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DIOPHANTINE DETERMINATIONS OF

RICHARD H. HUDSON

Let/? be a prime = 24/ + 1. The author and Kenneth S. Williams
derived a criteria for 3 to be an eighth power (mod p) in terms of the
parameters in the Diophantine systems a2 + b2 and x2 + 3y2. A new
proof of this result is given which uses Jacobi sums. This proof is simpler
in that it does not require summing 36 cyclotomic numbers; moreover, it
leads simultaneously to new necessary and sufficient criteria for 3 ( / ? ~ 1 ) / 8

to be congruent to b/a (mod p), a = 1 (mod 4), b > 0. Using this result,
criteria for 3 ( / J ~ 1 ) / 8 = 1, b/a, -1 , or -b/a (mod/?) are given in terms
of the parameters in other well-known quadratic partitions of/? or of 4/?.

Let p be a prime = 20/ + 1, 16/? = x2 + 50w2 + 50ϋ2 + 125w2,
xw — v2 — 4uv — u2. It is shown that 5(p~1)/4 = 1 (mod/?) if and only
if 161 w or uυ = 2 (mod 4). This result is of interest in relation to criteria
given by Emma Lehmer for 2 to be a fifth power (mod p) and for p to be
a hyperartiad.

1. Introduction and preliminaries. For a prime p — 24/ + 1 we

have the following quadratic partitions oίp or of 4/?:

(1) p = a2+ b\a = \ (mod 4), (2) p = c2 + 2d\ c = 1 (mod 4),

(3) p = x2 + 3y2,x = \{mod3), (4) p = u2 + 6v2, u = 1 (mod 4),

(5) 4p = A2 + 2ΊB2,A = 1 (mod 3).

Using the law of octic reciprocity given by A. E. Western [8], the

value of 3(p~l)/s has been given in terms of the Diophantine systems (1)

and (2); specifically, we have

(a)

3(,-n/8 = ! ( m o d p ) \a = c {mod 3) up = 1 (mod 48),

(b)

ΈΞc ^ m o d 3 ) i f P Ξ

Throughout we fix b to be positive in case (b), as in [1, p. 3.7], by fixing a

primitive root g(p) such that g6f = b/a (mod/?) for b > 0.
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Using cyclotomic numbers of order 12 [9] and an index formula due
to Muskat [7], Hudson and Williams [5] gave necessary and sufficient
criteria for 3 to be an eighth power modulo p (case (a) above) in terms of
the parameters in systems (1) and (3).

In this note we show that the Davenport-Hasse relation in a form
given by Yamamoto [11] and certain relations between Jacobi sums of
order 24 lead simultaneously to the result of Hudson and Williams [4]
(and more neatly as the proof does not necessitate summing 36 cyclotomic
numbers) and to a new criteria in case (b) (3 is not a fourth power (mod
/?)); see Theorem 1. Using this theorem, we obtain in this paper similar
criteria in terms of parameters in (4) and (5), see Theorems 2 and 3.
Finally, in (3.3) and Theorem 4, we delineate criteria for 5 to be a quartic
residue (mod p = 20/+ 1) in terms of the parameters in (3.1) in relation
to Lehmer's [6] criteria for 2 to be a quintic residue.

As preliminaries, we require an easy modification of Wilson's theorem
giving for a prime/? = mnf + 1,

(1) mf\nf\ = {-\)mί-χ={-\)nί-χ (mod/,)-

Next, see, e.g. [5], for 1 < s < r < 23, p = 24/ + 1, we have

(L2) $m{.^r+.η (mod,,

Finally, for a prime p = mnf + 1 we have from the Davenport-Hasse
relation in the form given by Yamamoto [11, p. 488] that

< - " > •

Our notation for Jacobi sums is as follows. Let χ 2 4 be a character
(mod p) of order 24, let φ2 4 = e2wi/2A

9 and let g be a primitive root of/?
with gf ~ φ24 (mod Ω) where Ω is a prime ideal divisor of/? in β(Φ2 4). F°Γ

x ? 0 (mod /?), let ind^(x) be the unique integer b such that x = gb (mod
p)9 0 < 6 < / ? — 2. Then the Jacobi sum J24(r, s) of order 24 is defined by

Jvir, s) = P2 Xr24(*)X24(l " *) = *Σ
x=0 x—2
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2. Diophantine determinations of 3(p~1)/8.

THEOREM 1. Let p = 24/ + 1 = a2 + b2 = x2 + 3y2, a ΞΞ 1 (mod 4),

b > 0. Then we have

(a) 3

(b) 3^^ ^ b/a (mod P)J^lΓΛ , ί \
w / v .p; [ft = 2 (mod 3) α«ί/ yΞ4(mod8).

