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DIOPHANTINE DETERMINATIONS OF
3(p=1/8 AND 5¢(P—D/4

RicHarRD H. HuDSON

Let p be a prime = 24f + 1. The author and Kenneth S. Williams
derived a criteria for 3 to be an eighth power (mod p) in terms of the
parameters in the Diophantine systems a> + b* and x> + 3y°. A new
proof of this result is given which uses Jacobi sums. This proof is simpler
in that it does not require summing 36 cyclotomic numbers; moreover, it
leads simultaneously to new necessary and sufficient criteria for 3¢~ /8
to be congruent to b/a (mod p), a = 1 (mod 4), b > 0. Using this result,
criteria for 3(»"V/8 =1 b/a, -1, or =b/a (mod p) are given in terms
of the parameters in other well-known quadratic partitions of p or of 4p.

Let p be a prime = 20f + 1, 16p = x? + 50u? + 500% + 125w?,
xw = v? — dup — u. It is shown that 57 ~1/4 = | (mod p) if and only
if 16|w or uv = 2 (mod 4). This result is of interest in relation to criteria
given by Emma Lehmer for 2 to be a fifth power (mod p) and for p to be
a hyperartiad.

1. Introduction and preliminaries. For a prime p = 24f+ 1 we
have the following quadratic partitions of p or of 4p:

(1) p=a*+b*,a=1(mod4), ((2) p=c*>+2d* c=1(mod4),
(3) p=x>+3y’,x=1(mod3), (4) p=u’+6v’,u=1(mod34),
(5) 4p =A%+ 27B*, A =1 (mod 3).

Using the law of octic reciprocity given by A. E. Western [8], the
value of 3?7 Y/% has been given in terms of the Diophantine systems (1)
and (2); specifically, we have

(a)

c(mod3) if p =1 (mod 43),
—c(mod3) ifp =25 (mod 48),

i

3(=D/8 =1 (mod p) @{a
a

(b)
b=c(mod3) ifp =1 (mod43),

3(p—D/8 = p d

Throughout we fix b to be positive in case (b), as in [1, p. 3.7], by fixing a
primitive root g( p) such that g¢ = b/a (mod p) for b > 0.
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Using cyclotomic numbers of order 12 [9] and an index formula due
to Muskat [7], Hudson and Williams [5] gave necessary and sufficient
criteria for 3 to be an eighth power modulo p (case (a) above) in terms of
the parameters in systems (1) and (3).

In this note we show that the Davenport-Hasse relation in a form
given by Yamamoto [11] and certain relations between Jacobi sums of
order 24 lead simultaneously to the result of Hudson and Williams [4]
(and more neatly as the proof does not necessitate summing 36 cyclotomic
numbers) and to a new criteria in case (b) (3 is not a fourth power (mod
p)); see Theorem 1. Using this theorem, we obtain in this paper similar
criteria in terms of parameters in (4) and (5), see Theorems 2 and 3.
Finally, in (3.3) and Theorem 4, we delineate criteria for 5 to be a quartic
residue (mod p = 20f + 1) in terms of the parameters in (3.1) in relation
to Lehmer’s [6] criteria for 2 to be a quintic residue.

As preliminaries, we require an easy modification of Wilson’s theorem
giving for a prime p = mnf + 1,

(1) mf tnf 1=(-1)""" =(-1)""" (mod p).

Next, see, e.g. [S], for 1 =5 <r =<23,p=24f+ 1, we have

(12) 7= (*7 ) Gmoap.

Finally, for a prime p = mnf + 1 we have from the Davenport-Hasse
relation in the form given by Yamamoto [11, p. 488] that

ntf \17Z (mjf )!
j;O( +1)f!

(13) (nr=D/m) = (mod p).

