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CONTRIBUTIONS TO HILBERT'S
EIGHTEENTH PROBLEM

WOLFGANG WOLLNY

In the second part of his eighteenth problem Hubert formulated: "A
fundamental region of each group of Euclidean motions together with all
its congruent copies evidently gives rise to a covering of the space
without gaps. The question arises as to the existence of such polyhedra
which cannot be fundamental regions of any group of motions, but
nevertheless furnish such a covering of the total space by congruent
reiteration." Following ideas of Heesch this question of Hubert's will be
analysed in detail in this article, restricting to the case of two
dimensions — the Euclidean plane E2.

A. Introduction. After some necessary terminology has been intro-

duced the above question is subdivided into two special questions: (1) Do

there exist tiles Bι forming homogeneous tilings but having only non-triv-

ial stabilizers? (2) Do there exist tiles Bn which tile the E2 but cannot

form a homogeneous tiling? Positive answers to both special questions are

obtained for the case of coverings by non-compact tiles, in terms of

construction rules for special types of regions in the form of strips. These

complete the list of previously published examples. Subsequently, a new

method is developed. By systematic subdivision of the above strips, new

types (both non-compact and compact) will be constructed also yielding a

positive answer to Hubert's original question.

A positive answer of a special kind can be given immediately for the

case of a fundamental region B of some discrete group @, if B φ B

(closure of B): For this case the polyhedron B can fill space under the

"sharply transitive" action of ©, and yet is not a fundamental region of

@, since its boundaries contain equivalent points.

K. Reinhardt in 1928 was the first to answer the Hubert question

affirmatively by giving a 3-dimensional multiconnected polyhedron. H.

Heesch gave a similar answer in 1935 for E2 by constructing a special

decagon (cf. [3]). Further results given by Heesch are cited at the end of

§C, after the detailed analysis has been carried out. For a survey of the

development in the Hubert problem and its generalizations we refer to [2].

B. Definitions.

DEFINITION 1. A tiling Π of E2 is a covering of E2, without overlap,

by any set of compact or non-compact topological disks (called tiles). In
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the special case that each tile of Π is congruent to a fixed region B, called
the prototile of Π, Π is called monohedral.

In this paper the term "tiling" is used in the latter sense. The
boundaries of the tiles are required to be piecewise differentiable. A
peculiar case obtains if there is a tiling Uh in which the infinite configura-
tions round each tile are congruent. In this case Uh is called homogeneous
and an equivalent definition may be given:

DEFINITION 2. A tiling ΠΛ is called homogeneous if there exists at least
one group © acting transitively on ΠΛ

Two homogeneous tilings Πf and Π2 are said to belong to the same
topological class if there exists a homomorphism Φ: E2 -* E2 with Φ(Πf)

= π$.
From Definition 2 it follows that homogeneous tilings of the same

topological class are topologically indistinguishable. For two homoge-
neous tilings with compact tiles the latter case obtains if they have the
same cycle z defining the number k and order nt of vertices of a tile within
the tiling ΠΛ counterclockwise around its boundary. There is

DEFINITION 3. A vertex of Π is a boundary point of nι > 2 tiles of Π;
nt is called the order of the vertex.

In the case of homogeneous tilings with compact tiles the only
possible values for ni are 3, 4, 6, 8 and 12, and for k 3, 4, 5 and 6.
Furthermore there is the following theorem1: If a group © acts transitively
on a homogeneous tiling with compact tiles, then @ belongs to a type of
the 17 plane two-dimensional crystallographic ones. It should be noted: If a
group © belonging to a type of this list acts transitively on a homogeneous
tiling Π \ the prototile of Tlh must not be compact (cf. Fig. la). Besides
this for homogeneous tilings with non-compact tiles there are only the
following possibilities (cf. [7]):

(i) @ has a subgroup of translations isomorphic to R (© is then
called semi-discrete) and the tiles have the form of parallel strips or
semi-planes:

(ii) © belongs to one of the seven types of discrete groups with only
one direction for translations; or

(iii) © is a cyclic group of rotations &n (n — 2,3,4,...) or a dihedral
group 2)m(m — 1,2,...) with a unique fixed-point.

1 The proof of the theorem is e.g. given by A. Speiser (Die Theorie der Gruppen von
endlicher Ordnung, Berlin, 1937, p. 95).
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It should be mentioned that most of the types of discrete groups
involve free parameters (such as the ratio of the lengths of translation
vectors, the angle between them, etc.) yielding one or several infinities of
geometrical varieties of fundamental regions for each group of Euclidean
motions (cf. [1]). We remark that the 17 discrete 2-dimensional types of
groups are abstractly distinct, while the 7 discrete 1-dimensional types of
groups only yield 4 distinct abstract ones.

In order to mark uniquely the transitive action of a group ® o n a
homogeneous tiling Π \ it is appropriate to incorporate the diagrams of
the symmetry system S@ of ©, defined by Niggli, into ΠA.

DEFINITION 4. The symmetry system S& of a discrete group © of E2 is
the totality of its symmetry elements, where a symmetry element of © is
the set of points in E2 left fixed by an element of @, that is:

1. the centre of a rotation,
2. the axis of a reflection,
3. the axis of a glide-reflection

(for the appropriate types of motions occurring in ©).

We see that translational vectors do not belong to S&. Rotations can
be distinguished graphically by special symbols for their centres: lenses
(digons), triangles, squares or hexagons mean that the corresponding
rotations have periods 2, 3, 4 or 6. The axes of reflections are represented
by lines, those of glide-reflections by dotted or broken lines.

If there are equal symmetry elements in S% which are inequivalent
under the group ©, they are distinguished graphically, e.g. two inequiva-
lent rotations through 180° by a hollow and a striped lens ( Λ, &), two
inequivalent axes of glide-reflection by different dottings of the lines.

Another possibility of specifying the transitive action of a group ©
upon a ΠA uniquely is given by the cycle Z of neighbor-transformations of
some tile B of Π\

DEFINITION 5. The cycle Z of neighbor-transformations of a tile B GTlh

is the totality of transformations by which B is made congruent with its
neighboring tiles (tiles possessing more than one boundary point with B in
common) going counterclockwise around its boundary.

