DIOPHANTINE DETERMINATIONS OF $3^{(p-1) / 8}$ AND $5^{(p-1) / 4}$

Richard H. Hudson

Abstract

Let p be a prime $=24 f+1$. The author and Kenneth \mathbf{S}. Williams derived a criteria for 3 to be an eighth power $(\bmod p)$ in terms of the parameters in the Diophantine systems $a^{2}+b^{2}$ and $x^{2}+3 y^{2}$. A new proof of this result is given which uses Jacobi sums. This proof is simpler in that it does not require summing 36 cyclotomic numbers; moreover, it leads simultaneously to new necessary and sufficient criteria for $3^{(p-1) / 8}$ to be congruent to $b / a(\bmod p), a \equiv 1(\bmod 4), b>0$. Using this result, criteria for $3^{(p-1) / 8} \equiv 1, b / a,-1$, or $-b / a(\bmod p)$ are given in terms of the parameters in other well-known quadratic partitions of p or of $4 p$.

Let p be a prime $=20 f+1,16 p=x^{2}+50 u^{2}+50 v^{2}+125 w^{2}$, $x w=v^{2}-4 u v-u^{2}$. It is shown that $5^{(p-1) / 4} \equiv 1(\bmod p)$ if and only if $16 \mid w$ or $u v \equiv 2(\bmod 4)$. This result is of interest in relation to criteria given by Emma Lehmer for 2 to be a fifth power $(\bmod p)$ and for p to be a hyperartiad.

1. Introduction and preliminaries. For a prime $p=24 f+1$ we have the following quadratic partitions of p or of $4 p$:
(1) $p=a^{2}+b^{2}, a \equiv 1(\bmod 4)$,
(2) $p=c^{2}+2 d^{2}, c \equiv 1(\bmod 4)$,

$$
\begin{equation*}
p=x^{2}+3 y^{2}, x \equiv 1(\bmod 3) \tag{3}
\end{equation*}
$$

(4) $p=u^{2}+6 v^{2}, u \equiv 1(\bmod 4)$,
(5) $4 p=A^{2}+27 B^{2}, A \equiv 1(\bmod 3)$.

Using the law of octic reciprocity given by A. E. Western [8], the value of $3^{(p-1) / 8}$ has been given in terms of the Diophantine systems (1) and (2); specifically, we have
(a)

$$
3^{(p-1) / 8} \equiv 1(\bmod p) \Leftrightarrow \begin{cases}a \equiv c(\bmod 3) & \text { if } p \equiv 1(\bmod 48) \\ a \equiv-c(\bmod 3) & \text { if } p \equiv 25(\bmod 48)\end{cases}
$$

(b)

$$
3^{(p-1) / 8} \equiv b / a(\bmod p) \Leftrightarrow \begin{cases}b \equiv c(\bmod 3) & \text { if } p \equiv 1(\bmod 48) \\ b \equiv-c(\bmod 3) & \text { if } p \equiv 25(\bmod 48)\end{cases}
$$

Throughout we fix b to be positive in case (b), as in [1, p. 3.7], by fixing a primitive root $g(p)$ such that $g^{6 f} \equiv b / a(\bmod p)$ for $b>0$.

Using cyclotomic numbers of order 12 [9] and an index formula due to Muskat [7], Hudson and Williams [5] gave necessary and sufficient criteria for 3 to be an eighth power modulo p (case (a) above) in terms of the parameters in systems (1) and (3).

In this note we show that the Davenport-Hasse relation in a form given by Yamamoto [11] and certain relations between Jacobi sums of order 24 lead simultaneously to the result of Hudson and Williams [4] (and more neatly as the proof does not necessitate summing 36 cyclotomic numbers) and to a new criteria in case (b) (3 is not a fourth power (mod $p)$); see Theorem 1. Using this theorem, we obtain in this paper similar criteria in terms of parameters in (4) and (5), see Theorems 2 and 3. Finally, in (3.3) and Theorem 4, we delineate criteria for 5 to be a quartic residue $(\bmod p=20 f+1)$ in terms of the parameters in (3.1) in relation to Lehmer's [6] criteria for 2 to be a quintic residue.

