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THE INTRINSIC METRICS

ON THE CIRCULAR DOMAINS IN Cn

MASAAKI SUZUKI

In this paper we study the intrinsic metrics for the circular domains
in C". We calculate the Kobayashi (pseudo-) metric at its center for
pseudoconvex complete circular domain D using the result of Sadullaev.
From this we have that such D is hyperbolic iff D is bounded. If a convex
complete circular domain is complete hyperbolic, then the Caratheodory
and Kobayashi metrics coincide at the center. Using this and the results
of Hua we explicitly compute the intrinsic metrics of the classical
domains. Furthermore we define the extremal function and extremal disc
for intrinsic metrics and compute them in some special cases.

1. Preliminaries. Let M be a (countable, connected) complex mani-

fold, and TM the holomorphic tangent bundle of M. Let Δ denote the unit

disc in C with Poincare metric ds2 = dtdt/{\ — 11\2)2 of Gaussian curva-

ture — 4.

Caratheodory metric (C-metric, in short) CM(p; ξ) and Kobayashi

metric (K-metric, in short) KM{p\ £) at (/?;£) G TM are defined by

CM(p; ξ) = sup{| (df)pξ\ / G Hol(M, A)J(p) = 0},

KM(p; ξ) = inf{l/r: 3 F G Hol(Δ, M ) , F(0) =/>, F'(0) = rξ(r> 0)}

respectively, where ^ ( 0 ) = dF0(d/dt). (Correctly speaking, these are pseu-

dometrics.) Hereafter we assume CM > 0 everywhere and M is complete

hyperbolic. We work mainly on (bounded) domains in Cn. Then CM and

KM are continuous Finsler metrics on M. For them, we can define the

holomorphic curvature as follows (cf. Suzuki [8]). Let X{p\ ξ) denote

either CM(p\ ξ) or KM(p; ξ). We set

H(p;ξ)= U {FeHol(Δ r ,M);F ' (0) = r€>F(0)=Jp}.

We define λF(/) = X2(F(t); F\t% t G Δr = {|/|< r}, for each F in

H(p; ξ). Then the holomorphic curvature of X at (p\ ξ) is given by

kx(p; ξ) = sup{- (2λF(0))" !ΔlogλF(0); F G H(p;

where

ΔlogλF(0) = 4 liminfs 2\ — I logλF(seιθ) dθ — logλF(0)k
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Then we have

THEOREM A. ([8]). Assume CM > 0. Then the holomorphic curvature of
C-metric is < — 4, and that of K-metric is > — 4. Thus if CM — KM, their
holomorphic curvatures are — 4.

We may put CM(p; 0) = KM(p\ 0) = 0. Fix a point p in M. The
indicatrices of C- and K-metrics at p are given by

IC(M, P)={ξE: TpM; CM(p; ξ) < l } ,

I*(M9 p)={£(Ξ TpM; KM(p; ξ) < l} ,

respectively. Under our assumptions, they are open sets.

THEOREM B. (cf. [1], [6]). // M is a bounded domain in C", then

IC(M, p) is a bounded convex circular domain with center 0. // M is a

bounded convex complete circular domain in Cn with center 0, then M —

/ c(M ?0).

2. The extremal function and the extremal disc. Let M be a com-

plex manifold, and fix a {p\ ί~) in TM ( £ ^ 0 ) . Since Δ is complete

hyperbolic, there exists an / E H o l ( M , Δ) which attains CM(p; £);

l (40o£l= CM(P> £)> /(°) =P- W e c a l 1 s u c h / the extremal function for

(/>;€)-
When M is complete hyperbolic, the family Hol(Δ, M) is a normal

family and there exists a mapping F in Hol(Δ, M) which attains
KM(p; I ) . This mapping F is called an extremal disc for (p; ξ) (cf. [9]).

Let / and F be an extremal function and an extremal disc for (p\ £),
respectively. Setting g = /© F, we have a function g E Hol(Δ, Δ) with
g(0) = 0. Thus, by the classical Schwarz lemma,

1 ^ |g ' (0) | = | (df)0(dF)p \= CM(p; ξ)/KM(p; ξ).

Note that if CM(p; ξ) = KM(p; ξ) for some (p; ξ), then g(t) = eιθt,

t <=Δ,Θ <ΞR.

PROPOSITION 1. Let M be complete hyperbolic. If CM(p; £) =
KM(p\ ζ) for some (p\ £), then an extremal disc F: Δ -» M for (p; ξ) is an

isometric immersion with respect to ¥L-metric.

Proof. Since KM is distance decreasing with respect to F,

KM(F(t); dFt{\)) < KA(t; 1) = 1/(1 - \t\2) for / G Δ.
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Taking an extremal function / for (/?; £), we have

KM(F(t); dFt{\)) > KA(fo F(t); d(fo F)t(l)) = KA(t; 1)

because/o F(t) = eιθt. Hence we have KM(F(t)\ dFt(\)) = K£t\ 1). D

An extremal disc F(Δ) is an analytic disc in M to which the restric-
tion of the K-metric of M coincides with the Poincare metric. We shall
exhibit in the next section the extremal functions and discs for the ball
and polydisc.