In the case that B has, say, stabilizer g and neighbors B,(i = 1,... ,ra),

Z = {Λ^,jV2δ,...,7Vmg}2 wither £ - > * , .

Products of group elements are read from right to left in this paper.
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If Z is given for a homogeneous tiling with compact tiles, explicit mention
of © is redundant, because for this case Z is a complete system of
generators for © (cf. [9]). In certain homogeneous tilings with non-compact
tiles, however, Z is only a set of generators for a proper subgroup of the
group © of the tiling (cf. [10]).

Henceforth we shall distinguish between the type of a group, denoted
by gz (e.g. pi, p2, etc.) and a special (geometrical) realization of g, ,
denoted by © r For each homogeneous tiling Π^ there exists (by defini-
tion) at least one group © of Euclidean motions acting transitively upon
it. © may belong to type g. If there is only one geometrical possibility for
such a realization, the pair (ΠΛ, g) is single-valued. If further there exists
only a single type g with respect to Π \ specific reference to g can be
dropped and Uh itself can be interpreted as a special geometrical model ©
for g: g is realized as © by I P (cf. Fig. lb). If, however, there are different
geometrical possibilities for transitive actions of groups ©,•(/ = 1,2,... ,n)
belonging to the same type g, the pair ( Π \ g) is many-valued. E.g. there
are 3 different cases for groups of type p2 with respect to the homoge-
neous tiling ΐlh given in Fig. 2 (a, b, c), the unique determination of their
actions being achieved by incorporating S& (i — 1,2,3) into ΠΛ More-
over there is still one possibility for a group of type pi upon ΐlh (cf. Fig.
2d).

In order to classify homogeneous tilings, the concept of the corre-
sponding symmetry group © of such a tiling Hh is introduced: If there are
in general different types g. (/ = l,2,...,m), each of them moreover
yielding different realizations © 0 (j ~ 1,2,...,«(/)) for transitive action
onΠ / l , one group out of this list © — this notation will still be used later
— is distinguished, namely the largest group of Euclidean motions under
which ΠΛ is self-congruent. This group shall be called the corresponding
symmetry of ΐlh and denoted ©. It is evident that © is uniquely de-
termined by the geometrical properties of ΐlh. In order to characterize ©
uniquely, it is necessary (1) to give its type (pl,p2, etc.), and (2) to mark
its transitive action upon ΠΛ (1) and (2) together are, e.g., given by
incorporating the symmetry system Shinto ΠΛ It can be shown easily (cf.
[10]) that ©contains all other possible groups of Π^ as subgroups and acts
upon Π^ in such a way that the stabilizer of a tile of Π^ is maximal
compared with all other possible actions of groups on Π\

For example, for the tiling Π • by squares with z — (4,4,4,4), there is
© of type p4m in a geometrical realization upon Π^ given in Fig. 3 a with
e.g. 4-fold centres of rotation in the centres of the tiles, the tiles having
stabilizer ® 4 . Besides this case there are two other possibilities for
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geometrical realizations of a group of type p4m acting transitively o n Π Λ

D ,

the tiles having stabilizers <£)ι or ® 2 , respectively (cf. Fig. 3b and c). It

should be noted that there are altogether 36 different possibilities for

transitive actions on Π ^ (cf. [9]).

For the tiling ΐlh of Fig. 2, there is © of type p2 geometrically realized

on ΐlh in such a way that © 2 is the stabilizer of the tiles (cf. Fig. 2b).

In the special case that (Uh, Q) is single-valued and g is the only

possible type for Π \ the above list GΓ contains only one element — the

corresponding symmetry group @ of Π^ (for example see Fig. la or lb).

To distinguish homogeneous tilings, the following definition is made.

DEFINITION 6. Two homogeneous tilings Πf (/ = 1,2) belong to the

same class if:

(1) they belong to the same topological class,

(2) their corresponding symmetry groups @z (/ = 1,2) belong to the

same type g

(3) the homeomorphism Φ: E2 -> E2 with^Φ(Πf) = Ylh

2 (existing by

(1)) can be coupled with an automorphism/: Q&x -> @2 in such a way that

for each / i 6 6 , and each tile B E Πf,

Φ(hB)=f(h) Φ(B).

(3) means that the groups @, (/ = 1, resp. 2) act on the tilings Πf

(/ = 1, resp. 2) in the same geometrical manner.

C. Detailed analysis. For any homogeneous tiling Tlh one can now

consider the list © of groups {@>/y(/)} defined above in §B, and with

respect to each ®tJ E 6 the corresponding stabilizer g of a tile B of Π \

For B there is the alternative of having

(a) a trivial stabilizer g z y , i.e. $,7; = @ (unit group) or

(β) a non-trivial stabilizer g l y , i.e. g l y ^ @.

Only in case (α) does © z ; operate shaφly transitively on Π Λ (there is only

one transformation t G © ί y , /: 5 -> 57 ( 5 , 57 G ΠΛ)). Then 5 can be

chosen as a fundamental region of © . In case (β) 5 cannot be a

fundamental region of @ίy, but can be chosen as a union of / > 1

fundamental regions of ®ιj9/being the cardinality of g7y.

The Hubert question cited in the introduction now leads to the

following two subquestions:

(1) Do there exist tiles forming at least one homogeneous tiling Tlh

but having for each possible Π Λ and © of Hh only non-trivial stabilizers?

(2) Do there exist tiles which tile the plane but cannot form any

homogeneous tiling?
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The subquestion (1) can be discussed by restricting to the set of tiles

forming at least one homogeneous tiling.

We consider a tile B with a non-trivial stabilizer g within a homoge-

neous tiling Uh with group @. © is decomposed into cosets with respect to

g (say left cosets):

( + ) © = A,g + Λ2g + (A, = e, the identity element).