As preliminaries, we require an easy modification of Wilson's theorem giving for a prime $p=m n f+1$,

$$
\begin{equation*}
m f!n f!\equiv(-1)^{m f-1} \equiv(-1)^{n f-1} \quad(\bmod p) \tag{1}
\end{equation*}
$$

Next, see, e.g. [5], for $1 \leq s<r \leq 23, p=24 f+1$, we have

$$
\begin{equation*}
\binom{r f}{s f} \equiv(-1)^{s f}\binom{(24-r+s) f}{s f} \quad(\bmod p) \tag{1.2}
\end{equation*}
$$

Finally, for a prime $p=m n f+1$ we have from the Davenport-Hasse relation in the form given by Yamamoto [11, p. 488] that

$$
\begin{equation*}
\left(n^{(p-1) / m}\right)^{t} \equiv \frac{n t f!\prod_{j=1}^{n-1}(m j f)!}{\prod_{j=0}^{n-1}(m j+t) f!} \quad(\bmod p) \tag{1.3}
\end{equation*}
$$

Our notation for Jacobi sums is as follows. Let χ_{24} be a character $(\bmod \mathrm{p})$ of order 24 , let $\phi_{24}=e^{2 \pi i / 24}$, and let g be a primitive root of p with $g^{f} \equiv \phi_{24}(\bmod \Omega)$ where Ω is a prime ideal divisor of p in $Q\left(\phi_{24}\right)$. For $x \neq 0(\bmod p)$, let ind ${ }_{g}(x)$ be the unique integer b such that $x \equiv g^{b}(\bmod$ $p), 0 \leq b \leq p-2$. Then the Jacobi sum $J_{24}(r, s)$ of order 24 is defined by

$$
J_{24}(r, s)=\sum_{x=0}^{p-1} \chi_{24}^{r}(x) \chi_{24}^{s}(1-x)=\sum_{x=2}^{p-1} \phi_{24}^{r \operatorname{rind}_{g}(x)+s \operatorname{ind}_{g}(1-x)}
$$

2. Diophantine determinations of $3^{(p-1) / 8}$.

Theorem 1. Let $p=24 f+1=a^{2}+b^{2}=x^{2}+3 y^{2}, a \equiv 1(\bmod 4)$, $b>0$. Then we have
(a) $3^{(p-1) / 8} \equiv 1(\bmod p) \Leftrightarrow\left\{\begin{array}{lll}a \equiv 1(\bmod 3) & \text { and } & y \equiv 0(\bmod 8), \\ a \equiv 2(\bmod 3) & \text { and } & y \equiv 4(\bmod 8),\end{array}\right.$
and
(b) $\quad 3^{(p-1) / 8} \equiv b / a(\bmod p) \Leftrightarrow\left\{\begin{array}{lll}b \equiv 1(\bmod 3) & \text { and } & y \equiv 0(\bmod 8) \\ b \equiv 2(\bmod 3) & \text { and } & y \equiv 4(\bmod 8) .\end{array}\right.$

Proof. From [5, Th. 15.1] we have
(2.1) $\binom{8 f}{2 f} \equiv\left\{\begin{array}{l}+1 \text { or }-1(\bmod p) \quad \text { according as } a \equiv 1 \text { or } 2(\bmod 3), \\ b / a \text { or }-b / a(\bmod p) \quad \text { according as } b \equiv 1 \text { or } 2(\bmod 3) .\end{array}\right.$

Moreover, it follows from Gauss [3] that

$$
\begin{equation*}
\binom{12 f}{6 f} \equiv 2 a(\bmod p) \quad \text { for } a \equiv 1(\bmod 4) . \tag{2.2}
\end{equation*}
$$

Using (1.1), (1.2), and (1.3) we have

$$
\begin{gathered}
2^{(p-1) / 4}=\left(2^{(p-1) / 12}\right)^{3} \equiv \frac{6 f!12 f!}{3 f!15 f!} \equiv \frac{\binom{18 f}{3 f}}{\binom{18 f}{6 f}} \equiv \frac{(-1)^{f}\binom{9 f}{3 f}}{\binom{12 f}{6 f}}\left(\bmod p^{\prime}\right), \\
3^{(p-1) / 8} \equiv \frac{3 f!8 f!16 f!}{f!9 f!17 f!} \equiv(-1)^{f} \frac{3 f!7 f!}{f!9 f!} \equiv(-1)^{f} \frac{\binom{7 f}{f}}{\binom{9 f}{3 f}},
\end{gathered}
$$

from which it follows that

$$
\begin{equation*}
\frac{\binom{7 f}{f}}{\binom{12 f}{6 f}} \equiv(-1)^{b / 4} 3^{(p-1) / 8} \quad(\bmod p) \tag{2.3}
\end{equation*}
$$

