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A MARCINKIEWICZ CRITERION FOR
L?-MULTIPLIERS

HENRY DAPPA

Suppose m is a bounded measurable function on the n-dimensional
Euclidean space R". Define a linear operator 7,, by (7,,f) = mf , where
fEL*NLPRY), 1 <p=co,andf denotes the Fourier transform of

I .
£ = [1(x)e Eax Pazg%g)

(We omit the domain of integration if it is the whole R") If T, is
bounded from L7(R") to L”(R"), then m is called an L7-(Fourier)
multiplier, denoted m € M,(R"). The norm of m coincides with the
operator norm of 7, .

THEOREM 1. Let m and m' be locally absolutely continuous on (0, o)
and

2/+l
B :=|m|, + sup f rlm”(r)|dr < .
j€Z Y2/

Then m(|&)) € M,(R") for all p with 1 <2n/(n+3)<p<2n/(n—13)
< 00; in particular, ||m|| MR = ¢B with c independent of m.

1. To prove Theorem 1 we need a result stated in Theorem 2 about
the following Littlewood-Paley function:

1,2

(1) e = (1200 - S0P T

where

SNfix) = (1 - EI—Z)Af(s)e'fx ag  (r. = max(0, 7))

T

denotes the Bochner-Riesz means of f of order A, u is a nonnegative
measurable function on (0, c0) satisfying

(1.2) (=R(t)= [us)ds=ct, 1>0,
0

and f belongs to S, the space of all infinitely differentiable rapidly
decreasing functions on R".
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THEOREM 2. Let A and p be such that
I<p<2(n+1)/(n+3), A>n(l/p—1/2)—1/2,
are valid. Then

lgx( I, = el fll,
holds uniformly for f € S.

By ¢ or C we always denote a constant that may be different on
various occasions.

The above g,-function is a modification of the g#-function of Bonami
and Clerc [1; p. 242], used by them for deriving sufficient criteria of
Marcinkiewicz type for zonal multipliers of expansions into spherical
harmonics, and can be regarded as a variant of Stein’s gs-function [7; p.
130], which in our context reads as follows:

1/2
, dt

(N0 = ([(150 1000 = SN P S

Its LP-behaviour has been investigated by Igari and Kuratsubo in [6]
where they have shown via analytic interpolation between the points
(Ao 1/pg) and (A, 1/p)),Ag=(n—1)/2 + & 1/py=1—ceorl/p, =,
and\, = -3+e¢ 1/p, =3 (e >0 +) that

(13)  allfl, <08t (I, < clifl,.
I<p<o, A>n|l/p—1/2|-1/2,

where each ¢, > 0 is independent of f € S. Had we applied the interpola-
tion argument of [6] to the g,-function defined in (1.1) as Bonami and
Clerc [1; pp. 240, 242] did for their gk-function, we could only take
(A, 1/p), A\, =& 1/p, =1/2 (e > 0 + ) as a second interpolation point.
We should have then obtained

g (M, =cllfll,, 1<p<oo, A>(n—1)|1/p—1/2]

uniformly for f € S, hence the same result as that of Bonami and Clerc
for their g¥-function, which is not a good estimate in view of (1.3). In
Theorem 2 we give an improvement of the above estimate in the sense of
(1.3). The method of proof used here is a modification of techniques
of Fefferman [2; pp. 28-33] in combination with the Tomas and
Stein restriction theorem [9] for the Fourier transform. This theorem
is applied at a crucial point of the proof and implies the restriction
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p=2n+ 1)/(n+ 3), which is subsequently sharpened to p <
2(n + 1)/(n + 3) after the use of the Marcinkiewicz interpolation theo-
rem. Proceeding analogously to Bonami and Clerc [1; pp. 246-7] we
derive Theorem 1 from Theorem 2.

The plan of the paper is the following. In §2 we prove Theorem 2. In
§3 we derive Theorem 1 and make several remarks; in particular we show
that Theorem 1 is best possible regarded as a Marcinkiewicz type crite-
rion.

2. Let us recall the following decomposition Lemma, which is an
essential tool for the proof of Theorem 2 (see [2; p. 15]).