The order and index of g may be finite or infinite. All elements of the

same coset Afg carry B onto the same tile Br These comprise exactly/

different transformations, where/is the cardinality of g . If a representa-

tive is chosen out of each coset, we get a system of elements, say

{A1? A 2 , . . . } , called a system of (left) representatives. By elements of this

set B may be carried onto each other tile of Uh (and that by exactly one

element), because © acts transitively on ΠΛ

A special situation obtains if the system of representatives {Al5 A2,...}

can be chosen so that they form a group ίρ. Then the following theorem

holds:

••>

T H E O R E M 1. If the system ίρ = {A1,A2,...} of coset representatives is a

group, <ξ> acts sharply transitive upon ΠΛ

Proof. The transitive action of ίρ follows from the transitive action of

©, as has been shown above. It has to be shown that every tile of Π^ has a

trivial stabilizer with respect to ίρ: If $Jl is any group acting transitively on

any set X, the stabilizers of the elements of X are always conjugate in 3K.

Therefore since, by construction, the tile B has a trivial stabilizer with

respect to «£>, so does every tile in ΠΛ D

In the case that φ is a subgroup of @, the subgroups § C @ and

F̂ C © are said to be complementary (or complements of each other) in ©.

DEFINITION 7. Two subgroups U and 33 of a group © are said to be

complementary in © if the elements of © can be brought into matrix

scheme such that the rows are left (or right) cosets of U in © and the

columns are right (or left) cosets of 33 in @.

For example, the dihedreal group ® 6 can be decomposed as follows:

Φ 6 = 6 6 + Z>,©6 = 3), + Φ,Q + Φ,Q 2 + +©,c 6

5

(C 6 : rotation through 2ττ/6 about O\ Dλ\ reflection in a line through O\

6 6 : - < C 6 ) ; Φ 1 : = ( i ) 1 ) ) . The groups © 6 = {£,C 6 ,Q 2 , . . . ,Q 5 } and φ ,

= {E9 Dx} therefore are complementary, and the matrix scheme is
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E Q r2
Γ 3 Γ 4 r5

π c5

The columns are right cosets of © t in ©6 and the rows left cosets of 6 6 in
5D6. We can conclude from this: given a homogeneous tiling ΠΛ associated
with 3D6, the tiles being a union of fundamental regions of © 6 with
stabilizer 3) l5 ΠA is also associated with ©6, the tiles being fundamental
regions of ©6.

There is another definition equivalent to Definition 7:

DEFINITION 8. Two subgroups U and 33 of a group © are said to be
complementary in % whenever U Π 33 = & and U S3 = © (U Π 33 de-
notes the meet of U and 33 and U 33 their product (the set of all elements
of the form PQ with P E U and Q G 33)).

The special Hubert question (1) can now be answered affirmatively if
the following geometrical situation can be realized:

Let Π^ be a homogeneous tiling with prototile B, on which the group
® acts transitively, B having non-trivial stabilizer g. There is no system of
coset representatives of g forming a group, and this still holds for other
possible groups acting upon I P and other possible homogeneous tilings
with B.

Concerning the Hubert question the following answers are known.
Let the following 4 classes of tiles of E2 be defined:

K

K

K

K

IA

IB-

IIA*

ΠB

compact tiles £ forming at least one homogeneous

non-compact tiles \ tiling but having only non-trivial stabilizers,

compact tiles ) forming exclusively non-homogeneous

non-compact tiles) tilings of E2.

Heesch (cf. [4]) showed KlA to be empty. He constructed the complete list
of compact tiles forming at least one homogeneous tiling by developing
two different methods, a topological and a group theoretical one (cf. [4]). A
detailed analysis of the homogeneous tilings with prototiles of this list led
to the result cited above. The peculiarity that stabilizers of compact tiles
within homogeneous tilings always have a complement in © is caused by
the special structure of the 17 crystallographic types of groups. Thus if a
tiling with compact tiles has a transitive group, it also has a sharply
transitive group.
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Heesch, however, showed KlA to be non-empty for the sphere S2 by

giving a homogeneous tiling Π* of the S2 consisting of 20 regular

spherical triangles. The non-trivial stabilizer ©3 of these tiles does not

have a complement in the icosahedral group, the group of Π*, and the

tiles do not form any other tiling of the S2.

Besides this Heesch constructed tiles of the class KllA, finding the

special heptagon (cf. [4]) and the decagon, cited above, by trial and error.

Moreover he was probably the first to publish tiles belonging to KlB and

*ΠB ( c f [4]) ]

D. Results. Next, new types of tiles belonging to the classes KlB,

KUA9 KnB and completing those published in the literature will be

constructed according to a certain scheme. A remarkable consequence is

the existence of tiles of class KllB having a symmetry group of infinite or

finite order.

We shall distinguish between the stabilizer g and the symmetry group

© of a tile B:

The stabilizer g of B within a homogeneous tiling Hh is defined

relative to the respective group © of Uh: g is the largest subgroup of ©

under the elements of which B is self-congruent. The symmetry group © of

B is the largest group of Euclidean motions under which B as a geometri-

cal figure is self-congruent. Evidently we have g C ©.

The tiles of KlB in this article were obtained by the author by

constructing the complete list of non-compact tiles belonging to at least

one homogeneous tiling (cf. [10]). The examples of KιlB are obtained from

these by destroying the respective group @ of the tiling by incompatible

geometrical realization of its subgroups, at the first stage the tiles still

having a non-trivial symmetry group, and at the second stage the tiles

being asymmetrical.

As a first example we consider a tiling Π whose tiles are in the shape

of strips having a boundary consisting of two separate, incongruent curves

k and k+ (see Fig. 4). Both k and k^ have a 1-dimensional group of

glide-reflections as symmetry group, i.e. the largest group of Euclidean

motions under which the curve is self-congruent. These groups of k and

k+ are geometrically realized in the form ίρ = (T)+ G(T) and φ + =

(T+ ) + G+ ( Γ + ), respectively (Γ, T+ : translations; G, G + : glide-reflec-

tions along the axes g_}, gx with G2 = T, G+2 = T+ , respectively).