From Berndt [1, pp. 3.17, 3.25, 3.23] we have

$$
\begin{equation*}
(-1)^{b / 4+y / 4}=(-1)^{0 / 2} \quad \text { and } \quad J_{24}(1,7)=(-1)^{0 / 2} J_{24}(1,1) . \tag{2.4}
\end{equation*}
$$

Fixing a primitive root $g(p)$ so that $g^{6 f} \equiv b / a(\bmod p), b>0$, it follows from [10, Lemma 6] that

$$
\binom{8 f}{f} \equiv(-1)^{v / 2}\binom{2 f}{f} \equiv(-1)^{b / 4+y / 4}\binom{2 f}{f} \quad(\bmod p)
$$

But clearly $\binom{8 f}{f}\binom{7 f}{f}=\binom{2 f}{f}\binom{8 f}{2 f}$ so that, using (2.3),

$$
3^{(p-1) / 8} \equiv \frac{(-1)^{b / 2+y / 4}\binom{8 f}{2 f}}{\binom{12 f}{6 f}} \equiv\left\{\begin{array}{l}
(-1)^{y / 4}(\bmod p) \Leftrightarrow a \equiv 1(\bmod 3) \\
(-1)^{y / 4} b / a(\bmod p) \Leftrightarrow b \equiv 1(\bmod 3)
\end{array}\right.
$$

This completes the proof of Theorem 1.
Theorem 2. Let $p=24 f+1=a^{2}+b^{2}=u^{2}+6 v^{2}, a \equiv 1(\bmod 4)$, $b>0$. Then we have
(1) $\quad 3^{(p-1) / 8} \equiv 1(\bmod p) \Leftrightarrow \begin{cases}b \equiv 2 v(\bmod 8) & \text { and } a \equiv 1(\bmod 3), \\ b \equiv-2 v(\bmod 8) & \text { and } a \equiv 2(\bmod 3),\end{cases}$ and
(2) $\quad 3^{(p-1) / 8} \equiv b / a(\bmod p) \Leftrightarrow \begin{cases}b \equiv 2 v(\bmod 8) & \text { and } b \equiv 1(\bmod 3), \\ b \equiv-2 v(\bmod 8) & \text { and } b \equiv 2(\bmod 3) .\end{cases}$

Proof. Theorem 2 is an immediate consequence of Theorem 1 and the left-hand-side of (2.4).

Theorem 3. Let $p=24 f+1=a^{2}+b^{2}, a \equiv 1(\bmod 4)$ and $b>0$, $4 p=A^{2}+27 B^{2}$ with $A \equiv 1(\bmod 2)$. Then we have
(a) $3^{(p-1) / 8} \equiv 1(\bmod p) \Leftrightarrow \begin{cases}B \equiv \pm 3(\bmod 8) & \text { and } a \equiv(-1)^{f}(\bmod 3), \\ B \equiv \pm 1(\bmod 8) & \text { and } a \equiv(-1)^{f+1}(\bmod 3),\end{cases}$
(b)
$3^{(p-1) / 8} \equiv b / a(\bmod p) \Leftrightarrow \begin{cases}B \equiv \pm 3(\bmod 8) & \text { and } b \equiv(-1)^{f}(\bmod 3), \\ B \equiv \pm 1(\bmod 8) & \text { and } b \equiv(-1)^{f+1}(\bmod 3) .\end{cases}$
Proof. Not that $(-1)^{f}=+1 \Leftrightarrow x \equiv 1(\bmod 8)\left(\right.$ and $(-1)^{f}=-1 \Leftrightarrow x$ $\equiv 5(\bmod 8))$ as

$$
\begin{equation*}
x \equiv 1(\bmod 8) \Leftrightarrow x^{2}+3 y^{2} \equiv 1(\bmod 16) \tag{2.5}
\end{equation*}
$$

It is easily seen that

$$
\begin{array}{ll}
B= \pm \frac{1}{3}(x-y) & \text { if } y \equiv 1(\bmod 3) \tag{2.6}\\
B= \pm \frac{1}{3}(x+y) & \text { if } y \equiv 2(\bmod 3)
\end{array}
$$

