. Clearly the result holds if w, v E G.

Assume that u, uv E G. Then uve E G so that vefye. Since G is a ^-class

it follows that ve E G. Therefore

uv = u(ve) = (ve)u = v(eu) = vu.
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If uv, vu E G, then euve, evue E G. As above it follows that ue, ve,
eu, ev E G. Therefore

uv — {eu)(ve) — (ve)(eu) = (eve)(eue) = wwe = t w.

The other cases follow by duality.

Proof of Theorem 2.1. If V contains a noncommutative group G, then
it contains (G), the variety generated by G. It follows from a theorem of S.
Oates [4, Theorem 21.4], that (G) contains a noncommutative metabelian
group. We remark that the proof is given for varieties in the sense of
Birkhoff, but that the proof works also for M-varieties. The proof follows
from a result of O. J. Schmidt which shows that a finite group, all of
whose subgroups are abelian, is metabelian [9, pg. 721]. Assume every
group in V is commutative and that U2, U{ and N are not in V. We will
show that V is a commutative variety. We first prove some properties of
members of V. Let T be in V.

LEMMA 2.3. Every regular ty-class of T is a commutative group.

Proof. Let D be a regular ^-class of T. Since U2 and U{ are not in V,
it follows that every ^class and every £-class of D contains exactly one
idempotent. Since N is not in V, BA 2 is not in V, since N < BA3 < BA2 X
BA2. It follows that D is a group. But every group in V is commutative
and the result follows.

LEMMA 2.4. Let w, t; E T. If uυ$lu(vuLu)9 then uv - vu.

Proof. We prove uvtflu implies uv = vu. The other case is dual. If u is
regular, then by Lemma 2.3 the Φ-class of u is a commutative group G.
Since w, uv E G, uv = vu by Lemma 2.2. Assume that u nonregular and
uv ^ vu. Let / be the ideal of T defined by / = {x E T9 x <$ u}9 and let
T = T/I. Let R be the submonoid of T X T generated by c = (u, v)
and y = (1, u) and let / = (Γ X 0) U (0 X T). We claim that N divides
R/(J Π R) — Rr. Indeed, since u is nonregular, uvu, u2 E / and therefore
x2 — y2 — Xyχ — yxy — o in R'. Moreover xy φyx and7* φ 0. Therefore
N is isomorphic to the quotient of R' by the ideal generated by xy. Thus
the claim holds and JVGV,a contradiction.

LEMMA 2.5. Green's relations % and j- coincide in T.
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Proof. Suppose that utfίuυ for some u, υ in T. Then uυ = vu by

Lemma 2.4 and therefore utυu — uv. Thus u%uv. This proves that

% = <&. Dually % = £ and thus DC = £.

Now, assume that V contains a noncommutative monoid S. Let a, b

in S be such that ab φ ba and let M be the submonoid of S generated by

a and b. Considering {a, b) as an alphabet, define 77: {a, b}* -> M by

aη = a and Z?η = &.

LEMMA 2.6. <?Z? w «<?/ $- related to ba in M.

Proof. By Lemma 2.5 it is sufficient to prove that ab is not % related

to ba in M. Assume ab%ba. Then it is well known that there exists a

group G in M with identity e, and g G G such that

= ba and δαg"1 = ab.

Since ab ¥= ba, gφ\. Therefore there exists w £ { ΰ , έ } + , such that

uη = e. If αZ> (fo?) is a factor of w, then ab%ba%e since

Therefore αfe, ba G G and αZ? = δα by Lemma 2.2.

We may assume then that u~ap (or bp) for some/? > 0.

It follows that

abap = αZ> and baap = Z?β

Consequently,

and by Lemma 2.4 we have

ab = (aba)ap~x = ap~\aba) = ap(ba) = ba

a contradiction.

LEMMA 2.7. If(ab)η~ι is infinite, then ab <^ ba in M.

Proof. If ba is a factor of some word w E (ab)η~\ then clearly

ab<$ba. Therefore, we may suppose that (ab)η'] Ca*b*. Choose an

integer/? > 0, such that both ap and bp are idempotents. Since (αδ)η"1 is

infinite, there exists anbm E (ab)η~ι such that n >p or m >p. Then

ab = tf"fcm =

Therefore, Lemma 2.4 implies that

= abap = ab, so that αό <^ ba in M.
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We can now complete the proof. Since ab is not £ related to ba by

Lemma 2.6, it follows that either (ab)η~ι or (ba)η~ι is finite by Lemma

2.7. Therefore M recognizes a finite noncommutative language and N E V

by Proposition 1.1. This is a contradiction and V is a commutative variety.

We remark that a similar result holds for varieties of semigroups. Let

5(1,2) (5(2,1)) be the two element right zero (left zero) semigroup.

THEOREM 2.8. Let V be a variety of semigroups. Then V is noncommuta-

tive if and only if V contains a noncommutative metablian group or one of

the semigroups 5(1,2), 5(2,1) or the syntactic semigroup of {ab} over the

alphabet {a, b}.

