DIOPHANTINE DETERMINATIONS OF $3^{(p-1)/8}$ AND $5^{(p-1)/4}$

RICHARD H. HUDSON

Let p be a prime = 24f + 1. The author and Kenneth S. Williams derived a criteria for 3 to be an eighth power (mod p) in terms of the parameters in the Diophantine systems $a^2 + b^2$ and $x^2 + 3y^2$. A new proof of this result is given which uses Jacobi sums. This proof is simpler in that it does not require summing 36 cyclotomic numbers; moreover, it leads simultaneously to new necessary and sufficient criteria for $3^{(p-1)/8}$ to be congruent to $b/a \pmod{p}$, $a \equiv 1 \pmod{4}$, b > 0. Using this result, criteria for $3^{(p-1)/8} \equiv 1$, b/a, -1, or $-b/a \pmod{p}$ are given in terms of the parameters in other well-known quadratic partitions of p or of 4p.

Let p be a prime = 20f + 1, $16p = x^2 + 50u^2 + 50v^2 + 125w^2$, $xw = v^2 - 4uv - u^2$. It is shown that $5^{(p-1)/4} \equiv 1 \pmod{p}$ if and only if $16 \mid w$ or $uv \equiv 2 \pmod{4}$. This result is of interest in relation to criteria given by Emma Lehmer for 2 to be a fifth power $(\mod p)$ and for p to be a hyperartiad.

1. Introduction and preliminaries. For a prime p = 24f + 1 we have the following quadratic partitions of p or of 4p:

(1)
$$p = a^2 + b^2, a \equiv 1 \pmod{4}$$
, (2) $p = c^2 + 2d^2, c \equiv 1 \pmod{4}$,
(3) $p = x^2 + 3y^2, x \equiv 1 \pmod{3}$, (4) $p = u^2 + 6v^2, u \equiv 1 \pmod{4}$,
(5) $4p = A^2 + 27B^2, A \equiv 1 \pmod{3}$.

Using the law of octic reciprocity given by A. E. Western [8], the value of $3^{(p-1)/8}$ has been given in terms of the Diophantine systems (1) and (2); specifically, we have

(a)

$$3^{(p-1)/8} \equiv 1 \pmod{p} \Leftrightarrow \begin{cases} a \equiv c \pmod{3} & \text{if } p \equiv 1 \pmod{48}, \\ a \equiv -c \pmod{3} & \text{if } p \equiv 25 \pmod{48}, \end{cases}$$

(b)

$$3^{(p-1)/8} \equiv b/a \pmod{p} \Leftrightarrow \begin{cases} b \equiv c \pmod{3} & \text{if } p \equiv 1 \pmod{48}, \\ b \equiv -c \pmod{3} & \text{if } p \equiv 25 \pmod{48}. \end{cases}$$

Throughout we fix b to be positive in case (b), as in [1, p. 3.7], by fixing a primitive root g(p) such that $g^{6f} \equiv b/a \pmod{p}$ for b > 0.

Using cyclotomic numbers of order 12 [9] and an index formula due to Muskat [7], Hudson and Williams [5] gave necessary and sufficient criteria for 3 to be an eighth power modulo p (case (a) above) in terms of the parameters in systems (1) and (3).

In this note we show that the Davenport-Hasse relation in a form given by Yamamoto [11] and certain relations between Jacobi sums of order 24 lead simultaneously to the result of Hudson and Williams [4] (and more neatly as the proof does not necessitate summing 36 cyclotomic numbers) and to a new criteria in case (b) (3 is not a fourth power (mod p)); see Theorem 1. Using this theorem, we obtain in this paper similar criteria in terms of parameters in (4) and (5), see Theorems 2 and 3. Finally, in (3.3) and Theorem 4, we delineate criteria for 5 to be a quartic residue (mod p = 20f + 1) in terms of the parameters in (3.1) in relation to Lehmer's [6] criteria for 2 to be a quintic residue.