Theorem 3 now follows from (2.5), (2.6), and Theorem 1.
Theorem 4. Let $p=24 f+1=a^{2}+b^{2}, a \equiv 1(\bmod 4)$ and $b>0$, $4 p=A^{2}+27 B^{2}$ with $A \equiv 0(\bmod 2)$. Then we have
(a) $\quad 3^{(p-1) / 8} \equiv 1(\bmod p) \Leftrightarrow \begin{cases}B \equiv 0(\bmod 16) & \text { and } a \equiv 1(\bmod 3), \\ B \equiv 8(\bmod 16) & \text { and } a \equiv 2(\bmod 3),\end{cases}$
(b) $\quad 3^{(p-1) / 8} \equiv b / a(\bmod p) \Leftrightarrow \begin{cases}B \equiv 0(\bmod 16) & \text { and } b \equiv 1(\bmod 3), \\ B \equiv 8(\bmod 16) & \text { and } b \equiv 2(\bmod 3) .\end{cases}$

Proof. As $B= \pm 2 y$ if $A \equiv 0(\bmod 2)$, we have $B \equiv 0(\bmod 16)$ if $y \equiv 0(\bmod 8)$ and $B \equiv 8(\bmod 16)$ if $y \equiv 4(\bmod 8)$ so that Theorem 4 follows from Theorem 1 .

Remark 1. Criteria (a) and (b) in Theorems 1 and 4 may be reformulated as

$$
3^{(p-1) / 8} \equiv(-1)^{y / 4+[a / 3]} \quad(\bmod p) \quad \text { if } 3 \mid b
$$

and

$$
3^{(p-1) / 8} \equiv(-1)^{y / 4+[b / 3]+1} b / a(\bmod p) \quad \text { if } 3 \mid a
$$

and for A even $\left(\Leftrightarrow 2^{(p-1) / 3} \equiv 1(\bmod p)\right)$ we have

$$
3^{(p-1) / 8} \equiv(-1)^{B / 8+[a / 3]} \quad(\bmod p) \quad \text { if } 3 \mid b
$$

and

$$
3^{(p-1) / 8} \equiv(-1)^{B / 8+[b / 3]+1} b / a(\bmod p) \quad \text { if } 3 \mid a
$$

Remark 2. Putting together the criteria in Theorem 1 and the criteria given at the beginning of this paper we see that the parameters c and y, $c \equiv 1(\bmod 4)$, are related for all primes $p=24 f+1=c^{2}+2 d^{2}=x^{2}+$ $3 y^{2}$ as follows:

$$
y \equiv 0(\bmod 8) \Leftrightarrow c \equiv(-1)^{f}(\bmod 3) .
$$

3. Criteria for 5 to be a fourth power $(\bmod p) . \quad$ Let $p=20 f+1=$ $a^{2}+b^{2}=e^{2}+f^{2}, a \equiv e \equiv 1(\bmod 4) ;$

$$
\begin{gather*}
16 p=x^{2}+50 u^{2}+50 v^{2}+125 w^{2}, \quad x \equiv 1 \quad(\bmod 5) \tag{3.1}\\
x w=v^{2}-4 u v-u^{2}
\end{gather*}
$$

Gauss [3] showed that $5^{(p-1) / 4} \equiv 1(\bmod p) \Leftrightarrow 5 \mid b$. Recently it has been shown, see $[2, \mathrm{p} .382]$, that $5^{(p-1) / 4} \equiv 1(\bmod p) \Leftrightarrow 2 \nmid e$, and that [4]

$$
5^{(p-1) / 4} \equiv 1(\bmod p) \Leftrightarrow \begin{cases}x \equiv 4 & (\bmod 8) \tag{3.2}\\ x \equiv \pm 2 w & (\bmod 8)\end{cases}
$$

Using results of Emma Lehmer [6] we show that (3.2) can be reformulated as

$$
\begin{equation*}
5^{(p-1) / 4} \equiv 1(\bmod p) \Leftrightarrow 16 \mid w \quad \text { or } \quad u v \equiv 2(\bmod 4) \tag{3.3}
\end{equation*}
$$

Embodied in (3.3) is considerably more information than in simpler criteria for 5 to be a fourth power $(\bmod p)$ as is seen by the following theorem.