3. The complete circular domains in Cn. In this section we assume
Mis a complete circular domain D in C" with center 0 (i.e. tD C D for
any t G C, 111< 1). Let lξ be a complex line in direction £ passing through
0. We denote the radius of the disc 1̂  Π D by i?(£). Note that R(tξ) =
R(ξ) for any / G C - {0}. We define the function r: D -* [0, +oo] by
r(z) — \\z\\/R(z) if z Φ 0 and r(0) = 0. Then r is upper semicontinuous
and D is represented by D — [z E C " ; K Z ) < 1} (II II i s the Euclidean
norm of Cw.)

We shall calculate the K- (pseudo) metric at (0; ξ) G TD = /) X CΛ

(£ 7̂  0) for the pseudoconvex complete circular domain D. We recall the
Schwarz lemma by Sadullaev [7].

LEMMA C. (1) Let F — (Fu... ,Fn) be a holomorphίc mapping of the
unit disc Δ into a pseudoconvex complete circular domain D and F(0) = 0.
Then\\F(t)\\ < R(F(t))\t\for t G Δ.

(2) Under the above conditions, the linear part of F maps Δ into D.

We take a holomorphic mapping F in Hol(Δ, D) such that F(0) — 0
and dFQ(d/dt) - F'(0) = rξ for some r > 0. By Lemma C(2), the linear
part F\ϋ)t of i7maps Δ into 2), and from (1) we have Hî OVH < R{F\ϋ)t)
\t\ for t G Δ. Since i?(F(0)0 = Λ({), we have 1/r > llέlliίί^)'1. On the
other hand, ^ ( 0 ; ξ) is the infimum of such 1/r. Thus ^ ( 0 ; £) =

PROPOSITION 2. //£> w a pseudoconvex complete circular domain in C",
Z) w hyperbolic if and only if D is bounded.

Proof. Let D be unbounded. Then we can take a sequence {zk} in D
such that | | z j | -* +oo, zk φ 0. Setting ^ = zΛ/||z^|| we have a sequence
(£yj with IUJI = 1, and we may assume {ξk} accumulates to a point £
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=1). By completeness of D, R(ξk)>\\zk\\9 hence KD(0; ξk) =
R(ξk)~ι -» 0 as k -> +oo. This means D is not hyperbolic at (0; ξ). We
proved that if Z> is hyperbolic then D is bounded. The converse is
trivial. D

REMARK. Kodama [5] has proved the above without assuming pseudo-
convexity.

THEOREM 1. Let D be a complete circular domain in C" with center 0. If
D is complete hyperbolic, then

IC(D,O)D IK(D,O) = D.

Furthermore, if D is convex, then

0,(0; ξ) = KD(0; ξ) = \\ξ\\R(t)~l for all ξ G C" - {0}.

Proof. When D is complete hyperbolic, D is taut and pseudoconvex
(cf. [4]), and by Proposition 2, D is bounded. The indicatrix of the
K-metric at center 0 is

/ * ( / > , 0 ) = { ξ e C"; KD(0; ξ) < 1} = { { E C " ; r ( ξ ) < 1 } = D .

Since CD(0; ξ) < 1^(0; 0 in general, we have Ic(D,ϋ) D IK(D,0) = P.
As we have noted in §1, if D is bounded convex, then /c(Z>,0) = D;
hence / c( Z>,0) = /*(/>,<>) = D. In this case we have CD(0; ξ) = KD(0; ξ)
for all ξ ¥= 0. In fact if CD(0; ξ0) < KD(0; ξQ) for some ^0 φ 0, we can take
a real number s such that Q>(0; ξ0) < s < KD(0; ξ0). Then C^O; s~%) <
1 < ^ D ( 0 ; j " 1 ^ ) . Thus s-% E / c ( A 0 ) , but Γ ^ ^ Λ A O ) , a con-
tradiction. D

If a bounded circular domain is homogeneous, then it is a symmetric
domain (Vigue [10]). The bounded symmetric domains D are convex
complete circular domains. Thus by Theorem 1, CD(0; ξ) = KD(0; £).
From homogeneity it follows that CD(z; ξ) = KD(z\ ξ) for all (z; £) in
77). These results are contained in Kobayashi [3, 4].

COROLLARY. Let D be a bounded symmetric domain in Cn. Then the C-
and Y^-metrics of D coincide on the tangent bundle and their holomorphic
curvatures are — 4.
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EXAMPLE 1. We take the unit ball D = {z E Cn; \\z\\ < 1}. Then
R(ξ) = 1, KD(0; ξ) = \\ξ\\. Let F G Hol(Δ, £>) be an extremal disc for
(0, ξ). Then F(0) = 0, F'(0) = ξ\\ξ\\"1. For ί G Δ, we set h(t) =
(^(0, ^'(0)), where ( , ) is the Hermitian inner product of CΛ. Then
Λ(0) = 0,

|A(O|< | |F(OIIΊI^(O) | |< |/ |<1, and |Λ'(0)|= ||F'(0)||2 = 1.

