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ON ASYMPTOTIC PRIME DIVISORS

L. J. RATLIFF, JR.

Several results are proved concerning the set A*(I) = {P E Spec R;
P is a prime divisor of the integral closure (Γ)a of /' for all large /},
where / is an ideal in a Noetherian ring R. Among these are: if P is a
prime divisor of (Γ)a for some i > 1, then P is a prime divisor of (I")a

for all n > i\ a characterization of Cohen-Macaulay rings and of altitude
two local UFDs in terms of A*(I); and, some results on the relationship
of A*(I) to A*(IS) with S a flat Λ-algebra and to A*((I + z)/z) with z
a minimal prime ideal in R.

1. Introduction. The sets Ass(R/Iι) and Ass(R/(Γ)a) have been
studied in several recent papers, where / is an ideal in a Noetherian ring
R. For example, in [14, (2.5)] and [5, Prop. 7] it was shown that if
height / > 1, then the sets Ass(R/(Γ)a) are equal for all large i. Calling
this set v4*(/), it was shown in [14, (2.6.1)] that A*(I) is contained in the
sets Ass(R/Γ) for all large /. Also, in [1] and in [5, Corol. 5] it was shown
that these latter sets are also equal for all large /, even without the
assumption that height / > 1. Further, in [15, Thm. 1] it was shown that
there exists a positive integer i such that the maximal ideal M in a local
domain R is in Ass(R/(Ia)) for all nonzero ideals / C Mi (and hence
M E A*(I) for all nonzero ideals / C M) if and only if there exists a
height one maximal ideal in the integral closure of i?, and in [22, Corol.
2.8] it was shown that if M G A*(I) for a given ideal / in i?, then
M G A*(IJ) for all nonzero ideals / in R. Numerous other such results
could be mentioned here, but instead we refer the reader to [7] and to [18]
where most of the known results in this area are summarized.

The purpose of this paper is to add several new results to this area
and also to strengthen several of the known results. In §2 we remove the
restriction on height / > 1 in the above mentioned results, and also show
that the sets Ass(R/(Iι)a) are monotonically increasing (and eventually
constant). In §3 the monotonicity of the sets Ass(R/Iι) is considered, and
§§4 and 5 contain characterizations in terms of A*(I) of Cohen-Macaulay
rings and of altitude two local UFDs, respectively. Some results showing
the relation between the sets A*(I) and the analogous sets in S and in
R/z are given in §6, where S is a flat i?-algebra and z is a minimal prime
ideal in /?, and the final section, §7, contains some results on these sets
and the analytic spread of the ideal /.
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I think results on asymptotic prime divisors are quite interesting in
their own right, and it turns out that they are also closely connected to
some other areas of current research interest, such as: going-down be-
tween prime ideals; asymptotic sequences; and the catenary chain conjec-
tures. (See [7] and [18].) Thus knowledge about such prime divisors is of
some interest and importance.

2. Basic properties of A*(I). In this section it is shown that the
basic results concerning A*(I) which are known to hold for ideals / such
that height / > 1 actually hold for all ideals / in all Noetherian rings.
Then it is shown that the sets AssiR/il')^ are monotonically increasing
(and eventually constant).

We begin by listing a few notational conventions and definitions.

(2.1) DEFINITIONS. Throughout R is a Noetherian ring (commutative
with identity) and / is an ideal in R.

(2.1.1) The integral closure of R in its total quotient ring will be
denoted R'.

(2.1.2) If R is local with maximal ideal M, then the Λf-adic completion
of R will be denoted/?*.

(2.1.3) If J? is a finite i?-module, then Ass(2?) denotes the set of
associated primes of B. In particular, Ass(i?) is the set of prime divisors of
zero in /?, and mAss R denotes the subset of minimal prime ideals in R.

(2.1.4) The integral closure of I in R, Ia9 is the set of all x G R
satisfying an equation of the form Xn + bxX

n~λ + ••• +an — 0 where
at G /'. Therefore Ia is an ideal in R and / C Ia C Rad /.

(2.1.5) i*(/) = Ass(i?/(/')α) for all large i. (It is shown in (2.7) that
this set is well defined for all ideals /.)

(2.1.6) A*(I) = Ass(R/Γ) for all large i. This set is well defined for
all ideals / by [1] and [5, Corol. 5].

(2.1.7) 31= 31(1?, /) denotes the Rees ring of R with respect to I.
Therefore 31 is the graded subring R[u, tl] of R[u, t], where / is an
indeterminate and u = \/t.

Concerning (2.1.7), note that 31 is a Noetherian ring, u is a regular
element in 31, and w'3l Π R = ϊ for all / > 1.

The following lemma and its corollary will be quite useful in this
section. Concerning (2.2), it is shown in [12, Corol. 2.12(1)] that if b is a
regular nonunit in a Noetherian ring /?, then bR' is a finite intersection of
height one primary ideals.
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(2.2) LEMMA. Let I be an ideal in a Noetherian ring RJet^ί- 61 (i?, /),

let pf be a {height one) prime divisor of w6l', and let Q — pf Π R. Then

tl Qp' if and only if height Q = 0.

Proof. Let z' be a minimal prime ideal in 61' that is contained in p'.

Then z — z' Π R is a minimal prime ideal in R that is contained in Q and

z' = zTΠ 61', where Γis the total quotient ring of 61' (and of R[t]). Now

<&(R/z, (I + z)/z) = 91/(2' Π 61), by [20, Lemma 1.1], and 61'/z' is an

integrally dependent overring of 6l/(z' Π 61). We consider two cases: (a)

height Q = 0; and (b) height β > 1.