Proof. We need only adapt the proof of Theorem 2.1. The only

difficulty is in the proof of Lemma 2.4. It suffices to let x — (Λ, v) and

y = (uv, u) where h is such that uvh — u. The rest of the proof is

identical.

We close with two important corollaries.

COROLLARY 2.9. Let V be a noncommutative variety and let A be an

alphabet containing at least two distinct letters a and b. Then A*\ contains

either a language recognized by a noncommuative group or one of the

languages A*a, aA*, or {ab}.

Proof. Since t/2, U{ and N are the syntactic monoid of A*a, aA* and

{ab} respectively, the result follows.

COROLLARY 2.10. Let V be a variety of monoids. Then V is commuta-

tive iff every aperiodic monoid and every group in V are commuative.

Proof. This follows from the fact that U29 Ό{ and N are noncommuta-

tive aperiodic monoids.

3. A review of the operation V -> PV. In this section we review the

power variety construction and the corresponding operation on *-varie-

ties. In the next section we will use these results and the results of §2 to

show that P 3 V is the variety of all monoids if V is noncommutative.

If M is a monoid, then PM will denote the power monoid of M with

the usual multiplication of subsets. If V is a variety, then PV is the variety

generated by {PM \ M G V}.

The operation V -> PV on varieties of monoids corresponds to two

important operations on varieties of languages. Let A and 5 be alphabets.
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A morphism φ: B* -> A* is literal if Bφ C A. A morphism σ: 4̂* -

will be called a substitution. Let σ: Λ* -> P 5 * be a substitution. If

L E Pi?*, let Lσ"1 = {w E ^4* | wσ Π L =̂ 0 } . Thus we treat σ as a

relation σ: A* -* B* and take inverse images with respect to this relation.

If Ύ is a *-variety of languages, let A*AΎ be the Boolean algebra

generated by the languages of the form Lφ where L E B*Ύ ΐoτ some

alphabet B and φ: B* -> A* is a literal morphism. Let A*ΣΎ be the

Boolean algebra generated by languages of the form L σ 1 where L E B*Ύ

and σ: A* -» P 5 * is a substitution.

The following propositions summarize the work of Pin [6], Reutenauer

[9], and Straubing [11].

PROPOSITION 3.1. Let V be a variety of monoids and let Ύ be the

corresponding ̂ -variety. Then AΎ= ΣΎare *-varieties which correspond to

PV.

PROPOSITION 3.2. Let V be a variety of monoids and let Ύ be the

corresponding variety of languages. The following conditions are equivalent:

(1)V = PV.

(2)Ύ=ΛΎ.

(3) CV= ΣΎ.

4. The hierarchy PnV, Let V be a variety and for each n > 0, let
pn+iy = P ( p n V ) W e t h e n h a γ e Λ e h i e r a r c h y v C PV C P 2 V.. . . In [11]

Straubing asked whether this hierarchy is infinite for some variety V. He

conjectured that P 2V = P 3 V for any variety V and proved the following

result, obtained independently by Perrot in [5].

PROPOSITION 4.1. Let V be a commutative variety. Then P 2 V = P3V.

Furthermore, if V contains a nontrivial monoid, then PV = P 2V is the

variety of commutative monoids all of whose subgroups are in V.

In [6] Pin proved the following results.

PROPOSITION 4.2. //V is any noncommutative variety, then P4V is the

variety of all finite monoids.

COROLLARY 4.3. P 4V = P5V/or any variety V.

PROPOSITION 4.4. Let Rj be the variety of R-trivial idempotent mon-

oids. Then the varieties R1 ? PR 1 ? P
2 R 1 ? P 3 R i are distinct.
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We now begin the proof that P 3 V = M for any noncommutative

variety V.

PROPOSITION 4.5. Let V be the variety generated by N. Then PV = J.

Proof. It is shown in [6] that if Nil is the variety generated by monoids

M such that M — {1} is a nilpotent semigroup, then PNil C J. In particu-

lar PV c J.

Conversely, let A be a finite alphabet and let Ύ be the *-variety

corresponding to V. It suffices by Simon's theorem and Proposition 3.1 to

show that L = A*a}A*a2 anA* ε Λ ΣΎforα,. EA,i = 1,...,Λ.

Let B = {Z?l9. ..9bn] be an alphabet with n letters. Consider the

substitution σ: A* -> PB* defined by ac = {1} U {bt\a = α,}. But {ft,

• ftΛ} E i?*Ύ by Proposition 1.1 and an easy calculation shows that
L = {*i * * ̂ J σ " 1 e Λ * Σ % as desired.

COROLLARY 4.6. If \ is a variety which recognizes a finite noncommuta-

tive language, then J C PV.

Proof. Follows from Proposition 1.1 and 4.5.

The following is a result of Pin, Straubing, and Therien [8].

PROPOSITION 4.7. The variety generated by U{ (U2) is equal to the

variety Rt (R\).

Recall that Rx (R\) is the variety of idempotent and ^-trivial (&• triv-

ial) monoids.