Theorem 5. Let $p=20 f+1$ be a prime satisfying (3.1). Then we have
(a)

$$
5^{(p-1) / 4} \equiv 1(\bmod p) \quad \text { and } \quad 2^{(p-1) / 5} \equiv 1(\bmod p) \Leftrightarrow 16 \mid w
$$

(b)

$$
5^{(p-1) / 4} \equiv-1(\bmod p) \quad \text { and } \quad 2^{(p-1) / 5} \equiv 1(\bmod p) \Leftrightarrow 16 \mid x
$$

(c)

$$
5^{(p-1) / 4} \equiv 1(\bmod p) \quad \text { and } \quad 2^{(p-1) / 5} \not \equiv 1(\bmod p) \Leftrightarrow u v \equiv 2(\bmod 4)
$$

(d)

$$
5^{(p-1) / 4} \equiv-1(\bmod p) \quad \text { and } \quad 2^{(p-1) / 5} \neq 1(\bmod p) \Leftrightarrow 4 \mid u v
$$

(e) in case $(\mathrm{c}), 2 \mid v \Leftrightarrow x \equiv 3 w(\bmod 8)$ and $2 \mid u \Leftrightarrow x \equiv-3 w(\bmod 8)$.

Proof. To prove \Rightarrow in (a) note that from [6, p. 13] we have $x=4 a$ and $w=4 d, a \equiv-d(\bmod 2)$, so that $8 \mid w$ in view of (3.2); moreover, $u \equiv v \equiv 0$ $(\bmod 4)$, so that if $w \neq 0(\bmod 16)$ we have, since $x w=v^{2}-4 u v-u^{2}$, that $32 \equiv 16-0-16(\bmod 64)$, a clear impossibility. To prove \Leftarrow in (a) we have only to note that $16|w \Rightarrow 2| x$ and that $a \equiv-d(\bmod 2) \Rightarrow x \equiv 4$ $(\bmod 8)$. We omit the proof of (b) as it is entirely similar.

To prove (c) and (e) we note first that x odd and $x \equiv \pm 3 w(\bmod$ $8) \Leftrightarrow p-x^{2}-125 w^{2} \equiv 10(\bmod 16) \Leftrightarrow u^{2}+v^{2} \equiv 5(\bmod 8) \Leftrightarrow u v \equiv 2$ $(\bmod 4)$, proving (c). Then (e) follows easily from $x w=v^{2}-4 u v-u^{2}$. Finally $(\mathrm{c}) \Rightarrow(\mathrm{d})(u$ and v are of opposite parity as x is odd), completing the proof.

Example. Let $p=101$ so that $(-29,3,2,1)$ is a solution of (3.1). Since $u v \equiv 2(\bmod 4)$ and $2 \mid v$ we have $5^{(p-1) / 4} \equiv 1(\bmod p), 2^{(p-1) / 5} \neq 1$ $(\bmod p)$, and $x \equiv 3 w(\bmod 8)$.

References

[1] Bruce C. Berndt, Gauss and Jacobi sums, unpublished course notes, University of Illinois, Urbana, Illinois, 1978.
[2] Bruce C. Berndt and Ronald J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory, 11 (1979), 349-398.
[3] Carl Friedrich Gauss, Theoria residuorum biquadraticorum, Comment. I, Comment. Soc. Reg. Sci. Gottingensis rec., 6 (1828) (Werke, Göttingen, 1876).
[4] Richard H. Hudson and Kenneth S. Williams, Some new residuacity criteria, Pacific J. Math., 91 (1980), 135-143.
[5] __ Binomial coefficients and Jacobi sums, to appear in Trans. Amer. Math. Soc.
[6] Emma Lehmer, The quintic character of 2 and 3, Duke Math. J., 18 (1951), 11-18.
[7] Joseph B. Muskat, On the solvability of $x^{e} \equiv e(\bmod p)$, Pacific J. Math., 14 (1964), 257-260.
[8] A. E. Western, Some criteria for the residues of eighth and other powers, Proc. London Math. Soc., (2) 9 (1911), 244-272.
[9] A. L. Whiteman, The cyclotomic numbers of order 12, Acta Arith. 6 (1960), 53-76.
[10] , Theorems on Brewer and Jacobsthal sums. I, Proc. Sympos. Pure Math., 8 (1965), 44-55.
[11] Koichi Yamamoto, On a conjecture of Hasse concerning multiplicative relations of Gaussian sums, J. Combinatorial Theory Ser. A, 1 (1966), 476-489.

Received December 9, 1981. Research supported by Natural Sciences and Engineering Research Council Canada grant A-7233.