If (a) holds then Q = z and / C ι/6l' Π i? C β = z, so // C zT Π 61'

= z' Cp'. Therefore 9L/(z' Π 61) = (i?/z)[w], so it readily follows that

If (b) holds let S = <&(R/z9 (I + z)/z) s 6l/(z r Π 61), and to sim-

plify notation identify these rings. Then § C 61 '/z' C §', so there exists a

height one prime divisor P' of u%' that lies over /^'/z'. Since Q/z —

(p'/z') Π (R/z) φ (0), it follows from what was shown in the preceding

paragraph that / g z . Therefore height(/ + z)/z > 1, so, by the proof of

[10, Lemma 3.2(1)] (from the third sentence on), /* = ixά{%'/P')/{R/Q)

> 1, hence /((/ + z)/z) g P\ since u G Pf. Therefore it follows that

tlgp'. Π

(2.3) COROLLARY. With R, /, and 61 as in (2.2), if P is a prime divisor

of (ui($ί)a for some / > 1, then either height P Π JR = 0 tf«d P =

((P Π i?)JR[ί, w] Π 61, w)6l = (iι, P Π i?, //)6l or height P Π i? > 1 α«d

ί/ g P.

Proo/. If P is a prime divisor of (t/'6l)α for some / > 1, then there

exists a prime divisor/?' of w'61' (and of w6lr) such that/?' Π 61 = P, since

(ui(3l)a = w'61' Π 61, so the conclusion readily follows from (2.2) and the

second paragraph of its proof. D

It was shown in [14, (2.5)] that if / is an ideal in a Noetherian ring R

such that height / > 1 and if P is a prime divisor of {Γ)a for some / > 1,

then P is a prime divisor of (In)a for all large n. (2.4) is a considerable

extension of this result. In the proof of (2.4), the following readily shown

fact is used, where 61 is the Rees ring of R with respect to /: if btk G 61,

then {ui(&)Q: btk<& = (w'+ / c6l)β: MR,.
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(2.4) THEOREM. (Cf. [14, (2.5)].) Let I be an ideal in a Noetherian ring

R and let Q be a prime divisor of (Γ)a for some i > 1. Then Q is a prime

divisor of (In)afor all n > /.

Proof. By hypothesis there exists b E R such that (/')<, ' bR = Q. Let

<&=<&(R9I). Then β f t = ((Γ)a: bR)<& C (Γ)βί: b<& C (ui(&)a : 691

and ((κ'"9l)β : 691) Π i? = (Γ)a :bR = Q, by [23, p. 220], since (ui(Sί)a Π

/? = (Ii)a. Therefore there exists a prime divisor P of (ui(Sί)a such that

(wz<&)fl : b<3l C P and P Π Λ = ζλ By (2.3), either height Q = 0 or

height β >: 1 and // ξZ P. If height (2 = 0, the conclusion is clear, so it

may be assumed height Q >: 1, so there exists c E / such that cί £ P.

Therefore for ally > 0 it holds that (ui+J<3t)a : bcJ<3l = (wz9l)α : Z>c^^ C

P, and contracting to i? it follows that (Ii+J)a : 6cyi? = β, so β is a prime

divisor of ( Γ ) a for all n > i. D

(2.5) was proved in [11, Prop. 3.5] for local domains. It is important to

extend this result to the local ring case, because its corollary, (2.6), plays

an important role in the deeper results in §6.

(2.5) PROPOSITION. Let R be a local ring. If there exists a height one

maximal ideal in R\ then there exists a depth one minimal prime ideal in the

completion R* of R.

Proof. If there exists a height one maximal ideal in R\ then there

exists an element x in R' such that R[x] has a height one maximal ideal,

so R*[x] = (i?[x])* has a height one maximal ideal, say N*. Then if z is a

minimal prime ideal in R[x]* that is contained in N*9 then depth z —

altitude R[x]*/z = height N*/z = 1, since R[x]*/z is a complete local

domain. Finally, z Π i?* is minimal and depth z = depth z Π /?* by in-

tegral dependence. D

It is shown in [15, Thm. 1] that if R is a local ring and there exists a

depth one z E mAss 2?*, then there exists a positive integer n such that M

is a prime divisor of Ia for all ideals / C Mn such that height / > 1, and

conversely. This, together with (2.5), is used in the next two results to

extend known results to more general cases.

(2.6) COROLLARY. {Cf. [15, Corol. 2].) Let b be a regular element in a

Noetherian ring R. Then the following statements hold:

(2.6.1) If Qf is a prime divisor ofbR\ then Qr Π R is a prime divisor of

(biR)Jor all large i.
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(2.6.2) If Q is a prime divisor of (bιR)afor some / > 1, then there exists

an integerr n such that Q is a prime divisor of Ia for all ideals I C Q{n) —

QnRQΠ R such that height IQ > 1, hence Q E i * ( / ) for all ideals I CQ

such that height IQ > 1.

Proof. The proof is essentially the same as the proof of [15, Corol. 2],

but use (2.5) and [15, (1.1) =» (1.2)] in place of [15, (1.3) => (1.2)]. D

In regard to (2.6.1), it should be noted that Q' Π R may not be a

prime divisor of (bR)a. For example, let (R, Q) be as in [8, Example 2,

pp. 203-205] in the case r — 1 and m — 0, so altitude R — 2 and there

exists a height one maximal ideal Q! in R'. Let x be as in [8] and let

b = x2 — x. Then (bR)a = (b, bx)R is the height one prime ideal

(x — 1)2?' Π i?, so β is not a prime divisor of (bR)a, even though β ' is a

prime divisor of bR'.

It was shown in (2.4) that the sets Ass(R/(Iι)a) are increasing. They

are also eventually all equal, as is shown in (2.7). (2.7) is a considerable

extension of the first two referenced results, and it also extends the third

referenced result from the Noetherian domain case.