The boundary curves k and k+ are called glide-reflection carriers. A

segment of k generating k by repeated application of φ is called a

glide-reflection segment.
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The neighbor-transformations of a tile 5 0 6 Π onto its two neighbors

B_λ and B must be glide reflections along two parallel lines because of the

special geometrical form of k and k+. For each association of Π with a

group @ leading to a homogeneous tiling, © has to be a group possessing

two inequivalent series of parallel axes of glide-reflection in its symmetry

system, i.e. a 2-dimensional group. Whether such association is possible or

not depends on the geometrical realization of k relative to k+. The

symmetries of k and k+ have to fit together in a special way described

thereafter if a group is to act transitively on a tiling Π with the prototile

B. For the geometrical realization of k relative to k+ there are three

different possibilities leading to fundamentally different situations in the

tilings built up by B.

Concerning the length of the translations Γ, T+ within the glide-re-

flection group φ , φ + , geometrically realized in k, k+, respectively, the

following cases arise:

1.1 The proportion | T\: | Γ+1 is rational and the following special

property holds: | T\: | Γ + | = m: n with m, n being odd coprime

integers.

1.2 The proportion | T\: | Γ+1 is rational, but the quotient in lowest

terms does not have the property of 1.1, i.e. one of m, n is even.

1.3 The proportion of | T\: | Γ+1 is irrational.

THEOREM 2a. Case 1.1 leads to homogeneous tilings with non-compact

tiles if their neighbor-transformations are suitably chosen, the tiles having a

non-trivial stabilizer, namely a \-dimensional translation group.

Proof. Because \T\\\T+\— m: n with m and n being odd coprime

integers, a 1-dimensional group § = (f) of translations with

(1) \f\=n\T\=m\T+\

can be chosen, the elements of which put a tile fio6Π into congruence

with itself, this being true for k and k+. (This is also true for any group

§ = z ( λ Γ ) ( λ > l , λ E N)). § is a subgroup of the symmetry group of k

as well as of k+. Furthermore groups of glide-reflection § _ , D g and

§ + 1 D g with the same glide-modulus3, namely | Γ|/2, can be chosen for

k and k+ :

3 For a glide-reflection σ: (x, y) -> (-x, y + g) (g φ 0; x, y Cartesian coordinates) g is
known as the glide-modulus of σ.
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G_Yis a glide-reflection along the axis g_, with glide-modulus

I ̂ ! |=| f 1/2;

is a glide-reflection along the axis g + x with glide-modulus

The groups φ_, and φ + 1 exist because there is an odd number of

glide-reflection segments with regard to <ξ>, $ + , respectively between two

points of k, k+ , respectively with distance | Γ|/2, viz. according to (1),

I7Ί I Π IΓ + I
|G-i | = | G + 1 \= ~2~ = n— = n\G\= m-j- = m\G + |

(m, « odd coprime integers).

The glide-reflections G_{ E φ_ l 5 G + 1 E φ + 1 are now chosen to be

neighbor-transformations for a tile Bo of a tiling Πf constructed according

to 1.1. G + 1 and G_, are generators of a group: Because of the validity of

G+i = GLJ (= f)9 the defining relation of a 2-dimensional group © of

type pg is fulfilled (see [1], p. 43). If the neighbor-transformations Nt

(i = 1,2,... ,n) of a tile 2?0 are generators of a discrete group % oί E2, B$

can be chosen as a fundamental region of © or a union of these (see [1],

4.5). By equivalent reiteration of Bo with respect to these elements Nt and

their products, a homogeneous tiling belonging to © arises. With iV, = G + ,

and N2 = G_x in 1.1, a homogeneous tiling Πf with a group of type pg is

obtained, the prototile Bo of which has a nontrivial stabilizer of infinite

order, namely § = ( f ) , and therefore is non-compact (see Fig. 4). D

Because in 1.1 Bo has the stabilizer § = (T)9 a group of infinite

order, there exists an infinity of neighbor-transformations from Bo to each

of its neighbors B_l9 B+l9 respectively, namely the glide-reflections Gμ

±ι =

G±ιf
(μ~])/2(μ= 1,3,5,7,...) — μ = 1 is the former case GI x = G ± 1 . If

pairs of neighbor-transformations of Bo other than G_x and G + 1 , G^ and

Gίf.l5 respectively (μ = 3,5,...), were chosen by constructing a tiling Π,

e.g. G and G + for the case m: n ¥= \, U would not be homogeneous due

to the failure of the defining relation for a group of type pg. Besides a

homogeneous tiling in 1.1, one may also construct an infinity of non-

homogeneous tilings having prototile Bo. An example U{ is given in

Figure 5.

THEOREM 2b. The tile Bo E Π ι belongs to the class KlB.
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Proof. According to Theorem 2a Bo can be the tile of a homogeneous
tiling Πf associated with a group of type pg and having non-trivial
stabilizer (f). There is no other possibility for homogeneous tilings with
the prototile Bo: Neighbor-transformations of Bo can only be glide-reflec-
tions because of the boundary of Bo, consisting of k and k* . Each group
® associable with a homogeneous tiling with prototile Bo therefore must
have a series of parallel axes of glide-reflections in its symmetry system
Sg, with the specification of neighboring axes of SQ being inequiυalent with
respect to © because of the incongruence of k and k+. © must be a
2-dimensional group, because there is no 1-dimensional one with such SQ.
By analysing the complete list of the symmetry systems of the 17 types of
groups, only two types with this property are found, namely pg and pmg.
(The types cm, pgg, etc. only have parallel axes for glide-reflections all
being equivalent.) The type pmg must be rejected because of the diads4

lying upon its axes of glide-reflection and demanding rotational symme-
tries, which k and fc+ do not have. There only remains the type pg. For
the transitive action of a group © of type pg on a tiling with prototile Bo

there is only the possibility of the tiling Πf above: The tiles have
stabilizers (f). Therefore the glide-reflections of © belong to the cosets
of (f). But since the product of one of these glides with itself is a
non trivial element of ( f ) , no system of coset representatives can form a
group. D

THEOREM 3. Case 1.2 always leads to inhomogeneous tilings with tiles

having a X-dimensional group of translations as their symmetry group.