PROPOSITION 4.8. The varieties P R t and PWι contain J .

Proof. We treat the case of V = Rj. The case of RΓj follows by duality.

It suffices by Simon's theorem and Proposition 3.1 to show that L =

A*axA*a2,...,anA* E A*AΎfor ai B A, ι = 1,...,«, and any finite al-

phabet A. To this end let B = {bl9... ,bn) be an w-letter alphabet and let

C — (c , , . . . ,cn) be a second w-letter alphabet disjoint from B. Let

K = C*bx{C U {bx))*b2 (C U {bx K_λ})*bn{C U B)*

and define the literal morphism φ: (B U C)* -> ̂ 4* by c, φ = btφ = a/5

1 < i < /i. Then L = ^Γφ, so we need only show that K E (B U C)*Ύ.
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An easy calculation shows that the minimal automaton of K is given

by:

a c u B

It follows that the syntactic monoid of K is a submonoid of the monoid

Mn of partial functions/,. s: (0 , . . . ,/ι} -> (0,...,«}, 0 < r < j < Λ, defined

by

f 5 if/*:<#:<£,

? if9>j,

undefined otherwise.

The multiplication in Mn is given by

ίi) / / Af" * i < r ' '
v ; Λ ' 5 J r ' y \fr%t if j > r ' and ί - max{s, s'}.

In particular, Mn is an idempotent monoid. Furthermore, iί frβlfr,s>,

then / r,5/ r,^ = / r V and /Λ s,/Γ f S = / Γ f J . It follows from (1) that /ΓιJ =fr,tS,

and thus M^ is ̂ trivial. Therefore, M ^ E R j and the proof is complete.

From Proposition 4.5 and 4.8 we deduce

THEOREM 4.9. //V is a non-commutative variety such that every group

in V is commutative, then J is contained in PV.

Proof. It follows from Theorem 2.1 that V contains either U29 U{ or

N. Therefore Propositions 4.5 and 4.8 imply the result.

We now give a necessary and sufficient condition for a variety V to be

such that PV is the variety M of all finite monoids. Recall that BA 2 is the

aperiodic Brandt monoid of size 2 and that DS is the variety of monoids

all of whose regular ^-classes are subsemigroups.

PROPOSITION 4.10. Let V be an M-variety. The following conditions are

equivalent.

(\)BA2 G V.

(2) PV = M.

(3) V is not contained in DS.

The implication (1) implies (2) was given in [6] where it was also

conjectured that Proposition 4.10 was true. The proof of Proposition 4.10

appears in [3].
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THEOREM 4.11 ([6]). If V contains a noncommutatiυe group, then

P2V = M.

In effect, it is shown that BA2 E PV and the result follows from
Proposition 4.10.

COROLLARY 4.12. //H is a variety of groups, then P 2 H = P 3H.

This follows immediately from Proposition 4.1 and Theorem 4.11.

PROPOSITION 4.13. P 2 J = M.

Proof. By Proposition 4.10 we need only show that PJ is not con-
tained in DS. To this end, let A = {a, b, c, d) and let B - {a, b). Let
K— (c, d}*ab{c, d}*. A straightforward calculation shows M(K) E J.
Define a literal morphism φ: A* -> 5* by aφ = bφ = a, cφ — α, dφ — b.
Then L = Kφ = B*a2B*. Therefore, M(L) G PJ by Proposition 3.1.
Another calculation shows that M(L) contains a ^-class with 4 3Gclasses
and 3 idempotents. Thus PJ is not contained in DS, as desired.

THEOREM 4.14. // V is a noncommutatiυe variety, then P3V is the
variety of all finite monoids.

Proof. By Theorem 2.1 V contains either a noncommutative group or
one of the monoids ί/2, U{ or N. The result now follows from Theorem
4.9, Theorem 4.11 and Proposition 4.13.

COROLLARY 4.15. P3V = P4V for any variety V.

Proof. Follows from Proposition 4.1 and Theorem 4.14.

Proposition 4.4 implies that the number 3 in Corollary 4.15 is the best
possible.

If M is a monoid, then Mn denotes the direct product of n copies of
M. Let P\M) be the monoid of nonempty subsets of M. If V is a variety,
then P'V is the variety generated by {P'(M)\M G\). The following
appear in [6].

LEMMA 4.16. Let M and N be monoids. Then P\M) X P\N) divides
P'(MXN).
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LEMMA 4.17. //V is a nontriυial variety, then P'V = PV.

PROPOSITION 4.18. Let G be a noncommutatiυe group and let M be a

monoid. There exists an integer n such that M divides P(P(Gn)).

We close with the following generalization.

PROPOSITION 4.19. Let N be a noncommutative monoid and let M be a

monoid. There exists an integer n such that M divides P(P(P(Nn))).

Proof. By Theorem 4.14, P 3 V = M where V is the variety generated

by N. It follows from Lemmata 4.16 and 4.17, that if M G P3V, then M

divides P(P{P{Nn))) for some n and the result follows.
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