(2.7) THEOREM. (C/. [5, Props. 1 and 18], [14, (2.5)], and [15, Corol. 3].)

/ / / is an ideal in a Noetherian ring R, then the sets Ass(R/(Iι)a) are equal

for all large i. In fact, for all large i,

Ass(R/(li)a) = {/>' Π i?; p' is a (height one) prime divisor of u<3l(R, I)'}

= {P Π R; P is a prime divisor of (un$l) a for some n > 1}.

Proof. Let 91 = <3l(R, I). Then uι%' Π R = (Γ)a for all / > 1. Also,

since u is a regular element, the prime divisors of uι6hr are the prime

divisors of w<3i'. Therefore

Ass(i?/ (Γ)a) C {p' Π /?;;/ is a (height one)

prime divisor of M^R/} ,

and since $1' is the integral closure of a Noetherian ring, u<3l' has only

finitely many prime divisors. Therefore the sets Ass(R/(Iι)a) are constant

for all large /, by (2.4), and are contained in [pf Π R; pf is a prime divisor

of κ*R/}.

Now if// is a prime divisor of */<$/, then/?' Π 91 is a prime divisor of

) β for all large /, by (2.6.1). Also, if P is a prime divisor of (u1(Sl)a for
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some i >: 1, then there exists a prime divisor p" of w'Sl' (and hence of
that hes over P, since w'Sϊ/ Π SI = (w'Sl)fl. Therefore

{P; P is a prime divisor of (w'Sl)a for some i > 1}

= {// Π SI // is a prime divisor of «Sl'}.

Finally, if // is a prime divisor of 14*31', then either height// Π R = 0,
and so clearly p' Π R is a prime divisor of (/') f l for all i > 1, or
height p' Π R>0 and tf $2 P = p' Π SI, by (2.2). Also, P is a prime
divisor of (w'Sl), for some / > 1, by (2.6.1), so (w'Sl),: btk<3t= P for
some homogeneous element btk in SI, since (w'Sl)α is homogeneous. Then
with ct G SI - P, it follows as in the proof of (2.4) that pr Π R = P Π i?
is a prime divisor of (/I+A:4"-/)Λ for ally >: 0. Therefore, by the preceding
two paragraphs,

Ass(Λ/ (Iι)a) = {// Π Λ; // is a prime divisor of wSl'}

= {P Π i?; P is a prime divisor of (w"Sl)α for some n > 1}. D

This section will be closed with the following extension of [14, (2.6.1)]
to all ideals in all Noetherian rings.

(2.8) THEOREM. (C/. [14, (2.6.1)].) /// is an ideal in a Noetherian ring
R,thenA*(I) CA*(I).

Proof. Let Q G i*(/) . If height Q = 0, then clearly Q G A*(I). If
height Q > 1, then there exists a prime divisor/?' of wSl' such that tl <£p'
and// Π R = β, by (2.7) and (2.2), where SI = Sl(Λ, /) . Let P = // Π SI.
Then P is a prime divisor of wSl, by [12, Thm. 2.15], and // g P.
Therefore P = wSl: feί*3l for some homogeneous element btk G SI, and
ct & P for some c G /. Therefore

so contracting to Λ it follows that /*+•/+!: fec^i? = β for all j > 0, so

•
3. On the monotonicity of Ass( R/Γ). It was shown in (2.4) that

the sets Ass(2?/(/')*) are increasing, and it was shown in [1] that this does
not hold for the sets Ass(R/Γ). However, the following is still an open
problem:

(3.1) Question. If / is an ideal in a Noetherian ring R and Q G A*(I)
is a prime divisor of V for some / >: 1, is Q G Ass(R/In) for all n > i?
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Of course, (3.1) holds for ideals of the form I — Jι with / an ideal and
i large, by the existence and definition of A*(J). (3.2) gives several
equivalent sufficient conditions for (3.1) to hold for a given ideal /.

(3.2) THEOREM. Let I be an ideal in a Noetherian ring R and assume

any of the following equivalent conditions hold:

(3.2.1) / l + 1 : I = ϊ for alii > 1.
(3.2.2) There exists an integer k and an element b E Ik such that

Ik+i:bR = Γ for alii > 1.

(3.2.3) J / + 1 = Γ Π ( 7 i + 1 : Q) Π ( 7 / + 2 : /) for all i > 0 and for all

Q E Spec R that contain I.

Then if Q is a prime divisor of I1 for some i > 1, then Q is a prime

divisor of In for all n > /.

Proof. It is shown in [14, (3.6)] that (3.2.1)-(3.2.3) are equivalent and
each is equivalent to: every prime divisor of w<3l(jR, /) is relevant.
Therefore the proof of this theorem is essentially the same as the proof of
(2.4). D

The following corollary is well known, but it is included here because
it follows quite readily from (3.2).

(3.3) C O R O L L A R Y . (Cf. [19, Thm. 2.3].) Let bl9...,bg be an R-sequence

in a Noetherian ring R and let I — (bl9... ,bg)R. If Q is a prime divisor of

I1 for some i > 1, then Q is a prime divisor of In for all n>\.

Proof. In [19, Thm. 2.3] it is shown that if Q E Ass(R/Γ) for some

i >: 1, then gradeQ = g. Therefore, since the images of bv...,bg are an

Λρ-sequence and QQ is a prime divisor of ΓRQ, it follows that grade QQ

— g. Therefore QQ must be a prime divisor of IQ, so Q is a prime divisor

of /. Finally, it is well known that Γ + 1 : bxR = Γ for all / > 1, so it

follows from (3.2) that Q is a prime divisor of In for all n >: 1. D

An important special case of (3.3) is considered in (3.4). For (3.4)

recall that an ideal / is of principal class in case / can be generated by

h — height / elements.