Our notation for Jacobi sums is as follows. Let x,, be a character
(mod p) of order 24, let ¢,, = e*""/?*, and let g be a primitive root of p
with g/ = ¢,, (mod ©) where  is a prime ideal divisor of p in Q(¢,,). For
x Z 0 (mod p), let ind ,(x) be the unique integer b such that x = g? (mod
P), 0 =< b =< p — 2. Then the Jacobi sum J,,(r, s) of order 24 is defined by

p—1
124(” s 2 X24 X24 1 —x)= E ¢§i1ndg(x)+mdg(‘_x)-

x=2
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2. Diophantine determinations of 3* /8,

THEOREM 1. Let p =24f+ 1 =a*+ b2 =x>+ 3y%, a =1 (mod 4),
b > 0. Then we have

a=1 (mod3) and y =0 (mod3),

3(p—1/8 =
(@) 1 (mod p) g{a52(m0d 3) and y =4 (mod3),

and

b=1(mod3) and y =0 (mod 8)

b) 3P-V/8=p d
( ) /a(mo p)ﬁ{bEZ(mOd3) and yE4(mOd8)~

Proof. From [5, Th. 15.1] we have
51 8f\ _ | +1or-1(modp) accordingasa=1or2 (mod 3),
1) 2f] 7 |b/aor -b/a(mod p) accordingasb =1 or 2 (mod 3).

Moreover, it follows from Gauss [3] that

(2.2) (162ff ) =24 (modp) fora=1(mod4),
Using (1.1), (1.2), and (1.3) we have
57 ()
2(p=D/4 = (2(p—1)/12)3 E6f!12f! = 3f = 3f (
31151 (18f) (12f)

mod p),

6f 6f
f
oss _3FIBFN6FY L 3FVIfL ,(_,:l
3V =g =00 g =00 (9f)’
3f
from which it follows that
7]
(2.3) (Térj—E(—l)b/%“’“‘V8 (mod p).
o)

From Berndt [1, pp. 3.17, 3.25, 3.23] we have

(24) (DY =(-1)"7 and £y(1,7) = (1) (1, 1).
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Fixing a primitive root g( p) so that g% = b/a (mod p), b > 0, it follows
from [10, Lemma 6] that

(=) =) e

But clearly (sff)(7ff) = (2ff )(3/) so that, using (2.3),

(‘l)b/ﬂy/“(gj;) ={(—l)y/4 (modp) < a =1 (mod 3),
&)

| (=1)"*b/a (mod p) = b = 1 (mod 3).
This completes the proof of Theorem 1.

3(p—1/8 =

THEOREM 2. Let p = 24f + 1 = a? + b* = u? + 602, a = 1 (mod 4),
b > 0. Then we have ‘
b=2v(mod8) anda=1(mod3),

1 (r—1/8 =1 d
() 3 (mo p)é{bE—ZU(modS) andazz(mod3),

and

b=2v(mod8) andb =1 (mod3),

(p—1/8 =
(2) 3 =b/a(mod p) Q{bz—2o (mod 8) and b =2 (mod 3).

Proof. Theorem 2 is an immediate consequence of Theorem 1 and the
left-hand-side of (2.4).

THEOREM 3. Let p =24f+ 1=a’>+ b* a=1 (mod 4) and b >0,
4p = A* + 27B? with A = 1 (mod 2). Then we have

B==+3(mod8) anda=(-1)(mod3),
B=+1(mod8) anda=(-1)"""(mod 3),

(a)3»=D7% =1 (mod p) @{

(b)

B

+3(mod 8) andb=(-1)" (mod 3),
B==+1

(mod 8) andb=(-1)""" (mod 3).

37=D/8 =p /q (mod p) <=><‘

Proof. Not that (-1)/ = +1 e x =1 (mod 8) (and (-1)/ = -1 & x
= 5 (mod 8)) as

(2.5) x =1 (mod8) & x? + 3y? =1 (mod 16).
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It is easily seen that
(2.6) B Hx—y) %ny 1 (mod 3),
B==x{x+y) ify=2(mod3).
Theorem 3 now follows from (2.5), (2.6), and Theorem 1.
THEOREM 4. Let p =24f+ 1 =a*+ b%, a=1 (mod 4) and b > 0,
4p = A + 27B? with A = 0 (mod 2). Then we have

B =0 (mod 16) anda =1 (mod 3),

3r—D/8 =1 d
(@) (mod p) Q{BES(mod 16) anda =2 (mod 3),

B =0(mod 16) andb =1 (mod 3),

(r—1H/8 =
(b) 3 —b/a(mOdP)c’{BEg(mod 16) and b =2 (mod 3).

