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A NUMBER THEORETIC SERIES OF I. KASARA

HaroLD G. DIAMOND

The series

sx=1+3 L 3 :

i=1 K s log n,log n, - --log n,
ny,ny, ,n>1

is interpreted as a statement about Beurling generalized prime numbers
and is estimated by means of Beurling theory.

This series was considered by I. Kasara in [5], in which he asserted
that

(1) “S(x) =x+ O(x/log x).”
This assertion is not correct as it stands. We shall show that
(2) S(x) =cx+ O{x exp(— (log x)'/2~€)},

where ¢ = 1.24292.

We begin by giving the heuristic argument. Each integer in (1, x] is
uniquely expressible as a product of a certain number of primes. Thus we
have

(3) [x] =1+ 7(x) +m(x) +---
for x = 1, where

7.(x) = # {n < x: n has exactly k prime factors}

with repetitions allowed.
An estimate from prime number theory [4, §22.18] and a small
calculation give, for each fixed &,

(4) 7 (x) ~ x(loglog x)* ' / {(k — 1)log x}
1l !
k! logn,logn, ---logn,’

nn,- - A=Xx
ny,noy,..., n,>1

This relation and (3) suggest formula (1). However, (4) does not hold
uniformly in k, so this argument does not even show that S(x) ~ cx.
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Define arithmetic functions

f(n) = {l/logn, n=2,

0, n<2,

and
_ |1, n=1,
e(n) = {O, n#*1.
For g and 4 arithmetic functions, define the convolution g * 4 by
g*h(n)= 3 g(i)h(J).
ij=n
Finally, define an arithmetic function s by setting s(n) = S(n) — S(n — 1).
The formula defining S can now be rewritten as
(5) s=e+fH+fxf/2'+f*fxf/3!1+--- =expf.
The last formula is of the type that appears in the theory of Beurling
generalized prime numbers, with
2 f(n) oI(x),  S(x) <fx].
Viewed from this perspective, (1) is suspicious, because special conditions
are required in order that a Beurling generalized number system should

have density exactly 1.
We prove (2) with the aid of Theorem 3.3b of [3]: Suppose f and s

satisfy (5) and

n x 1 —¢!
2 f(n : :fl tlogt dt + log ¢ + O{exp(—log* x)}

n=x

for some ¢ > 0 and a € (0, 1). Then
S(x)=ex + O{x exp(— [log x loglog x] ”')},

wherea’ = a/(1 + a).
Here we have

f(n) _ 1 x dt , ( 1 )
2 n o 2 nlogn_]; tlogt+7+0 xlogx |’

n<x 2=n=x

where v’ = 428166 [2, p. 244, Table 2], and

1=t 1
[l tlogtdt—loglogx+y+0(xlogx),

where y = .577216 [1, p. 228, footnote 3].
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It follows that

fio) _pri=' ( )
3 = f| Togr % =7 =71~ loglog2 + O 1io— .

n=x

Thus, ¢ = exp(y’ — v — loglog2) = 1.24292, and we can take a to be any
number less than 1 in Theorem 3.3b of [3]. This proves (2).

We note in conclusion that if it is assumed that S(x)-~ cx, then the

constant ¢ can be evaluated by an Abelian argument. We use the formula

f]wx“’ ds(x) =exp !

o ’
no, n’logn

valid for o > 1, and evaluate each side. On the one hand,

/;wx“’ ds(x) = of‘wx"’“‘S(x) dx ~

o—1
aso — 1 + . On the other hand, aso - 1 +,
1
n§2 n’logn
_ o _ 0 f(n) 1=
——loga_l-i-(o l)j; t {,Zx—_” j;—_ulogudu dt
=log = +(o = 1) [ 1°(y' — v — loglog2 + o(1)} dr
0—1 1
= log + vy —y —loglog2 + o(1).
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