Proof. In case 1.2 a 1-dimensional group @ = (f) of translations
with I Γ |= n\T\— m\T+\ may be found similarly to 1.1, under the ele-
ments of which k and k+ (and also BQ) are self-congruent. It is evident
that @ is the symmetry group of Bo. However it is impossible to find a
group © of glide-reflections for k and fc+ with @ D @. This is due to
condition 1.2 preventing an odd number of glide-reflection segments lying
between two points of k as well as of &+ with distance | f\/2. Because of
this, association of a tiling according to 1.2 with a group of the unique
possible type pg cannot be realized: the defining relation Glx = G\x for
type pg is not valid because of the special choice of the boundary curves
of a single tile. There is also no possibility of Bo being a fundamental
region of a discrete group, which can be shown in analogy to Theorem 2b
(cf. Fig. 6). •

x 2-fold centres of rotations.
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Because of the symmetry group @ = (f) of Bo, there is an infinity of

transformations from BQ onto its neighbors. By congruent repetition of Bo

an infinity of different necessarily inhomogeneous tilings can be built up.

The neighbor-transformations will be glide-reflections with glide-modulus

an arbitrary odd multiple of the glide-modulus of the corresponding

bounding glide-reflection carrier (cf. Fig. 7).

THEOREM 4. Case 1.3 always leads to inhomogeneous tilings with

asymmetrical tiles.

Proof. The prototile BQ is asymmetrical, since condition 1.3 leads to

an incommensurability of the lengths of the translations of the symmetry

group of k relative to those of k+ . Because of this there is exactly one

transformation carrying BQ onto each of its neighbors, e.g. Bx. This is a

glide-reflection G. The complete tiling cannot be self-congruent under G,

however, since G does not even take Bx onto BQ. A tiling with BQ therefore

must always be inhomogeneous. (As in 1.2 Bo leads to an infinity of

different inhomogeneous tilings.) (Cf. Fig. 8.) D

We now consider a second tiling Π whose prototile Bo is a strip as in

the first example. It differs from this in the substitution of one boundary

curve, e.g. k+ , by a curve r having the 1-dimensional rotational group %

(containing translations and two inequivalent series of rotation centres

through 180°) as symmetry group:

(C 2 : rotation through 180° about a centre Pd), r being known as a rotation

carrier. (The symmetry system Sj is connected with r in Fig. 9.) The

symmetry group of the second boundary curve k is as in the former case

As in the first example certain conditions on the geometrical realiza-

tion of k relative to r have to be fulfilled in order to make a tiling Π, built

up with congruent replicas of 5 0 , be transitive with respect to some group

©. The symmetry system of a potential tiling group must have a series of

parallel axes of glide-reflections, and parallel to these a series of rows

containing centres for rotations through 180°, called diads. This can only

be a 2-dimensional group of type pgg, because this is the only type of

discrete group possessing subgroups exactly with these symmetry systems

in parallel arrangement.
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For the length of the translations Γ, Γ+ of the translational sub-
groups, geometrically realized by k (glide-reflection carrier) and r (rota-
tion carrier) respectively, the following cases must be distinguished, lead-
ing to different types of tiles:

2.1 I T\/\ T+1= m/n for coprime integers m,n, n being odd.
2.2 I T\/\ T+ | = m/n for coprime integers m, «, n being even.
2.3 The proportion | T\: | Γ+1 is irrational.

Only in cases 2.1 and 2.2 does Bo have the symmetry group

@= ( f ) = (nT)= (mΓ + >.

In order to generate a group @ acting transitively upon a ΠΛ with
prototile Z?o, the 1-dimensional symmetry group @ of i?0 or a subgroup of
@ must be the stabilizer of Bo and be completed to a 2-dimensional group
by adding suitable neighbor-transformations Nt of BQ, or Bo must be
chosen as the fundamental region of a 1-dimensional ©. There are two
neighbors of 2?0, B_λ and B+v As Λ̂  there is a half-turn about any diad
ofr:

Because of k N2 has to be a glide-reflection G along the axis g0:

2.1. Because in 2.1 m\T+\— n\T\ with w, A7 coprime integers, n
being odd, there is a glide-reflection G: BQ ^ B_x along g0 with glide-mod-
ulus

and (J 2 E @, @ therefore being the stabilizer of Bo. As in 1.1 this case
leads to a homogeneous tiling Π4 (cf. Fig. 9) with a group of type pgg in
2.1, the prototile Bo E Π4 being a union of infinite fundamental regions
with a 1-dimensional group of translations as stabilizer. Since no other
homogeneous tilings can be built with Bo (the proof is similar to 1.1), it
follows as in case 1.1 that Bo E KlB.

Case 2.2. In case 2.2: m | Γ + | = n\T\ with m, n coprime integers, n
being even, there is no glide-reflection G: Bo -» B_x with glide-modulus \G\
according to (*) of 2.1 leading to G2 E @. The possible glide-reflections
Gf. Bo ^ B_x along g0 do not fit together with the symmetry group @ of



464 WOLFGANG WOLLNY

Bo: Concerning the glide-modulus of Gt there is |Gf | = / | Γ | / 2 (/ =
1,3,5,...) leading to Gf = iT (i odd) and, because of this, G? £ @ =
(nT) (n even). The only remaining possibility of Bo being a fundamental
region of a 1-dimensional group must also be rejected, the proof being
similar to that of Theorem 2b.

In another interpretation, as a consequence of condition 2.2 there is
always an even number of glide-reflection segments of k between two
points of the glide-reflection carrier k with distance m | f\/2 (m odd or
even) and, because of this, no tiling constructed by BQ could be transitive
with respect to a group of the only possible type in question, pgg.

2.2 always yields inhomogeneous tilings, the tiles having translational
symmetry as in 2.1, i.e. its group is @ = (nT)= ( m Γ + ) (cf. Fig. 10).
That Π 5 is inhomogeneous can be seen directly too: if all axes of
glide-reflection and diads (these are the only possible symmetry elements
for a correspondence of Π 5 with a group) are incorporated into Π5, no
symmetry system of a group arises: the totality of the rotational centres of
groups of type pgg forms a rectangular lattice, those incorporated into Π5,
however, form a rhombohedral lattice.