As preliminaries, we require an easy modification of Wilson's theorem giving for a prime p = mnf + 1,

(1)
$$mf!nf! \equiv (-1)^{mf-1} \equiv (-1)^{nf-1} \pmod{p}.$$

Next, see, e.g. [5], for $1 \le s < r \le 23$, p = 24f + 1, we have

(1.2)
$$\binom{rf}{sf} \equiv (-1)^{sf} \binom{(24-r+s)f}{sf} \pmod{p}.$$

Finally, for a prime p = mnf + 1 we have from the Davenport-Hasse relation in the form given by Yamamoto [11, p. 488] that

(1.3)
$$(n^{(p-1)/m})^t \equiv \frac{ntf ! \prod_{j=1}^{n-1} (mjf)!}{\prod_{j=0}^{n-1} (mj+t)f!} \pmod{p}.$$

Our notation for Jacobi sums is as follows. Let χ_{24} be a character (mod p) of order 24, let $\phi_{24} = e^{2\pi i/24}$, and let g be a primitive root of p with $g^f \equiv \phi_{24} \pmod{\Omega}$ where Ω is a prime ideal divisor of p in $Q(\phi_{24})$. For $x \neq 0 \pmod{p}$, let $\operatorname{ind}_g(x)$ be the unique integer b such that $x \equiv g^b \pmod{p}$, $0 \leq b \leq p - 2$. Then the Jacobi sum $J_{24}(r, s)$ of order 24 is defined by

$$J_{24}(r,s) = \sum_{x=0}^{p-1} \chi_{24}^{r}(x) \chi_{24}^{s}(1-x) = \sum_{x=2}^{p-1} \phi_{24}^{r \operatorname{ind}_{g}(x)+s \operatorname{ind}_{g}(1-x)}.$$

2. Diophantine determinations of $3^{(p-1)/8}$.

THEOREM 1. Let $p = 24f + 1 = a^2 + b^2 = x^2 + 3y^2$, $a \equiv 1 \pmod{4}$, b > 0. Then we have

(a)
$$3^{(p-1)/8} \equiv 1 \pmod{p} \Leftrightarrow \begin{cases} a \equiv 1 \pmod{3} & and \quad y \equiv 0 \pmod{8}, \\ a \equiv 2 \pmod{3} & and \quad y \equiv 4 \pmod{8}, \end{cases}$$

and

(b)
$$3^{(p-1)/8} \equiv b/a \pmod{p} \Leftrightarrow \begin{cases} b \equiv 1 \pmod{3} & and \quad y \equiv 0 \pmod{8} \\ b \equiv 2 \pmod{3} & and \quad y \equiv 4 \pmod{8}. \end{cases}$$

Proof. From [5, Th. 15.1] we have

(2.1)
$$\binom{8f}{2f} \equiv \begin{cases} +1 \text{ or } -1 \pmod{p} & \text{according as } a \equiv 1 \text{ or } 2 \pmod{3}, \\ b/a \text{ or } -b/a \pmod{p} & \text{according as } b \equiv 1 \text{ or } 2 \pmod{3}. \end{cases}$$

Moreover, it follows from Gauss [3] that

(2.2)
$$\binom{12f}{6f} \equiv 2a \pmod{p}$$
 for $a \equiv 1 \pmod{4}$.

Using (1.1), (1.2), and (1.3) we have

$$2^{(p-1)/4} = (2^{(p-1)/12})^3 \equiv \frac{6f!12f!}{3f!15f!} \equiv \frac{\binom{18f}{3f}}{\binom{18f}{6f}} \equiv \frac{(-1)^f\binom{9f}{3f}}{\binom{12f}{6f}} \pmod{p},$$

$$3^{(p-1)/8} \equiv \frac{3f!8f!16f!}{f!9f!17f!} \equiv (-1)^f \frac{3f!7f!}{f!9f!} \equiv (-1)^f \frac{\binom{7f}{f}}{\binom{9f}{3f}},$$

from which it follows that

(2.3)
$$\frac{\binom{7f}{f}}{\binom{12f}{6f}} \equiv (-1)^{b/4} 3^{(p-1)/8} \pmod{p}$$

From Berndt [1, pp. 3.17, 3.25, 3.23] we have

(2.4)
$$(-1)^{b/4+y/4} = (-1)^{v/2}$$
 and $J_{24}(1,7) = (-1)^{v/2} J_{24}(1,1)$.