(3.4) COROLLARY. {Cf. [24, Lemma 5, p. 401].) Let I be an ideal of

principal class in a Cohen-Macaulay ring R, say height I — h. Then every

prime divisor of Γ has height h for all i > 1.
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Proof. R satisfies the Unmixedness Theorem, by [8, (25.6)], so every

prime divisor of / has height h. Also, ideals of the principal class in R are

generated by Λ-sequences, since R is Cohen-Macaulay, so the conclusion

follows from (3.3). D

This section will be closed with the following result which is closely

related to (3.2) and which gives a sufficient condition for (3.1) to hold for

a specified Q G A*(I).

(3.5) PROPOSITION. Let I be an ideal in a Noetherian ring R and let

Q E Ass(R/Γ) for some i > 1. If IJ+ι = P Π (/ y + 1 : Q) Π {IJ+1: /) for

all j > 0, then Q is a prime divisor of In for all n > i.

Proof. By [14, (3.3)], the hypothesis implies (QR[t, u] Π <3t, κ)3l

( = ( w , β , / / ) 9 l ) is not contained in any (necessarily irrelevant) prime

divisor of wSI, so it follows that no irrelevant prime divisor of u% lies over

Q. Therefore the proof is essentially the same as the proof of (2.4). D

4. A characterization of Cohen-Macaulay rings in terms of A*(I) =

A*(I). During the summer of 1980, Steve McAdam and I both spent a

few days investigating what we considered a very nice generalization of

i?-sequences (see the condition in (4.1)). After we had proved a few results

about such sequences, McAdam's student, Dan Katz, showed us the result

in (4.1), and so our new sequences were, in fact, just i?-sequences. But at

least we had found a new (to us) equivalence of the dfinition of an

/?-sequence, and this new equivalence is fairly useful, as is shown by the

remaining results in this section.

(4.1) LEMMA. Let bλ9...9bg be elements in a Noetherian ring R, let

I — (bl9...9b. )Rforj = 0, l , . . . ,g , and assume I φ R. Then bu...,bfrare

an Resequence if and only if /J_ 1 : bjR — Ij_λ for j — 1,.. . ,g and for all

large i.

Proof. The necessity of the condition follows immediately from the

definition of an i?-sequence and (3.3), so assume the condition holds.

Then it follows that bλ is a regular element, so bλ is an i?-sequence.

Therefore bλR and b\R have the same prime divisors for all / > 1, by (3.3),

so the condition implies bxR : b2R = bλR, hence bl9 b2 are an i?-sequence.

Therefore the condition together with (3.3) imply bλ, b2, b3 are an

Λ-sequence, and a repetition of this shows that b},...9bg are an i?-se-

quence. D
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(4.1) yields an easy proof of the following characterization of Cohen-

Macaulay rings.

(4.2) PROPOSITION. A Noetherian ring R is Cohen-Macaulay if and only

if for all ideals I of the principal class in R it holds that Γ has no imbedded

prime divisors for all large i.

Proof. If R is Cohen-Macaulay, then the condition holds by (3.4).

Conversely, let M be a maximal ideal in R, say height M — h > 0, and let

b{,...,bh i n M s u c h t h a t h e i g h t 1}=j, w h e r e IJ — (bx,...,bj)R (j =

0,1,.. .,h). Then b} is not in any minimal prime divisor of IJ_], so

Γj_λ : bjR — Γj_λ for all large /, by hypothesis. Therefore 6 l 5 . . . ,bh are an

i?-sequence, by (4.1), so their images in RM are an i?M-sequence, hence RM

is Cohen-Macaulay, and so it follows that R is Cohen-Macaulay. D

In 1980 in [15, Thm. 4] / essentially characterized Noetherian rings R

such that A*(I) — A*(I) for all ideals / in R. Since this is a useful

property, it is somewhat disappointing that this class of such rings is quite

small (for example, if altitude R > 4, then R is not in this class). However,

just asking that this property hold for certain types of ideals, such as

ideals of the principal class, leads to more interesting classes. (4.3) shows

that this property can be used to characterize Cohen-Macaulay rings. For

(4.3), recall that a Noetherian ring R is locally quasi-unmixed in case for

each P E Speci? all minimal prime ideals in (RP)* have the same depth.

(4.3) THEOREM. Let R be a locally quasi-unmixed Noetherian ring. Then

R is Cohen-Macaulay if and only if A*(I) — A*(I) for all ideals I of the

principal class in R.

Proof. If R is a Cohen-Macaulay ring and / is an ideal of the principal

class in R, then /' has no imbedded prime divisors for all z > 1, by (3.4).

Therefore A*(I) C A*(I), since it is clear that minimal prime divisors of /

are in A*(I) Π A*(I). However, it is always true that A*(I) C A*(I), by

(2.8), s o i * ( / ) =A*(I).

Conversely, let / be an ideal of the principal class in R. Then {Γ)a has

no imbedded prime divisors for all / > 1, by [13, Thm. 2.12], since R is

locally quasi-unmixed, so Γ has no imbedded prime divisors for all large z,

by hypothesis, and so R is Cohen-Macaulay, by (4.2). D

Concerning (4.3), it should be noted that the quasi-unmixed assump-

tion is necessary. For example, let (R, M) be as in [8, Example 2, pp.
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203-205] in the case m = 0 and r — 1. Then R is a local domain of

altitude two and i * ( 7 ) = A*(I) for all ideals / in R, by [15, (4.2.2)]. But

since there exist a height one maximal ideal in R\ M E A*(bR) = A*(bR)

for each nonzero b in M, by (2.6.1), hence R is not Cohen-Macaulay.