LEMMA. Let f€ LP(R") and a >0 be given. Then there exist two
functions h and b and a collection {1,};cy of pairwise disjoint cubes with the
following properties:

(2.1) f=h+b, |Al, +1bll, =41,

(2.2) |h(x)|< Aa for almost every x € R".
(2.3) b(x) =0 foreveryx & Q:= U I,.
JEN

(2.4) f1.|b(x)}”dx <A4a?|I], /Ib(x) dx =0 forevery I,

where | I,| denotes Lebesgue measure of 1.

(25)  121= I ILI=Aa?) £

JEN
(2.6) Each cube has diameter equal to 2 for some k € Z.
Let I be a cube with the same center as 1, but with
(2.7) sides twice as large. Then no point x € R" belongs to more
than N of the cubes I}

Proof of Theorem 2. Let f € S be given. In view of the Marcinkiewicz
interpolation theorem [8; p. 21}, it suffices to show that

[{x: &a(f)(x) > a >0} |< ca™?| f||2
holds uniformly in « and f € S. By (2.1) we have

(2.8)  [{x:&\(f)(x)>a}]
<|{x: gy(h)(x) > a/2} + | {x: a(b)(x) > a/2}.
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Thus we may estimate each term on the right side separately. Let us begin
with the first one, to which we apply the standard argument (see [8; p. 20])

(2.9) [{x: ga(f)(x) > a} = a2liga(R)3-

Now by theorems of Fubini and Plancherel we obtain

laa(NE = [US) (s -) — SMhs Bu(r) &
0

£ 1€\
—jlh(s)n{f( )(1 —tz—) ()——}ds
By (1.2) we may replace ¢ by R(¢) and estimate the inner integral by
o 1L €1 \?\* dr(r)
(y=cf (R_(S) (1 (R(z)))+ R(1)
2 d.
—cf ‘Ss C,.

Hence, again by the Plancherel theorem, (2.2), and (2.1)

a3 = C [1h(x) P dx < Ca>™7 [ h(x) P dx < Ca® 7| {1,

and thus, by (2.9),
H{x: g(h)(x) > a} |= Ca™?)| f]|2.

To estimate the second term on the right side of (2.8) let us define the
operators T, t > 0, by the equation

(T1) (&) := (SMU(f; ) = SML, ) (§) = my(€1/0)f ().

Note that m,(|£]) = - £P(1 — |£P)) is a C™-function for |£ |3 1, vanish-
ing outside the unit ball. Then following Fefferman [2] decompose m by
means of a C®-function 6(s) defined on R such that 0 <6(s) <1,
0(s) = 0 for|s|= 4%, 0(s) = 1 for |s|< ; holds. Choose an arbitrary, small,
positive number 8. With the notation

0,(1£) := 6(2"D( £ - 1)), (8D :=1-6(¢), kEN,
the decomposition of m reads
my(1€1/1) = my(1§1/1)6,(1€1/1) + my(1£1/0)@.(€1/1)
=m(E1/1) (s, ) (€) + (n ) (§), 1>0.
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Obviously s, , and r, , belong to S. In order to state the basic decomposi-
tion of 7,b, which modifies Fefferman’s approach slightly, define the
operators K, , by

(2.10) (K, f)(£):= {mx(lﬁl/t)f(é), if[£]/t — 1< 27k0-9)-1

, otherwise,

set J, := {j € N: diameter(/;) = 2%} and, denoting by x 5 the character-
istic function of the set E, put 8;:= bx,, b, ‘= Z;c, B, Let [r] be
the largest integer not greater than r, set lgr:=log,r and k,:=
(k — [1g(1/1)]) . Then

b= 2 b, = 2 {Ko,z(so,z * bk) +r,* bk}
kEZ k=<(lg(1/1)]

+ 2 {Kk,,t(sk,,t * bk) t o, * bk}'
k>[lg(1/1)]

Hence, by Minkowski’s inequality,

2 1/2
o dt
s =[] T (nrb)x) u<z)7)
0 Ti=<fig1/1)
% 2 RS
] 2 (rrb)) u(t)T)
0 lr>qg(1/n)
o o al”
+ / 2 (Ko,z 2 (So,z*BJ)XR"\I;)(x) u(’)?)
0 | k=pig1/n) JET
2 d 1/2
o t
+ / 2 (Kk,,t 2 (sk,,t*Bj)XR"\lj*)(x) u(Z)T)
0 [ k>[ig(1/0)] JEJ
0 2 dt vz
+ f 2 (Ko,z 2 (so,r*:Bj)XI;)(x) u(t)T)
0 | r=ng1/n) JEJ
o 2 dt 2
+ f 2 (Kk,,t 2 (Sk,,t*Bj)XIj*)('x) u(t) 7)
0 | h>[1g(1/0) J€Jy