Case 2.3. 2.3 always leads to inhomogeneous tilings as in case 1.3, the
tile having no non-trivial symmetries, because the lengths of the transla-
tions of \ and § are incommensurable.

Since in 1.2 and 2.2 inhomogeneous tilings had been obtained with
tiles Bo, Bo, respectively having a symmetry group — namely @ = (f) —
other inhomogeneous tilings can be constructed by the method of subdi-
viding these tiles.

Subdivision for a tile B with symmetry group @ means that B has to
be divided into congruent regions equivalent with respect to the elements
of @ or @ * C @. This is obtained by introducing a new boundary curve /
in the region of B in a certain way, and its equivalent repetition with
respect to @ or @*.

For subdivision of a tile Bo (case 1.2) into non-compact regions there
are the following possibilities leading to classes of tilings with obviously
distinct rules of construction:

(a) The initial point A of / lies upon k (or k+) and / has an
"asymptotic" course relative to k+ (or k) without having a pair of points
equivalent under @ = ( f) (see Fig. 11). / having an asymptotic course
relative to k means that the Euclidean distance D(l,k)'-— inf d(x, y)
(x E /, y E k, d: Euclidean distance) is zero and inf d(x, y) is not
attained by any pair of points x, y of the finite plane.
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(β, γ) / is without an initial point and has an asymptotic course
relative to k as well as to k+ without having a pair of equivalent points.
The asymptotic course of / relative to k is "parallel" (case β) or "anti-
parallel" (case γ) to that relative to k+ (Figs. 12, 13).

The distinct cases (α), (/?), (γ) of 1.2 also arise for a subdivision of a
tile Bo (case 2.2) (Figs. 14-18). New cases must be added, however since
the boundary curves of Bo possess geometrically different symmetry
groups. Case (a) splits into three different subcases:

(a) A is a point of the glide-reflection carrier k (Fig. 14).
(al) A is a centre of rotation of the rotation carrier r (Fig. 15).
(α3) A is a point of r without being a centre of rotation (Fig. 16).

A topological peculiarity of the last constructed inhomogeneous til-
ings with non-compact tiles is worthy of mention. For this purpose
consider the tilings Πz (/ = 6 to 13). Each is constructed by subdivision of
a tiling Π + with tiles having a 1-dimensional symmetry group © = ( Γ ) .
This was achieved by equivalent reiteration of a curve / having asymptotic
course relative to a boundary curve k (glide-reflection carrier or rotation
carrier) of Π + . By this process the points of k (and all congruent
reiterations of k) became accumulation points of boundary points of the
first kind.

(Definition 9. A point P + E Π is called an accumulation point of
boundary points of the first kind if every neighborhood U of P+ , chosen
sufficiently small, has the following property: U is the union of two
semi-neighborhoods Ux and U29 each having a countable infinity of
separate segments of boundary curves of Π.) (Cf. Figs. 11 and 1 la.)

By subdivision of the tile Bo or Bo new asymmetrical compact tiles can
also be constructed, e.g. there are the following two cases for Bo:

(δ) / is bounded without having a pair of Γ-equivalent points. The
initial point A of / lies on the glide-reflection carrier k and the final point
E coincides with a point P of the rotation carrier r,

(δl) being a centre of rotation (Fig. 19), or
(δ2) not being a centre of rotation (Fig. 20).
By modification of the inhomogeneous tilings constructed by Bo (case

2.2), further inhomogeneous ones can be obtained: Between two neighbor-
ing tiles having a rotation carrier r in common, this carrier is deleted. In
this way a strip B has arisen, having two congruent glide-reflection
carriers (turned by 180°) as its boundary, and possessing the 1-dimen-
sional rotational group fy = ( Γ + ) + C2{T+) as its symmetry group. But
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this group is geometrically realized in such a manner that combination
with the glide-reflection group of the boundary curves to generate the
2-dimensional tiling group of type pgg is impossible, because Bo had been
a tile of an inhomogeneous tiling. (A homogeneous tiling Uh with the
prototile B can only be built up by finding a group © acting transitively
upon Uh without utilizing the symmetry group \ of B. SQ must not contain
the symmetry elements of $-. Such a group @ for a homogeneous tiling Hh

with tile B is of type pg because of the boundary of B) A B having the
symmetry group fy can be subdivided in several ways.

Case (a). Construction of non-compact tiles.
The symmetry system Sa of f- is incorporated into B and / is chosen as

follows: The initial point A of / coincides with a centre Pd E Sj of rotation
and / has asymptotic course relative to a boundary curve k of B without
having a pair of points equivalent with respect to $-. By turning / through
180° about Pd9 a line / arises having ©2 as symmetry group. By equivalent
reiteration of / with respect to the elements of ( T+ ), B is subdivided into
tiles Rt having the symmetry group @2

 a n ^ being equivalent to each other
with respect to (T+ > (Fig. 21).

By using a new unbounded line / through the centre of symmetry Qd

(diad) of Λί? a new asymmetrical tile i?+ can be constructed. Half of /~
being disjoint to the two congruent boundary curves of Rn can be chosen
arbitrarily and is equivalently reiterated beyond Qd (Fig. 22).

Case (b). Construction of compact tiles.
/ is chosen to be of finite length only, having points inequivalent

under f. The initial point A coincides with a diad Pd E Sj and the final
point E lies upon a boundary curve of B. By equivalent reiteration of /
with respect to $>, B is subdivided into compact tiles Uι equivalent with
respect to (T+ ) and having the symmetry group ©2 (Fig. 23).