Even though the condition in (4.1) was not a generalization of an

jR-sequence, the same condition with (Ij_x)a replacing Ij_x is a very useful

generalization. Specifically:

(4.4) DEFINITION. Let b,,...,h be elements in a Noetherian ring R

and let lj — {bv... ,bj)R (j = 0,1, . . . ,g). Then 6 1 ? . . . ,bg are an asymp-

totic sequence i n c a s e I g ^ = R a n d ( I j - ι ) a : 6y ϋ
 = ( I j - ι ) a ^Oΐ J ~ !>•••><?

and for all large i.

It is shown in [17] that most of the basic properties of i?-sequences

have valid analogues for asymptotic sequences. It is also shown in [17,

(2.3.5)] that an i?-sequence is an asymptotic sequence, but not conversely.

(4.5) gives a sufficient condition for the converse to hold.

(4.5) PROPOSITION. Let Rbea Noetherian ring such that A*(I) — A*(I)

for all ideals I of the principal class. Then elements bl9...,b in R are an

Resequence if and only if they are an asymptotic sequence.

Proof. Let/, = (bl9...9bj)R(j = 0,1,...,g). If Z>1?.. .,Z>g are an i?-se-

quence, then for j = 1,... ,g it holds that bj £ U {Q; Q E A*(Ij_x)} =

U {<2; Q E A*(Ij_λ)}9 by (3.3) and hypothesis, so bl9...9bg are an

asymptotic sequence, by (4.4).

Conversely, bj g U { β ; β E i * ( J y - i ) } = U { β ; β ε ^ . , ) } , by

definition and hypothesis (it follows immediately from (4.4) that an ideal

generated by an asymptotic sequence is an ideal of the principal class).

Therefore / j _ , : bjR = Ij-} for j = 1,... ,g and for all large /, so bl9... 9bg

are an 7?-sequence, by (4.1). D

This section will be closed with the following important special case

of (4.5).

(4.6) COROLLARY. Elements bλ,... ,fe in a Cohen-Macaulay ring R are

an R-sequence if and only if they are an asymptotic sequence.

Proof. A*(I) = A*(I) for all ideals / of the principal class in i?, by

the first paragraph of the proof of (4.3), so the conclusion follows from

(4.5). G
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5. A characterization of an altitude two local UFD in terms of A*(I).

In 1979 in [5, Prop. 24] it was shown that if R is a Noetherian domain of
altitude two which is locally a UFD, then Ass(R/Γ) = Ass(R/(IJ)a) for
all ideals I in R and for all positive integers i andy. In this brief section it
is shown that this condition characterizes local UFDs of altitude two.

(5.1) THEOREM. Let (R, M) be a Noetherian domain such that altitude
R > 2. Then altitude R = 2 and R is a UFD if and only if Ass(Λ/T) =
Ass( R/(IJ)a) for all ideals I in R and for all positive integers i andj.

Proof. The necessity of the condition was proved in [5, Prop. 24], so
assume the condition holds. Assume first that height M — 2. Now it is
clear that i*(/) = A*(I) for all ideals / in i?, so either R = Rf or there
exists a height one maximal ideal in R\ by [15, (4.2.2)]. Thus if R Φ R\
then M E A*(I) for all nonzero ideals / in R, by (2.6), so if p is a height
one prime ideal in 7?, then M E A*(p). However, this and the condition
imply M is a prime divisor of p, so it follows that R = R\

Let p be a height one prime ideal in i? and suppose p is not principal.
Then M E ^ί*(/?), by [5, Prop 21], and this and the condition then imply
the contradiction that M i s a prime divisor of p. Therefore, if altitude
R = 2, R is a UFD.

Now suppose altitude R > 2. Then, by [15, Thm. 4], altitude R = 3
and either: (a) R = R' and i? is not quasi-unmixed; or, (b) there exists a
height one maximal ideal in R'. If (a) holds, there exists a minimal prime
ideal z in i?* such that depth z < 3. Since R = i?', depth z > 1, by [15,
(1.1) => (1.3)], so depth z — 2. Then there exist at most finitely many
P* E Spec/?* such that z C P* and height P* = 2, by [4, Thm. 1].
Therefore there exists a height two prime ideal P in R such that z + Pi?*
is M*-primary, so M E ^4*(P), by (6.6). But this and the condition lead to
a contradiction. Therefore (b) holds. However, this implies M E A*(I) for
all nonzero ideals / in i?, by (2.6), and this and the condition again lead to
a contradiction. Therefore R is an altitude two UFD. D

(5.2) REMARK. (5.2.1) Since A*(I) C A*{I) always holds, by (2.8), it
follows from the proof of (5.1) that the following conditions are equiva-
lent for a local domain R such that altitude R > 2: (a) Altitude R — 2 and
R is a UFD; (b) for each ideal I in R the sets Ass(u//') are equal for all
i > 1; and, (c) for each ideal I in R the sets Ass(H/(/')<,) are equal for all
ΐ> 1.
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(5.2.2) It follows immediately from (5.1) and [5, Prop. 24] that a

Noetherian domain which is not a field satisfies the condition in (5.1) if

and only if for each maximal ideal M in R, either height M — 1 or RM is

an altitude two UFD.

6. A*{I) in flat extension rings and certain factor rings. In this

section it is shown in (6.3) that if / is an ideal in a Noetherian ring R, then

the sets A*((I + z)/z) (with z E m A s s i ? ) are known once A*(I) is

known, and conversely. And in (6.9) and (6.5) it is shown that if S is a

Noetherian ring which is a faithfully flat i?-module, then A*(I) is known

when A*(IS) is, and knowledge about A*(I) provides considerable infor-

mation about A*(IS). These results are quite technical, but they are also

very useful, as is shown in [17].