Fixing a primitive root g(p) so that $g^{6f} \equiv b/a \pmod{p}$, b > 0, it follows from [10, Lemma 6] that

$$\binom{8f}{f} \equiv (-1)^{\nu/2} \binom{2f}{f} \equiv (-1)^{b/4+y/4} \binom{2f}{f} \pmod{p}.$$

But clearly $\binom{8f}{f}\binom{7f}{f} = \binom{2f}{f}\binom{8f}{2f}$ so that, using (2.3),

$$3^{(p-1)/8} \equiv \frac{(-1)^{b/2+y/4} \binom{8f}{2f}}{\binom{12f}{6f}} \equiv \begin{cases} (-1)^{y/4} \pmod{p} \Leftrightarrow a \equiv 1 \pmod{3}, \\ (-1)^{y/4} b/a \pmod{p} \Leftrightarrow b \equiv 1 \pmod{3}. \end{cases}$$

This completes the proof of Theorem 1.

THEOREM 2. Let $p = 24f + 1 = a^2 + b^2 = u^2 + 6v^2$, $a \equiv 1 \pmod{4}$, b > 0. Then we have

(1)
$$3^{(p-1)/8} \equiv 1 \pmod{p} \Leftrightarrow \begin{cases} b \equiv 2v \pmod{8} & \text{and } a \equiv 1 \pmod{3}, \\ b \equiv -2v \pmod{8} & \text{and } a \equiv 2 \pmod{3}, \end{cases}$$

and

(2)
$$3^{(p-1)/8} \equiv b/a \pmod{p} \Leftrightarrow \begin{cases} b \equiv 2v \pmod{8} & and \ b \equiv 1 \pmod{3}, \\ b \equiv -2v \pmod{8} & and \ b \equiv 2 \pmod{3}. \end{cases}$$

Proof. Theorem 2 is an immediate consequence of Theorem 1 and the left-hand-side of (2.4).

THEOREM 3. Let $p = 24f + 1 = a^2 + b^2$, $a \equiv 1 \pmod{4}$ and b > 0, $4p = A^2 + 27B^2$ with $A \equiv 1 \pmod{2}$. Then we have

(a)
$$3^{(p-1)/8} \equiv 1 \pmod{p} \Leftrightarrow \begin{cases} B \equiv \pm 3 \pmod{8} & \text{and } a \equiv (-1)^f \pmod{3}, \\ B \equiv \pm 1 \pmod{8} & \text{and } a \equiv (-1)^{f+1} \pmod{3}, \end{cases}$$

(b)

$$3^{(p-1)/8} \equiv b/a \pmod{p} \Leftrightarrow \begin{cases} B \equiv \pm 3 \pmod{8} & \text{and } b \equiv (-1)^f \pmod{3}, \\ B \equiv \pm 1 \pmod{8} & \text{and } b \equiv (-1)^{f+1} \pmod{3}. \end{cases}$$

Proof. Not that $(-1)^f = +1 \Leftrightarrow x \equiv 1 \pmod{8}$ (and $(-1)^f = -1 \Leftrightarrow x \equiv 5 \pmod{8}$) as

(2.5)
$$x \equiv 1 \pmod{8} \Leftrightarrow x^2 + 3y^2 \equiv 1 \pmod{16}.$$

It is easily seen that

(2.6)
$$B = \pm \frac{1}{3}(x - y) \quad \text{if } y \equiv 1 \pmod{3}, \\ B = \pm \frac{1}{3}(x + y) \quad \text{if } y \equiv 2 \pmod{3}.$$

Theorem 3 now follows from (2.5), (2.6), and Theorem 1.