Hence by Schwarz's lemma, h(t) = t on Δ. We obtain a unique extremal
disc for (0; £), TO = (€1 | |€|Γ1ί,...,U€IΓ10 On the other hand, the
unit ball is symmetric. Thus ^ ( 0 ; ξ) = Q>(0; £). Let/(z) be an extremal
function for (0; ξ). Then /o ^ / ) = ^'^, / E Δ. If {„... ,£„ ̂  0, f(z) =
e'^Σi^ZylllH"1. When some £y = 0, an extremal function is not unique.

EXAMPLE 2. Now we consider the polydisc D — [z EL Cn\ |z,.|< 1,
7=1, . . . , « } . In this case R(ξ) = HflKmaxl^D"1. Hence ^ ( 0 ; ξ) =
max\ξj\. If the above maximum is achieved for only one index j9 the
extremal function for (0; £) is

For example, for j = 1, the extremal disc F(t) =
(0; I) is given by

- *"/,

where g 7(0 E Hol(Δ, Δ) and αy = ξj/ξx (cf. Stanton [9]).

4. The bounded symmetric domains. We consider the intrinsic met-

rics of the bounded symmetric domains of classical type. Let M(m,n)
denote the set of all (m, w)-matrices and write M(n,n) — M(n).

Rτ(m, n)= {Z<Ξ M(m9 n)\ En - Z*Z > 0},

Ru(n) = [ZG M{n); Z' = Z,En- Z*Z > 0},

Rm(n)= {ZGM(n);Z'= - Z , En ~ Z*Z > 0},

Rw(n) = { Z G M ( Λ , 1 ) ; 1 - 2Z*Z + | Z ' Z | 2 > 0, | Z ' Z | < l},

where £ n is the unit matrix and Z' is the transpose of Z and Z* = Z r.
These are complete circular domains with center 0, and convex. Let R or
Rj denote one of these domains. The group G of biholomorphic transfor-
mations of R acts on R transitively, thus we may consider CR(0; ξ) or
KR(0; ξ) only. Let Go be the isotropy subgroup at 0.
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LEMMA D (Hua [2]) (1). For ξ E M(m, n), there is a g G Go such that

λ, 0

0

, λ , > > λ n > 0 ,

where λ2,... ,λ2

rt are eigenvalues #/£*£.
(2) Forξ G M(n) with ξ' = £, /Λere is a g G Go such that

gξ = diagonal[λ1?... , λ j , λ, > > λrt > 0,

eigenvalues ofξ*ξ.

(3) For £ G Af(π) w/ίft ξ' = -{, /Λere w a g G Go ŵc/z

= diagonal
0 λ}

- λ , 0

0 λ

-K op

where k — [n/2]9 λ2

{ > >: λ2^ > 0 are eigenvalues of ξ*ξ9 and the last

term is Oifn is odd.

(4) For ^ G M(«, 1), there exists a g G Go such that

g € = ( λ 1 , ι λ 2 , 0 , . . . , 0 ) ,

where λ2

1? λ
2

2 are eigenvalues of the (2,2) matrix

THEOREM 2. Lei Cy ίΛe C-metric and K-metric of

respectively. Then, for j — I, II, III,

ς ( 0 ; ξ) = Kj(0; ξ)

— max{ positive square roots of the eigenvalues ofξ*ξ),

and

CI V(0; ζ) = Kw(0; £) = (| | | | |2 + (| | | | |4 - \ξ'ξ?) ) .
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Proof. Since the proofs are almost the same for j — I, II, III, we prove

only the case Rv By Lemma D(l), we may assume

> λ , > > λ n > 0 ,

and λ , > 0 . We show Kxφ; ξ) — λ,. Defining the mapping
Hol(Δ, RJby

0 tλn/λι j

we have dF0(\xd/dt) — £, F(0) = 0. Since Kλ is metric decreasing with

respect to F, ΛΓj(O; ξ) < KA(0; λ,) = λ,. Similarly, for the mapping /:

Z?i B Z -» z,, E Δ, where Z = (z / y), ίί/0(|) = λ, and /(0) = 0. Hence we

have K^O; ξ) > K(0; λ,) = λ,. Thus we obtain K^O; ξ) = λ,.

To calculate # I V ( 0 ; ξ), we use Theorem 1. We substitute z =

11 \— r into the inequalities

Then the radius R(ξ) is the supremum of the r satisfying these inequali-

ties. Easy calculations show

and noting that Λ: l v(0; £) = 1, we arrive at the conclusion. D

REMARKS. (1) For any (z; ξ) in 77?, taking a g E G with g(z) — 0, we

have Kjiz ^^KjiO d
(2) We obtain the same result for Kιv(0; ξ) from the calculation using

the fact {(zj + /z2, zχ — iz2), z = (zλ9...9zn) G Rιy(n)} is the geodesic

polydisc in Rιv(n) (cf. [4]), and Lemma D(4).

The author is grateful to A. Kodama and K. Azukawa for very helpful

conversations.
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