We begin with two lemmas, the first of which is closely related to

(2.6.1).

(6.1) LEMMA. Let Rbe a Noetherian ring, let A be a ring between R and

R', and let b be a regular element in A. Then if P E Ass(A/(b')a) for some

i > 1, there exists a height one prime divisor p' ofbR' that lies over P. And,

if p" is a prime divisor of bR', then p" Π A is a prime divisor of (biA)a for

all large i.

Proof. Since (biA)a — bιRf Π A, the first statement is clear. To com-

plete the proof let p" be a prime divisor of bRf and note that there exists a

finite extension ring B of R such that B QA, b E B, and p" Π A is the

only prime ideal in A that lies over/?" Π B. Therefore, since (bιB)a = bιR'

ΠB = b*R' ΠAΠB = (biA)a Π B and p" Π B E A*(bB), by (2.6.1), it

follows that/?" Π A is a prime divisor of (b'A)a for all large /. D

(6.2) LEMMA. Let R be a Noetherian ring, let A be a ring between R and

R', let b be a regular element in A, such that bA = (bA)a, let z E mAss A,

and let ~ denote residue class modulo z. Then there is a one-to-one

correspondence between the sets {P; P is a prime divisor of bA and z C P),

[p; p is a prime divisor of (bιA)a for some i > 1}, and {Q; Q is a prime

divisor of bAf} given by AP/zAP — Ap — (A')Q, and these rings are discrete

valuation rings.

Proof. Let Z = Rad A, so Z C bA = (bA)a, so there exists a one-to-

one correspondence between the prime divisors of bA and of (bA)/Z such

that AP/ZAP = (A/Z)p/Z. (By [12, Corol. 2.11], bA is a finite intersection

of height one primary ideals.) Also, (bA)/Z = ((bA)/Z)a, so there exists
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a one-to-one correspondence between the prime divisors P/Z of (bA)/Z

and the prime divisors P' of (b + Z)(A/Z)' given by (A/Z)P/Z =

((A/Z)')p, and these rings are discrete valuation rings, by [12, Corol. 2.11,

Prop. 2.7, and Thm. 2.15]. Let z' be the minimal prime ideal in (A/Z)'

that lies over z/Z. Then A' — (A/Z)f/z' is a direct summand of (A/Z)',

so the prime divisors of bAf are the ideals P'/z' with Pr a prime divisor of

(b + Z)(A/Z)f that contains z', and these lie over the ideals P in A with

P a prime divisor of bA that contains z, by the one-to-one correspondence.

But (b'A)a = VA' Π A, so the conclusion follows from (6.1). D

The first of the main results in this section shows the nice behavior of

A*(I) between R and the rings R/z with z E mAss R.

(6.3) THEOREM. The following statements hold for an ideal I in a

Noetherian ring R:

(6.3.1) If P E. A*(I)9 there exists z E mAss R such that z C P and

P/z G A*((I + z)/z).

(6.3.2) ifzG mAss R and Q E A*((I + z)/z), there exists P E A*(I)

such that z Q P and P/z = Q. Moreover, P E A*(I + z).

Proo/. (6.3.1) Let P E i*(/) and let 91 = <3l(i?, /) . Then there exists

a (height one) prime divisor/?' of κ9l' such that/?' Π i? = P, by (2.7). Let

z' be the minimal prime ideal in 91' which is contained in /?' (see [12,

Props. 2.13 and 2.7]) and let z = z' Π R. Then z C P, z E. mAssP,

and z' = zΓ Π 91', where Γ is the total quotient of 91. Also, R/z c

^ / ( ^ r Π 91) C 917z7 C (91/(2' Π 9l))r and p'/z' is a height one prime

ideal in 91'/z' that lies over P/z, so there exists a height one prime

divisor of u + z' in (<Sί//z')' that lies over p'/z'. Therefore, since

9 l / ( z ' n 9 l ) s 9 L ( Λ / z , (/ + z)/z) = (say) 9l0, by [20, Lemma 1.1],

there exists a height one prime divisor of w(9l0)' that lies over P/z,

hence P/z E i*((/ + z)/z), by (2.7).

(6.3.2) Let Q E i * ( ( / + z)/z), let 91, 9l0, and Γ be as in the

preceding paragraph, and let z* = zT Π 91', so 9l/(z* Π 91) = 910. Since

β E yί*((/ + z)/z), there exists a height one prime divisor q' of ŵ Rx'o that

lies over Q, by (2.7). Let § be the ring such that <3l0 C § C 91 ό and

§ ^ 91'/z* and let ^ = ^' Π §, so g is a prime divisor of (w'S)α for some

i > 1, by (6.1). Let/?' E Spec<3t' such that z* C/?' and/?'/z* corresponds

to q. Then /?'/z* is a prime divisor of {(uι + z*)(9l'/z*))α, by the

isomorphism, so (6.2) implies/?' is a (height one) prime divisor of w9l'. Let

P = /?' Π 91. Then z c P and P/z = β, since ^' Π (P/z) = Q, and
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P E ̂ 4*(/), by (2.7). Finally, applying what was just shown to the ideal
/ + z in place of /, it follows quite readily (since <&,' c &' = <&(/?, / + z)'
and &'/z* = 0'/(zΓ Π #')) that P E i * ( / + z). D

To prove the second of the main results in this section we need the
following lemma. (6.4) is known, but I know no reference for it, so it is
given here together with a brief sketch of its proof.