Further subdivisions of Uι into asymmetrical tiles are possible. A new
curve /+ with inequivalent points is chosen in Un the initial point A+ of
which coincides with the diad Qd E S^ . There are four different cases for
the position of the final point E+ of //+

b2.1) E+ coincides with a point Px of a glide-reflection carrier k
(boundary curve of B) with P, $ / (Fig. 24);

b2.2) E+ coincides with a point P2 of a glide-reflection carrier k with
P 2E/(Fig.25);

b2.3) E+ coincides with a point P3 E /, which is not a digonal centre
of rotation of Sa and P3 & k (Fig. 26).
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b2.4) E^ coincides with a point P4 E /, which is a digonal centre

By equivalent reiteration of /+ with respect to © 2 , Lζ is subdivided

into two congruent tiles Vr Distinguishing the four cases b2.1-b2.4 is

reasonable, since they lead to classes of tiles with obviously distinct

constructional features and the tilings differ in number resp. order of their

vertices. But only b2.1-b2.3 are new cases. The tiling Π + obtained

according to b2.4 is the former case Π 1 4 of Figure 19, as can be seen

directly.

There remains the proof of

THEOREM 5. The tiles of the tilings Π / (/ — 6 to 21) (Fig. 11 to 26) can

only form inhomogeneous tilings of E2.

Proof. The tiles of Π / (/ = 6 to 16,18) possess exactly one pair of

congruent curves (of finite or infinite length) in translational positions on

their boundaries. For the case of infinite length these curves run within a

strip because of the way the curves are constructed. In the tilings Π /

(/ — 17,19,20,21) this situation obtains for regions built up by pairs of

tiles. In each tiling built up with tiles of the respective tilings there must

exist strips having the 1-dimensional translational group @ = (T) as their

symmetry group or subgroup (for Π z (/ = 16 to 20)) of symmetry. These

strips are exactly those from which the tiles under consideration had been

obtained by subdivision. In order to obtain a homogeneous tiling, one

must construct a 2-dimensional group % having © as a subgroup and

operating transitively on the totality of strips. This is impossible, however,

because of the particular geometrical realization of the boundary curves of

the strips. D

Theorem 5 also follows from the fact that the tiles under considera-

tion do not belong to any class of the complete list of classes of compact

([4], [5]) or non-compact ([10]) tiles forming at least one homogeneous

tiling.

Distributing the tiles obtained by construction of the homogeneous

tilings Πf (z = 1,4) or inhomogeneous tilings Tlι (i = 2, 3,5 to 21) among

the classes defined above, the following result can be stated:

Λ:IB : tiles of Πf and Π* (stabilizer g = (f»:

KUA: tiles of Π 1 4 , Π 1 5 , Π 1 9 , Π 2 0 , Π 2 1 (asymmetrical)

tiles of Π 1 8 (symmetry group @2);
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KUB: tiles of tilings constructed according to cases 1.3 and 2.3 (asymmetri-

cal);

tiles of Π 2 , Π 5 (symmetry group @ = (f))\

tiles of Π 6 , Π 7 , Π 8 , Π 9 , Π 1 0 , Π π , Π 1 2 , Π 1 3 , Π 1 7 (asymmetrical);

tiles of Π 1 6 (symmetry group © 2).

Of course, by taking prisms based on the prototiles constructed above, it

is easy to show that these are examples for an affirmative solution of the

original (3-dimensional) version of the Hubert question cited at the

beginning.

FIGURE 1 a. Homogeneous tiling of non-compact fundamental regions of a group of type p 1.
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FIGURE lb. Homogeneous tiling Uh as a geometrical model for a group <$> of type p i .

FIGURES 2a, b, c. Homogeneous tiling ΐlh with 3 different realizations of tiling groups of type

p2.
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FIGURE 2d. Homogeneous tiling ΐlh with tiling group of type p i .

a)

FIGURE 3a. Homogeneous tiling Π ^ by squares (z — 4,4,4,4) with corresponding symmetry

group ® of type p4m.

b) c)

FIGURE 3b, C. Homogeneous tiling Π Q by squares z — (4,4,4,4) with two other groups of
type p4m not being the symmetry group.
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Ψ

ITI :

5Γ
FIGURE 4. Homogeneous tiling π\ with prototile Bo according to 1.1. The boundary curves of
Bo, k (resp. k+), have symmetry groups of glide-reflections: $ = (T)+ G(T) and
φ+ = ^7+ ) + (7+ < Γ + ), respectively, with the chosen proportion \T\:\T+\- 1:3 (case
1.1). As neighbor-transformations of Bo, glide-reflections along g + , (resp. g_,) are cho-
sen: G+l: Bo -» S, (resp. G_,: Bo -» 5_,) with the same glide-modulus | G + 1 | = | G _ | | =
3 I 7Ί/2 = 31 G[= 11 Γ + j/2 = | G + 1 . In general there is G+ι+,: 5, -> 5 , + , or G_,_,: 5., -*
B_,_i as glide-reflection along the axis g+,+ \ or g_,_|, respectively, with | C + / + i | =
I <5_,_| | = | <7+1. The neighbor-transformations are made plain by the aid of corresponding
arrows.
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FIGURE 5. Inhomogeneous tiling Π, w/ί/z prototile Bo of Πf. By constructing Πj , the
neighbor-transformations of # 0 E Πj are glide-reflections chosen with different glide-mod-
uli: G + l : Bo -* Bx a s i n F i g u r e 4 w i t h | G + l | = | G + | = 3J_G| ,G^: Bo -* B_λ with|G_, = | G | .
Because of this, G\x ^ G2 and, therefore, G+ι and G_x are not generators of a group of
type pg. Further, G+2: Bx -+ B2 with | G21 = | G\, etc.
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FIGURES 6, 7. Inhomogeneons tilings Π 2 W Π2 with prototile Bo according to 1.2. The

boundary curves of Bo, k (resp. /c+), have symmetry groups of glide-reflections as in

Figure 4, but the chosen proportion is now | T\: \ T+ \= 3 : 2 (case 1.2) which prevents the

construction of a homogeneous tiling with prototile Bo. Bo has symmetry group © =

(IT) = ( 3 Γ + ). Chosen neighbor-transformations for Π 2 (Figure 6):

G + : β 0 -> JB,, axis g + 1 , direction T , | G + 1= j \ G\.

for Π 2 (Figure 7):

B_u axisg.,, direction I, | G 0 | = | G | = \ \ G+ | .

9_2» axis g_2, direction 1, | G_x | = | G+1 , etc.