Proof. As B= =2y if A =0 (mod 2), we have B =0 (mod 16) if
y =0 (mod 8) and B = 8 (mod 16) if y =4 (mod 8) so that Theorem 4
follows from Theorem 1.

REMARK 1. Criteria (a) and (b) in Theorems 1 and 4 may be refor-
mulated as

3= 0/8 = (-1)/*"1 (mod p) if 3|b
and
3= 1/8 = (1) /g (mod p) if 3]a,
and for 4 even (= 2¢?~D/3 =1 (mod p)) we have
3(-0/8 = (=121 (mod p) if 3|b
and
3= 0/8 = (1) Ay /g (mod p)  if 3] a.

REMARK 2. Putting together the criteria in Theorem 1 and the criteria
given at the beginning of this paper we see that the parameters ¢ and y,
¢ = 1 (mod 4), are related for all primes p = 24f + 1 = ¢> + 2d* = x* +
3y? as follows:

y =0 (mod 8) & ¢ =(-1) (mod 3).
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3. Ciriteria for 5 to be a fourth power (mod p). Letp =20f+ 1 =
a’ +b*=e*+f? a=e=1(mod 4);
(3.1) 16p = x>+ 50u? + 500> + 125w?, x=1 (mod}5),
xw =02 — duv — u’.
Gauss [3] showed that 57~ Y/4 =1 (mod p) < 5|b. Recently it has
been shown, see [2, p. 382], that 577D/ =1 (mod p) < 2}e, and that [4]

x=4 (mod 8),
(3.2) 5p70/4 =1 (mod p) = or
x =+2w (mod 8).

Using results of Emma Lehmer [6] we show that (3.2) can be refor-
mulated as

(3.3) 5/°D/4 =1 (modp) « 16|w or wuv =2 (mod 4).

Embodied in (3.3) is considerably more information than in simpler
criteria for 5 to be a fourth power (mod p) as is seen by the following
theorem.

THEOREM 5. Let p = 20f + 1 be a prime satisfying (3.1). Then we have
(a)
5-D/4 =1 (modp) and 2 V> =1(modp) = 16|w,
(b)
5p-0/4 = _1 (mod p) and 2~ V/°=1(modp) < 16|x,
(©
5p7°0/4 =1 (modp) and 27 V/°=1(modp) < uv =2 (mod 4),
(d)
50°D/4= _1 (modp) and 27 V> =1 (modp) < 4|uv;
(e) in case (c), 2|v © x = 3w (mod 8) and 2|u < x = -3w (mod 8).
Proof. To prove = in (a) note that from [6, p. 13] we have x = 4a and
w = 4d,a = -d (mod 2), so that 8 |w in view of (3.2); moreover,u =v =0
(mod 4), so that if w = 0 (mod 16) we have, since xw = v* — 4uv — u?,
that 32 =16 — 0 — 16 (mod 64), a clear impossibility. To prove < in (a)

we have only to note that 16|w = 2| x and that a = -d (mod 2) = x =4
(mod 8). We omit the proof of (b) as it is entirely similar.
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To prove (¢) and (e) we note first that x odd and x ==+ 3w (mod

8) ®p— x? — 125w? =10 (mod 16) ® u> + v>* =5 (mod 8) @ uv =2
(mod 4), proving (c). Then (e) follows easily from xw = v> — 4uv — u?.
Finally (c) = (d) (u and v are of opposite parity as x is odd), completing
the proof.

ExaMpLE. Let p = 101 so that (-29, 3, 2, 1) is a solution of (3.1).

Since uv = 2 (mod 4) and 2 | v we have 57 ~V/4 =1 (mod p), 207~ V/° = |
(mod p), and x = 3w (mod 8).

(1]
(2]
(3]
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