Proof. From [5, Th. 15.1] we have

/8/\ ί + lor-1 (mod/;) according as a Ξ 1 or 2 (mod 3),

^ \ If) ~\b/a or -ft/α (modp) according as b = 1 or 2 (mod 3).

Moreover, it follows from Gauss [3] that

(2.2) I ] Y = 2a (modp) for α Ξ 1 (mod 4).

Using (1.1), (1.2), and (1.3) we have

( P h
l8/\ " [12/

// U/
(7/

3 r .-n/8-3/!8/H6/!_ f n / 3 / ! 7 / ! _ f y I / /
~/!9/!17/! ~ V u /!9/! ~ V ' / 9/\ '

from which it follows that

7/(j
(2.3) -LZL=(_i)»/43(,-.)/8 ( m o d / ? ) .

6/

From Berndt [1, pp. 3.17, 3.25, 3.23] we have

(2.4) (-i)»/«+>/« = (-i) * 2 and /24(1,7) = (-l)ϋ/2/24(l, 1).
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Fixing a primitive root g(p) so that g6f = b/a (mod /?), 6 > 0, it follows
from [10, Lemma 6] that

(mod/;).

But clearly (8/)(7/) = ( 2 /)(#) so that, using (2.3),

„,.-„/, _ ( - 1 ) V 2 + " / 4 ( 2/) _ \(-\Y/4 (mod/;) ~ β = 1 (mod 3),

a (mod/?) ** b = \ (mod 3).
6/

This completes the proof of Theorem 1.

THEOREM 2. Let p = 24/ + 1 = a2 + b2 = w2 + 6ι;2, α = 1 (mod 4),

b > 0. ΓΛe« we Λflf e

= 2 (mod 3),

(2) ϊ?-^ = b/a (mod p)J \ }
K) σ/aKπvup) | f e Ξ _ 2 ϋ ( m o d 8 ) flWj 6 = 2 (mod 3).

Proof. Theorem 2 is an immediate consequence of Theorem 1 and the
left-hand-side of (2.4).

THEOREM 3. Let p = 24/ + 1 = a2 + b2, a = 1 (mod 4) and b>0,

4/7 = A2 + 2ΊB2 with A = 1 (mod 2). ΓΛe/ί we Λαυe

^ 1 (mod,) {
{Bs±](moάS)

(b)

ϋ = ± l (mod 8) andb=(-iy (mod 3).

/. Not that ( - l ) / = +1 *»x Ξ= 1 (mod 8) (and ( - l ) / = -1 *»x
Ξ 5 (mod 8)) as

(2.5) x = 1 (mod 8) ~ x2 + 3 j 2 = 1 (mod 16).
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It is easily seen that

B=±ϊ(x-y) if̂ Ξ

B= ±±(χ+y) ifjμ = 2(mod3).

Theorem 3 now follows from (2.5), (2.6), and Theorem 1.

THEOREM 4. Let p = 24/+ 1 = a2 + b2, a = 1 (mod 4) and Z> > 0 ,

4/7 = A2 + 2752 wiίA Λ = 0 (mod 2). ΓΛew we Λαt e

= 1 (mod 3),

, x , ,wR / x ί 5 = 0 (mod 16) andb = \ (mod 3),

(b) 3d- '»/• = */β (-»d,) - 1 ^ { \ l
Proof. As B = ± 2 ^ if ^ = 0 (mod 2), we have 5 = 0 (mod 16) if

y = 0 (mod 8) and 5 = 8 (mod 16) if y = 4 (mod 8) so that Theorem 4
follows from Theorem 1.

REMARK 1. Criteria (a) and (b) in Theorems 1 and 4 may be refor-
mulated as

(mod/7) i f 3 | 6

and

3<#>-D/8 = ( - \ y / 4 + [ b / 3 ] + x b / a ( m o d p ) if 3\a9

and for 4̂ even (<=> 2(/?~1)/3 Ξ 1 (mod/?)) we have

^ - D / ^ ^ j W / 3 ] (mod/7) if3|ft

and

3<'-W=(-l)B/t+lb/3]+ιb/a(modp) if 3 |α.

REMARK 2. Putting together the criteria in Theorem 1 and the criteria
given at the beginning of this paper we see that the parameters c and y9

c = 1 (mod 4), are related for all primesp = 24/ + 1 = c2 + 2d2 = x2 +
3y2 as follows:

y = 0 (mod 8) ~ c =(- l) 7 (mod 3).
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3. Criteria for 5 to be a fourth power (mod /?). Let p = 20/ + 1 =

a2 + b2 = e2 + / 2 , a = e = 1 (mod 4);

(3.1) 16/7 = x 2 + 50w2 + 50ι>2 + 125w2, x = 1 (mod 5),

xw — v2 — 4uv — u2.