6
= 2 gx,,(x)-
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g, and g, 5 are the essential contributions. g, ¢ will be estimated with the
aid of the Tomas and Stein restriction theorem, which implies the restric-
tions l<p=<2n+1)/(n+3)and A >n(l/p — 1/2) — 1/2; the frac-
tional integration theorem used to estimate g, ; requires the condition
p > 1. The remaining g, -functions will be estimated by L'-arguments.

2.1. Estimate of g, ¢. Choose an arbitrary sequence {w,} with w, >0
and 3_,w, > = C, < oo and apply Holder’s inequality to obtain

P
u(t)Tt.

2| Kive  (500% By | ()

JEJ

(Be)=C[ 3

0 k>[g(1/n)
From (2.10) it follows that the L?-operator norm of K k,: 1s bounded by
C2~ %=X Hence, after interchanging the order of integration,

lgrsllz =<C 2,2—21('(1_8))\
0 k>[1g<1/t)1

/ 2 ((Sk,,t*Bj)XII*)(x)Z

JEJ

X dx u(t)‘—j{

< CNf w2 2 2ki1=80
k>[]g(1/t)]

X[ 3 (51,0 % B3 ) ()P i (e) &

JEJy

<C2 2/ w22 2k, (1—8)A

kez jeJ,

f (Iél)

For the second inequality we use Holder’s inequality and (2.7), for the
third, Plancherel’s theorem and an interchange of summation and integra-
tion. Introduce polar coordinates in the inner integral and apply the
restriction theorem [9] valid for p < 2(n + 1) /(n + 3) to derive

[---]= 0°° 0@(%) Zrn—l[./l;'lzl'ﬁf(ré’) P dg’] dr

< C”B,”;zv Ooo 0"1(%) 2

< Ca222nk/p—k,(l —8)t2n/p-—n’

x 18&)F ds] (<.

r2n/p—n—-1 dr
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where (2.4) and (2.6) are used for the last inequality. Observe that (1.2)
yields, for y < 0,

v _< y dR(1) _
_/;*t (¢) Cfcm X (R(1)) R()_Cz

Choose w, = 2°* and note that in view of the condition A > n(1/p — 1/2)
— 1/2, the number & can be determined so small that y = 2n/p — n —
2(1 — 8)A — 1 + 36 < 0 holds. Then, by (2.6) and (2.5), we arrive at

”g)\ 6“% < Ca2 2 2 22nk/p—2k(148))\—k+38k
' kEZ jEJ,
o dt
2n/p—n—2(1—8)A—1+38 hetdl
><f K u(1) <
<=Ca® Y X 2"=Ca* Y |I|= Ca®7?||f|I2.
kez jes, JEN
Thus analogously to (2.9),
[{x ER": g, 4(x) > a}|= Ca™?||f]2.

2.2. Estimate of g, s. First recall that the L*-operator norm of K, is
bounded by a constant, then interchange the order of integration and
apply Holder’s inequality together with (2.7). Then

E ((So,: * :Bf)XI;)(x)

k<[1g(1/t)] JEJK

<oV 33 (((sun B)x ) () Pax (o) .

k=[lg(1/0] jE€J;

2

dx u(t)%

lenslii=cf”

Again by the theorems of Fubini and Plancherel, after interchanging the
summation and integration, we obtain

2k+l g
=C — t)— d§.
ndi=cs % [, o[ E1)[ o) 1760
By the definition of 6,

R

witha := n(l1/p — 1/2), p < 2; thus, it follows that
larsli=C 3 3 272 [1g72| B(¢) P aé.

kezZ jeJ,

(t)ii_t_<{0, 2kl5123 SC,(2k|£|)~2a

t C otherwise
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The integral represents the Fourier transform of the Riesz potential of
order a; thus, applying Plancherel’s theorem, the theorem on fractional
integration [8, pp. 117], (2.4), (2.6) and (2.5), there holds for p > 1,