(6.4) LEMMA. Let R c S be Noethenan rings such that S is a faithfully
flat R-module, let Xv... ,Xn be indeterminates, and let f l 9 . . . Jk be elements
in the total quotient ring of R[XX,... ,Xn]. Then S[XV... 9Xn9 fX9... Jk] is a
faithfully flat R[Xl9.. .9Xn9 / „ . . . jk]-module.

Proof. 5 * = S[Xλ9...9Xn+k] is a faithfully flat B = R[XX9...9Xn+k]-
module. Let K* and K be the kernels of the natural homomoφhisms from
5 * o n t o S [ X l 9 . . . 9Xn9 f X 9 . . . , / J a n d f r o m B o n t o R [ X l 9 . . . 9Xn9 f l 9 . . . , / J ,
respectively. Then it is quite straightforward to see that K* — KB*, since
the/ are in the total quotient ring otR[Xλ9...9Xn] and since S[Xl9...9Xn]
is a faithfully flat R[XX9...,XJ-module, and the conclusion clearly fol-
lows from this. D

(6.5) and (6.8) consider the relationship between A*(I) and A*(IS)9

where / is an ideal in a Noetherian ring R and S is a flat i?-algebra.

(6.5) THEOREM. Let R C S be Noetherian rings such that S is a flat
R-module, let I be an ideal in R, let P E A*(I)9 and let P* be a minimal
prime divisor of PS. Then P* E A*(IS).

Proof. SP* is a faithfully flat i?P-module, PP E i * ( / P ) , and P** E
A*(ISP*) if and only if P* GΞ A*(IS). Therefore it may be assumed to
begin with that R and S are local with maximal ideals P and P*,
respectively, and that PS is P*-primary. Let (3ί=(3i(R9 I) and S =
91(5, IS), and by (2.7) and the hypothesis let p' be a height one prime
divisor of u%' that lies over P. Let / E pr such that / is not in any other
prime ideal in 91' that lies over /? 'n$t, so/? / Π9l[/] is a height one
prime divisor of w9l[/]. Now 9l[/] C §[/] are Noetherian rings such
that §[/] is a faithfully flat <3l[/]-module, by (6.4), and §[/] C Sr, since
/ E 9lr C S'. Let /?* be a minimal prime divisor of (/?' Π 9l[/])S[/].
Then height /?* = 1 and p* is a prime divisor of M § [ / ] , SO there exists a
height one prime divisor of u%' that lies over /?*. Hence, since p Π R —
P and P5 is P*-primary, it follows from (2.7) that P* = p* n S G
A*(IS). D
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To prove the last of the main results in this section we need one
further lemma. This lemma was proved in [17, (2.4)], but it is included
here for the sake of completeness.

(6.6) LEMMA. Let R and S be Noetherian rings such that S is a flat
R-module and let P be a minimal prime divisor of (/, z)S9 where I is an
ideal in R and z G mAss S. Then P G A*(IS), φ~ \P) G i*(/) , and P is a
prime divisor of {Γ)aS for all large /, where φ is the natural homomorphism
from R to S.

Proof. The proof is essentially the same as the proof of [16, (2.9.2)],
where the lemma is proved under the assumption that Sp/(Rad SP) is
analytically unramified. This assumption was used in [16] to invoke a
result in the proof of [15, Thm. 1] to show that Π{(PιSP)a; i > 1} =
Rad SP. However, it was shown in [3] that this holds in all Noetherian
rings S, so use [3] in place of the result in [15, Thm. 1] in the proof given
in [16]. D

The following corollary of (6.6) is often useful.

(6.7) COROLLARY. Let R, S, /, and z be as in (6.6) and assume that a
prime ideal P in S is a minimal prime divisor of (I, z)S. Then P is a prime
divisor of φ~\P)S.

Proof. By (6.6), P is a prime divisor of (Γ)aS, so P is a prime divisor
of pS for some prime divisor p of (/')β, by [8, (18.11)], and then
necessarily φ~ \P) —p. D

(6.8) contains another useful result concerning A*(I) and A*(IS).

(6.8) THEOREM. Let R C S be Noetherian rings such that S is a flat
R-module, let I be an ideal in R, and let P* G A*(IS). Then P* Π R G

Proof. Let P = P* Π R, so SP* is a faithfully flat i?P-module. Also,
P** G A*(ISP), and P G i*(/) if and only if PP G A*(IP)9 so it may be
assumed to begin with that S is a faithfully flat i?-module and that P* and
P are the unique maximal ideals in S and i?, respectively. Let S* be the
completion of 5, so R C S* satisfy the same conditions as R C S. Also, if
N is the maximal ideal in S*, then N G A*(IS*), by (6.5), so it may be
assumed that S is complete. Let $1= <3l(R91) and S = &(S, JS), so
61 C § are Noetherian rings and S is a faithfully flat %-module, by (6.4).
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By hypothesis and (2.7), there exists a height one prime divisor/?*7 of wS'
that lies over P*. Let p * = / ' Π § , and let z be the minimal prime ideal
in S' that is contained in/?*'. Then S/(z Π S) is a complete local domain,
since 5 is complete, so by the altitude formula it follows that (p*'/z) Π
(S/(z Π §)) is a height one prime ideal, hence /?* is a minimal prime
divisor of (M, Z Π S)S. Therefore, since z Π § is a minimal prime ideal,
p = p* Π 91 G ̂ (w^l), by (6.6). Thus there exists a height one prime
divisor of w<3l' that lies over/?, since un%' Π 91 = (wΛ3l)β for all Λ > 1,
and so P = /? Π i? G i*(/) , by (2.7). D

This section will be closed with the following corollary of (6.5) and
(6.8).