Gauss [3] showed that 5 ( / 7 ~ 1 ) / 4 = 1 (mod p) <=> 5 |6. Recently it has

been shown, see [2, p. 382], that 5 ( / 7 ~ 1 ) / 4 = 1 (modp) <=* 2 | e, and that [4]

( X Ξ 4 (mod 8),
(3.2) 5(^-υ/4 = j ( m o d / 7 ) ^ J or

[JC = ± 2 w (mod 8).

Using results of Emma Lehmer [6] we show that (3.2) can be refor-

mulated as

(3.3) 5</>-D/4=E i (mod/?) ** 161 w or m;ΞΞ2(mod4).

Embodied in (3.3) is considerably more information than in simpler

criteria for 5 to be a fourth power (mod p) as is seen by the following

theorem.

THEOREM 5. Let p = 20/ + 1 be a prime satisfying (3.1). Then we have

(a)

5 ( P - I ) / 4 = ] (mod;,) and 2 { ' - ' ) / 5 = 1 (mod/?) <* 16|w,

(b)

5(P-D/4 = _! ( m o d ^ ) α w ί / 2 ( p " 1 ) / 5 ΞΞ 1 (mod/?) o 16|x,

(c)

5(/>-D/4 = ! ( m o d ^ ) and 2 ( / > ' 1 ) / 5 z 1 (mod/;) « H « Ξ 2 (mod 4),

(d)

5(/»-D/4 = _! ( m o d ^ ) απrf 2 ( / ) - 1 ) / 5 z 1 (mod^) «* 4 |MO;

(e) in case (c), 21 v ** Λ; = 3w (mod 8) and 2 \ u «=> Λ; Ξ - 3 W (mod 8).

. To prove => in (a) note that from [6, p. 13] we have x = Aa and

w — 4d, a = -d (mod 2), so that 81 w in view of (3.2); moreover, u = v = 0

(mod 4), so that if w e O (mod 16) we have, since xw = v2 — 4uυ — u2,

that 32 Ξ 16 — 0— 16 (mod 64), a clear impossibility. To prove <= in (a)

we have only to note that 161 w => 2 \ x and that a = -d (mod 2 ) = > X Ξ 4

(mod 8). We omit the proof of (b) as it is entirely similar.
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To prove (c) and (e) we note first that x odd and x =±3w (mod

8) <*p - x2 - \25w2 = 10 (mod 16) <=> u2 + v2 = 5 (mod S)**uv = 2

(mod 4), proving (c). Then (e) follows easily from xw — v2 — 4uv — u2.

Finally (c) => (d) (u and v are of opposite parity as x is odd), completing

the proof.

EXAMPLE. Let p = 101 so that (-29, 3, 2, 1) is a solution of (3.1).

Since uv = 2 (mod 4) and 21 v we have 5{p~1)/4 = 1 (modp\ 2(p~l)/5 & 1

(mod /?), and x = 3w (mod 8).

REFERENCES

[I] Bruce C. Berndt, Gauss and Jacobi sums, unpublished course notes, University of
Illinois, Urbana, Illinois, 1978.

[2] Bruce C. Berndt and Ronald J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J.
Number Theory, 11 (1979), 349-398.

[3] Carl Friedrich Gauss, Theoria residuorum biquadraticorum, Comment. I, Comment.

Soc. Reg. Sci. Gottingensis rec, 6 (1828) (Werke, Gόttingen, 1876).
[4] Richard H. Hudson and Kenneth S. Williams, Some new residuadty criteria, Pacific

J. Math., 91 (1980), 135-143.
[5] , Binomial coefficients and Jacobi sums, to appear in Trans. Amer. Math. Soc.
[6] Emma Lehmer, The quintic character of! and 3, Duke Math. J., 18 (1951), 11-18.
[7] Joseph B. Muskat, On the solvability of xe = e (mod/?), Pacific J. Math., 14 (1964),

257-260.
[8] A. E. Western, Some criteria for the residues of eighth and other powers, Proc. London

Math. Soc, (2) 9 (1911), 244-272.
[9] A. L. Whiteman, The cyclotomic numbers of order 12, Acta Arith. 6 (1960), 53-76.
[10] , Theorems on Brewer and Jacobsthal sums. I, Proc. Sympos. Pure Math., 8

(1965), 44-55.
[II] Koichi Yamamoto, On a conjecture of Hasse concerning multiplicative relations of

Gaussian sums, J. Combinatorial Theory Ser. A, 1 (1966), 476-489.

Received December 9, 1981. Research supported by Natural Sciences and Engineering
Research Council Canada grant A-7233.

UNIVERSITY OF SOUTH CAROLINA

COLUMBIA, SC 29208