, axisg + 1 , direction I, \G+\= f | G | .
B_u axis g_ b direction T , | G 0 | = | G | = i | G + |

-» B_2, axis g_2, direction I, | G_x | = 3 | G+ \.
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FIGURE 7



CONTRIBUTIONS TO HILBERT'S EIGHTEENTH PROBLEM 475
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B B

V Λ

|T T |

FIGURE 8. Inhomogeneous tiling Π 3 wiYΛ prototile Bo according to 1.3. & and &+ have
symmetry groups of glide-reflection as in Figure 4; the chosen proportion is, however,
irrational, \T\: \ T+\= \/J: 1 (case 1.3). The prototile Bo E Π 3 is asymmetrical and the
construction of Π 3 is similar to U'2, varying arbitrarily the glide-modulus for neighbor-
transformations of the tiles.
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Ft qure 9
6

|T* I = 1 : 1

X.

FIGURE 9. Homogeneous tiling Π j with prototile Bo according to 2.1. The boundary curves
of Bo, k and r, respectively, have symmetry groups § = (T)+ G(T) and S = (T+ > +
C2 ( Γ + > with the chosen proportion | Γ | : | T+1= 1:1 (case 2.1). As neighbor-transforma-
tions of Bo there are chosen (1) glide-reflection G along axis go:G: BQ__-> B_x with
I G| = | Γ|/2 = | Γ+1/2, and (2) half-turn C2 about any diad of 5 5 : C2 :J? 0 -^ 5 + 1 . There is
further C'2\ B_λ -> ^_2 (half-turn about a diad of r_,), G + 1 : 5 + 1 -» 5 + 2 (glide-reflection
with axis g + 1 and | G + 1 1 = | G|), etc. 5 0 has stabilizer δ = ( Γ ) = ( Γ + ) and the group of
Π^ is of type pgg.
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FIGURE 10. Inhomogeneous tiling Π 5 with prototile Bo according to 2.2. The boundary curves
of Bo, k and r, respectively, have symmetries of the same type as in Figure 9, but the
chosen proportion is now | Γ | : | Γ + | = 1:2 (case 2.2). The symmetry group of Bo is
(5 = (2T)= (T+ ). As neighbor-transformations of 5 0 there are chosen 1) glide-reflection
G along axis g0 : G: Bo -+ B_,_(direction 1, | G\ = \ T\/2 = | Γ+J/4), and 2) half-turn C2

about the diad P + L 6 r : C 2 : 5 0 ^ 5 + 1 . Further there is C2: B_λ -+ B_2 (half-turn about
P_0,), G+x: B+] -> 5 + 2 (axis g + 1 , | G + 1 1 = m | G | , m arbitrarily odd), etc.



478 WOLFGANG WOLLNY

7-3

FIGURES 11, 12, 13. Inhomogeneous tilings Π 6 , Π 7 , IΊ 8 . Π 6 is generated by subdivision of
Π 2 by introducing a new boundary curve / and its equivalent reiteration by the elements of
the symmetry groups @/ of the tiles of Π 2 . For / one has condition (α) in Π 6 (Figure 11),
(β) in Π 7 (Figure 12), (γ) in Π 8 (Figure 13).
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FIGURE lla. Accumulation point of boundary points of the first kind.

FIGURE 12
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FIGURE 13



CONTRIBUTIONS TO HILBERT'S EIGHTEENTH PROBLEM 481

FIGURES 14, 15, 16. Inhomogeneous tilings Π 9 , Π,o, Π u . The tilings Πf (i = 9,10,11) are
generated by subdivision of Π 5 . For / one has condition (αl) in Π 9 (Figure 14), (α2) in
Π 1 0 (Figure 15) and (α3) in Π n (Figure 16).
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FIGURE 15
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FIGURE 16
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12.

FIGURES 17, 18, 19, 20. Inhomogeneous tilings Π 1 2 , Π 1 3 , Π 1 4 , Π 1 5 . The tilings Π, (i = 12
to 15) are generated by subdivision of Π 5 . For / one has condition (β) in Π 1 2 (Figure 17),
respectively (γ) in Π 1 3 (Figure 18), respectively (δl) in Π 1 4 (Figure 19), respectively (δ2)
i n Π 1 5 (Figure 20).
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FIGURE 18
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FIGURE 19
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FIGURE 20
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FIGURE 21. Inhomogeneous tiling Π 1 6. The tiling Π 1 6 is generated by subdivison of a
special tiling Π. Π is generatecHrom II 5 by deleting all boundary curves which are
rotation carriers, the tiles if, EΠ having symmetry^ group 8 = (T+ ) + C2(T+ ). The
newly introduced boundary curve / for subdividing Π satisfies condition (a). The tiles of
Π 1 6 have rotational symmetry (C 2 ).
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FIGURE 22. Inhomogeneous tiling Π 1 7 . The tiling Π 1 7 is generated by subdivision of tiling
Π 1 6 by introducing a new boundary curve /similar to condition (a). The tiles of Π 1 7 are
asymmetrical.
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)C

FIGURE 23. Inhomogeneous tiling Π 1 8 . The tiling Π 1 8 is generated by subdivision of the
special tiling Π described under Figure 21. The newly introduced boundry curve / satisfies
condition (b).
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- 1

FIGURES 24, 25, 26. Inhomogeneous tilings Π l 9 , Π 2 0 , Π 2 I . The tilings Π, (/ = 19,20,21)
are generated by subdivision of Π 1 8 . The newly introduced boundary curve /+ satisfies
condition (b2.1) in Π 1 9 (Figure 24), (b2.2) in Π 2 0 (Figure 25), (b2.3) in Π 2 1 (Figure 26).
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FIGURE 25
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21

FIGURE 26
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FIGURE 27. Inhomogeneous tiling Π + . The tiling Π + constructed in Figure 27 is generated
by subdivision of Π 1 8 . The newly introduced boundary curve /+ satisfies condition (b2.4).
Π + , however, belongs to the same class of inhomogeneous tilings as Π 1 4 (Figure 19),
which can be seen directly. There is no topological difference between Π + and Π 1 4 :
z — (3,3,3,4,4), and the construction rules for their tiles are the same.
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