— 2
lgrsl3=C 2 2 27212
kEZ jEJ,

— 2_
<Ca* Y I |LILI*7| L7 < Ca7P) £,
keZ jEJ,

and finally,
| {x: & s(x) > a}|= Ca™7)|f]].
2.3. Estimates of g, , to g, 4. The following inequalities are the starting
point.
(2.11) [ {x: gr (%) > a} |<|Q*| +| {x € R"\Q*: g, ,(x) > a} |

<4207 fI2 + a2 [[(gn Xrea ) (¥) P, = 1,2,

(2.12)  |{x:gy.(x)>a}|= a"zf(g}\’,(x))2 dx, i=3,4.

Here we set Q* = UjeN I¥ in (2.11), use (2.5) and the argument (2.9).
First note that fori = 1,2,

(2.13) (gA,iXR"\Q*)(x)

» 1,2
) 2 2 ((rk,,t*:Bj)XR"\I;)(x) “(t)éit‘) .

k=(—1)1g1/n)] JEk

0

Thus, provided we can show on the one hand fori = 1,2,

(2.14) =3, =< Ca,

2 2 ((rk,,t*ﬁj)XR"\I;)(x)

k=(—1)'lg(1/1)] &

with C independent of x, ¢ and «, and, on the other hand,

u(t)

—=dx
t

2 2 (("k,,z*.B)XR"\I;)(x)

k=(—1)[lg(1/0)] JEI

(2.15) f/ow

=Q,=Ca'"?|If1I5,
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we have established, via argument (2.9),
Hx: gri(x) >a}|= Ca™?)iflI7, i=1,2.

For the verification of (2.14) and (2.15) observe that, since r, , € S,
(2.16) 1 () 1= Cut"(1 + 27500 x|) ™" = P, (x),
(2.17) [grad(r, ,(x))|< CtP, (x),
where we may choose m so large that mé = n + 1 holds. Further note that
(2.18) clx —ylsix = yl= elx — yl

is true for all x € I* and y € I, with y; denoting the center of ;. Starting
with (2.14) apply (2.16), (2.4) and (2.18). Hence,

5= 3 3 e () [Inx =) By

k=flg(1/n] j&€J

= i e (x) sup i (x - If18,(y)1dy

k=<[lg(1/n)] jE€J;

= Ca 2 2 PO,t(x_yj)IIj|
k=[g(1/1)] jEJ,

= Ca 2 2 fPo,z(x_)’)dy
k=[g(1/0)] jeL 1,

< CafPoy,(x —y)dy < Ca,
where we also used the fact that the I;’s are pairwise disjoint. Since
f P, (x)dx=C27k,
x> c2k °

with C independent of k and ¢, we obtain analogously

2,=Ca 2 f Pk,,t(x —y)dy
k=[1g(1/1)]

<Ca 2 f —y)dy
k=[lg(1/1)] —yl>02"

<Ca Y 2 k=Ca.
k=[lg(1/1)]



18 HENRY DAPPA

Now consider (2.15), apply (2.4), then interchange the order of integration
to derive

(2.19) ff

2 XR"\I;(X)

k<llg(1/t)] JEJK

X/(’o,t(x —y) —ro(x *yj)),Bj(y) dy|u(t) %t—dx

=2 2 le,(y)

keEZ jEJ,

X dy.

N dt
'/l;"\l*'/(-) lro,r(x —y) — roy,(x —yj)|u(t) _t_dx

The mean value theorem together with (2.17) yields for 0 < ¢ <1,

1r.(x =¥) = 1o (x = y) 1= Cly = y,1tPy (x =y, + q(y, — »))
=C2k " (1 +tx —yl) 7,
since [x —y, + q(y, — y)|=c|x — y,|holds forall x & I*, y € I, and F,,
is nonincreasing. Replacing ¢ by R(¢) we estimate the expression in
brackets on the right side of (2.19) as follows:

[.--]=cC2 f / (R(1))"(1 + R(1)|x — y,|) " dR(t) dx
R”\I*
= C2* |x —y, | " ldx<C.
‘/l;ﬁy,ich !