THEOREM 4. Let $p = 24f + 1 = a^2 + b^2$, $a \equiv 1 \pmod{4}$ and b > 0, $4p = A^2 + 27B^2$ with $A \equiv 0 \pmod{2}$. Then we have

(a)
$$3^{(p-1)/8} \equiv 1 \pmod{p} \Leftrightarrow \begin{cases} B \equiv 0 \pmod{16} & \text{and } a \equiv 1 \pmod{3}, \\ B \equiv 8 \pmod{16} & \text{and } a \equiv 2 \pmod{3}, \end{cases}$$

(b)
$$3^{(p-1)/8} \equiv b/a \pmod{p} \Leftrightarrow \begin{cases} B \equiv 0 \pmod{16} & and \ b \equiv 1 \pmod{3}, \\ B \equiv 8 \pmod{16} & and \ b \equiv 2 \pmod{3}. \end{cases}$$

Proof. As $B = \pm 2y$ if $A \equiv 0 \pmod{2}$, we have $B \equiv 0 \pmod{16}$ if $y \equiv 0 \pmod{8}$ and $B \equiv 8 \pmod{16}$ if $y \equiv 4 \pmod{8}$ so that Theorem 4 follows from Theorem 1.

REMARK 1. Criteria (a) and (b) in Theorems 1 and 4 may be reformulated as

$$3^{(p-1)/8} \equiv (-1)^{y/4 + [a/3]} \pmod{p}$$
 if $3 \mid b$

and

$$3^{(p-1)/8} \equiv (-1)^{y/4 + [b/3] + 1} b/a \pmod{p}$$
 if $3 \mid a$,

and for A even ($\Leftrightarrow 2^{(p-1)/3} \equiv 1 \pmod{p}$) we have

$$3^{(p-1)/8} \equiv (-1)^{B/8 + [a/3]} \pmod{p}$$
 if $3 \mid b$

and

$$3^{(p-1)/8} \equiv (-1)^{B/8 + [b/3] + 1} b/a \pmod{p} \quad \text{if } 3 \mid a.$$

REMARK 2. Putting together the criteria in Theorem 1 and the criteria given at the beginning of this paper we see that the parameters c and y, $c \equiv 1 \pmod{4}$, are related for all primes $p = 24f + 1 = c^2 + 2d^2 = x^2 + 3y^2$ as follows:

$$y \equiv 0 \pmod{8} \Leftrightarrow c \equiv (-1)^f \pmod{3}.$$

3. Criteria for 5 to be a fourth power (mod *p*). Let $p = 20f + 1 = a^2 + b^2 = e^2 + f^2$, $a \equiv e \equiv 1 \pmod{4}$;

(3.1)
$$16p = x^2 + 50u^2 + 50v^2 + 125w^2$$
, $x \equiv 1 \pmod{5}$,
 $xw = v^2 - 4uv - u^2$.

Gauss [3] showed that $5^{(p-1)/4} \equiv 1 \pmod{p} \Leftrightarrow 5 | b$. Recently it has been shown, see [2, p. 382], that $5^{(p-1)/4} \equiv 1 \pmod{p} \Leftrightarrow 2 \nmid e$, and that [4]

(3.2)
$$5^{(p-1)/4} \equiv 1 \pmod{p} \Leftrightarrow \begin{cases} x \equiv 4 \pmod{8}, \\ \text{or} \\ x \equiv \pm 2w \pmod{8}. \end{cases}$$

Using results of Emma Lehmer [6] we show that (3.2) can be reformulated as

$$(3.3) \qquad 5^{(p-1)/4} \equiv 1 \pmod{p} \Leftrightarrow 16 \mid w \quad \text{or} \quad uv \equiv 2 \pmod{4}.$$

Embodied in (3.3) is considerably more information than in simpler criteria for 5 to be a fourth power (mod p) as is seen by the following theorem.