(6.9) COROLLARY. Let R C S be Noetherian rings such that S is a
faithfully flat R-module and let I be an ideal in R. Then A*(I) = {P* Π R;
P* G

Proof If P G i*(/) , then PS φ S and each prime divisor of PS lies
over P, by faithful flatness, so the conclusion follows from (6.5) and
(6.8). D

7. On A*(I) and /(/). In this section several necessary and suffi-
cient conditions are given for the maximal ideal in a local ring R to be in
A*(I) for a given ideal / in R. We begin by recalling the following
definition.

(7.1) DEFINITION. If / is an ideal in a local ring (R, M), then the
analytic spread of /, denoted /(/), is defined to be the depth of the ideal
(M, M)9lin the ring <3l = &(Λ, /).

(7.2) contains a couple of useful results concerning /(/).

(7.2) LEMMA. Let (/?*, Λf*) be the completion of a local ring (i?, M)
and let I be an ideal in R. Then:

(7.2.1) /(/) > /((/ + w)/w) for all w G mAss R and equality holds for
some w.

(7.2.2) /(/) = /(/i?*).

Proof. Let 91 = <3l(i?, /) and § = <Sl(R*9 /i?*). Then &/(Af, M)& =
§/(M*, w)S, so /(/) = /(//?*). Let w G mAss P and let W - wR[t, u] Π
91, so w' G mAss91 and &/V = <3l(R/w9 (I + w)/w), by [20, Lemma
1.1]. Therefore, if P is a prime divisor of (Af/w, ύ)(<&/w') such that
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depth P = /((/ + w)/w) and Q is the preimage of P in <3l, then (AT, M)^1

C β, so

/(/) = depth(M, w)&> depth β = /((/ + w)/w).

Finally, let β be a minimal prime divisor of (M, w)6l such that depth β =

/(/) and let z' E mAss 91 such that z' C β. Then z - z' Π R E mAss i?

and z' = z i φ , u] Π <&, so &/*' s & ( * / * , (/ + z)/z) and

(M/z, u)(%/zf) c β/z', so it follows that /((/ + z)/z) = /(/). •

In [21, Lemma 1.1] it was shown that if / is an ideal in a local ring

(R, M) and if /(/) = altitude i?, then there exists a height one prime

divisor P of M9L(Λ, /) such that P Π R = M, and that the converse holds

when R is quasi-unmixed. Actually, somewhat more can be said in this

case, as is shown in (7.3).

(7.3) THEOREM. Let (R, M) be a local ring, let (R*,M*) be the

completion of R, and let I be an ideal in R. Then, for the following

statements, (7.3.2)-(7.3.5) are equivalent and are implied by (7.3.1), and

(7.3.1)—(7.3.5) are equivalent ifR is quasi-unmixed.

(7.3.1) 1(1) = altitude Λ.

(7.3.2) Mei*(/)

(7.3.3) M* ei*(/i?).

(7.3.4) There exists z G mAss R* such that M*/z E A*((IR* + z)/z).

(7.3.5) There exists z E mAss R* such that depth z = l((IR* + z)/z).

Proof. Let <& = <&(#, /) and S = &(i?*, IR*). Then, by (7.2), /(/) =

= / ( ( / J R * + Z ) / Z ) for some z E mAss Λ*. Therefore, if (7.3.1)

holds, then

altitudeR = /(/) = /((//?* + z)/z) < altitudei?*/z,

by [2], and

altitude R*/z = depth z < altitude i?*,

so (7.3.1) => (7.3.5). Now R*/z satisfies the altitude formula, so M*/z E

A*((IR* + z)/z) if and only if l((IR* + z)/z) = depth z, by [6, Thm. 3],

so (7.3.5) <* (7.3.4). Also, (7.3.4) ** (7.3.3), by (6.3), and (7.3.3) *> (7.3.2),

by (6.5) and (6.8). Finally, if R is quasi-unmixed, then depth w =

altitude R, and R/w satisfies the altitude formula for all w E

mAss R. Also, M E -4*(/) implies M/w E ^4*((/ + w)/w) for some

w E mAss R, by (6.3.1). Therefore /((/ + w)/w) - depth w - altitude i?,

by [6, Thm. 3], and altitude / ? > / ( / ) > / ( ( / + w)/w), by [2] and (7.2),

so (7.3.2) => (7.3.1). D
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(7.4) sharpens [6, Thm. 3], proves the converse of that result, and also
extends the result from the Noetherian domain case.

(7.4) COROLLARY. Let I c P be ideals in a Noetherian ring R such that
P is prime. If 1(1P) = height P, then P G A*(I). The converse holds if R is
locally quasi-unmixed.

Proof. If l(IP) = height P, then PP E A*(IP), by (7.3.1) =* (7.3.2), so
P G A*(I). If R is locally quasi-unmixed and P E A*(I)9 then PP E A*(IP)
and i?P is quasi-unmixed, so l(Ip) = height P, by (7.3.2) => (7.3.1). Π

This paper will be closed by using (7.3) to give another proof of part
of [15, Thm. 1].

(7.5) COROLLARY. (Cf. [15, Thm. 1].) Let (R, M) be a local ring such
that altitude/? > 1. Then there exists a depth one z E mAss R* if and only
ifMGA*(I) for all ideals I in R such that height / > 1.

Proof. Assume first that there exists a depth one z E mAss R*. Now
for all ideals / in all local rings L it holds that altitude L > / ( / ) > height /,
by [2] and [9, Lemma 4, p. 151], so the conclusion follows immediately
from (7.3.5) => (7.3.2).

Conversely, if M E A*(bR) for some height one principal ideal bR,
then (7.3.2) =» (7.3.5) implies that there exists a depth one z E mAss i?*,
since (ZλR* + z)/z is principal and /(/) < £>(/) = the minimal number of
generators of /, by [9, Lemma 4, p. 151]. D
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