Thus, by (2.4) and (2.5),

0,=C3 3 [IB(y)1dy=Ca T |L|=Ca 7|11,

keZ jeJ, JEN

Consider again (2.15); an interchange of the integration and summa-
tion orders gives

=1l

=3 3 [1IBW)

keEZ jeJ,

2 Xr\ 1¥ x)/’k (x = y)B(y) dy u(1) ——dx

k>[1g(1/t)] JEJ

fee, f |rk,<x—y)|u(z>—dx]dy
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Replace ¢ by R(¢) and use (2.16) to obtain

[-»-]scfw\l*f (R(1))""

X {1+ (R(2))"27%0=9|x — y|} " dR(1) dx

< czmk—”"f |x—y|™™dx <C.
e —y|=c2*k
Hence, by (2.4) and (2.5),
0,=C3 3 [IB()1dr = Ca 7SI
keZ jeJ,

Next, (2.12) can be treated in the same manner as (2.11) if we first use the
same arguments as at the beginning of 2.1 (with w, = 2¥0~9*) and 2.2,
Finally collecting all the g, ,-estimates, the proof of Theorem 2 is com-
pleted by the observation

6
[{x: 8:(8)(x) > o} I= X | {x: gy .(x) > a/6}].
i=1
3. Proof of Theorem 1. The general idea of the proof is to show
(3.1) g x)=CBg(f;x),  h(§):= m(E)S (§).

Then in view of (1.3) and Theorem 2 the following norm inequalities
prove Theorem 1 ( F~! denotes the inverse Fourier transformation):

WF~ " {m(&Df (&), = Cligk(hll, < cBllg,(f I, = cBII fl -
To this end, set

k(r):= — - x) d¢/,

introduce polar coordinates and integrate by parts to obtain

S35 x) = 30 %) = [ (1 —R—z) (r)k(r) dr
fR 2 {(1 - ;r;z)m(r)}{rfork(s)ds} dr
_m(R)/( ——r—z—)k(r)dr

T 2—“1{%{(1 - ;—i)mm}}(sf(f; X) = SI(f: %)) dr
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where we used (cf. [4])

|rm'(r)|< C, _[)r(rz —s2)k(s)ds=0(r*), r->0+.

Since

sl

we obtain by Minkowski’s and Holder’s inequalities:

< C{lrm/(r) | +172m"(r) |} =:0(r),

g1(h)x) = ( 71530 x) = sy x) P

<sup|m(r)|gF(f)(x)

r>0

([ 192050 = S0 100 ar

< gt + | [ 7 [o0r) a}

X{%fORle(f; x) — S} f; x) Fo(r) dr} %)lﬂ-

1/2
T)

Observing (cf. [1], [4]) that R™YRov(r)dr < cB, choose u(r):=
(v(r) + B)/B. Then u satisfies (1.2) and an interchange of the integration
order gives

oo > 1/2
81 (1)) = Bt (1)(x) + B [ 715775 x) = 5}(55 ) Putr) & )

= CBgl(f)(x)>
which completes the proof.

REeMARKkS. 1. The differentiability-growth condition on m in Theorem
1 is equivalent to
sup|m(r)|+ sup f rldm’ (r)|I< o0
r>0
(see [8; p. 109]). Applying this to (1 — |£]), , it follows that (1 — £, €
M,(R") if 2n/(n + 3) <p <2n/(n — 3), n = 3. On the other hand, it is
well known (see [3], [4], [9]) that these p-bounds are necessary and
sufficient for (1 — |£[),. to be a bounded multiplier.
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2. Let us mention that we may interpolate between Theorem 1 and a
result due to Bonami and Clerc [1] and Gasper and Trebels [S] to obtain
sharp Marcinkiewicz criteria in the range 1<p=2n/(n+ 3) and
2n/(n — 3) < p < oo0. In particular it will be shown that Theorem 1
already implies an improvement of the following result of Igari and
Kuratsubo. Let m(r) be an absolutely continuous function on (0, c0)
satisfying

0 1/2
sup|m(r)| + sup (f rim'(r) dr) < .
r>0 jez \727!
Then m(|§)) € M,(R") if 2n/(n + 1) <p <2n/(n — 1).

3. Modifications of the above techniques lead to: Let {r;} be any
sequence of positive real numbers, { f;} any sequence in S. Then with A, p
as in Theorem 2 there holds

(Sis205:08)”

JEN

=C

b

(S u0e)”

JEN

P
where C depends only on A, p and the dimension n.
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