THEOREM 5. Let p = 20f + 1 be a prime satisfying (3.1). Then we have (a) $5^{(p-1)/4} \equiv 1 \pmod{p}$ and $2^{(p-1)/5} \equiv 1 \pmod{p} \Leftrightarrow 16 | w$, (b) $5^{(p-1)/4} \equiv -1 \pmod{p}$ and $2^{(p-1)/5} \equiv 1 \pmod{p} \Leftrightarrow 16 | x$, (c) $5^{(p-1)/4} \equiv 1 \pmod{p}$ and $2^{(p-1)/5} \not\equiv 1 \pmod{p} \Leftrightarrow uv \equiv 2 \pmod{4}$, (d) $5^{(p-1)/4} \equiv -1 \pmod{p}$ and $2^{(p-1)/5} \not\equiv 1 \pmod{p} \Leftrightarrow 4 | uv$; (e) in case (c), $2 | v \Leftrightarrow x \equiv 3w \pmod{8}$ and $2 | u \Leftrightarrow x \equiv -3w \pmod{8}$.

Proof. To prove \Rightarrow in (a) note that from [6, p. 13] we have x = 4a and w = 4d, $a \equiv -d \pmod{2}$, so that 8 | w in view of (3.2); moreover, $u \equiv v \equiv 0 \pmod{4}$, so that if $w \not\equiv 0 \pmod{16}$ we have, since $xw = v^2 - 4uv - u^2$, that $32 \equiv 16 - 0 - 16 \pmod{64}$, a clear impossibility. To prove \leftarrow in (a) we have only to note that $16 | w \Rightarrow 2 | x$ and that $a \equiv -d \pmod{2} \Rightarrow x \equiv 4 \pmod{8}$. We omit the proof of (b) as it is entirely similar.

To prove (c) and (e) we note first that x odd and $x \equiv \pm 3w \pmod{8}$ $(mod 8) \Leftrightarrow p - x^2 - 125w^2 \equiv 10 \pmod{16} \Leftrightarrow u^2 + v^2 \equiv 5 \pmod{8} \Leftrightarrow uv \equiv 2 \pmod{4}$, proving (c). Then (e) follows easily from $xw = v^2 - 4uv - u^2$. Finally (c) \Rightarrow (d) (u and v are of opposite parity as x is odd), completing the proof.

EXAMPLE. Let p = 101 so that (-29, 3, 2, 1) is a solution of (3.1). Since $uv \equiv 2 \pmod{4}$ and 2 | v we have $5^{(p-1)/4} \equiv 1 \pmod{p}$, $2^{(p-1)/5} \not\equiv 1 \pmod{p}$, and $x \equiv 3w \pmod{8}$.

References

- [1] Bruce C. Berndt, *Gauss and Jacobi sums*, unpublished course notes, University of Illinois, Urbana, Illinois, 1978.
- [2] Bruce C. Berndt and Ronald J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory, 11 (1979), 349–398.
- [3] Carl Friedrich Gauss, *Theoria residuorum biquadraticorum*, Comment. I, Comment. Soc. Reg. Sci. Gottingensis rec., 6 (1828) (Werke, Göttingen, 1876).
- [4] Richard H. Hudson and Kenneth S. Williams, Some new residuacity criteria, Pacific J. Math., 91 (1980), 135-143.
- [5] _____, Binomial coefficients and Jacobi sums, to appear in Trans. Amer. Math. Soc.
- [6] Emma Lehmer, The quintic character of 2 and 3, Duke Math. J., 18 (1951), 11–18.
- [7] Joseph B. Muskat, On the solvability of $x^e \equiv e \pmod{p}$, Pacific J. Math., 14 (1964), 257–260.
- [8] A. E. Western, Some criteria for the residues of eighth and other powers, Proc. London Math. Soc., (2) 9 (1911), 244–272.
- [9] A. L. Whiteman, The cyclotomic numbers of order 12, Acta Arith. 6 (1960), 53-76.
- [10] _____, Theorems on Brewer and Jacobsthal sums. I, Proc. Sympos. Pure Math., 8 (1965), 44-55.
- [11] Koichi Yamamoto, On a conjecture of Hasse concerning multiplicative relations of Gaussian sums, J. Combinatorial Theory Ser. A, 1 (1966), 476-489.

Received December 9, 1981. Research supported by Natural Sciences and Engineering Research Council Canada grant A-7233.

UNIVERSITY OF SOUTH CAROLINA COLUMBIA, SC 29208