# FLAT HILBERT CUBE MANIFOLD PAIRS 

Luis Montejano


#### Abstract

The purpose of this paper is to study embeddings of $Q$-manifolds into $Q$-manifolds. Mainly, we relate flat $Q$-manifold pairs with PL manifold pairs by using a relative version of the Chapman Splitting Theorem. The concepts of $Q$ PL embedding and $Q$ PL homeomorphism are introduced.


1. Introduction and definitions. For topological spaces (polyhedra) $X$ and $Y$ an embedding $f: X \rightarrow Y$ is said to be a (PL) locally flat embedding provided that every point of $X$ has a neighborhood $U$ and an open (PL) embedding $h: U \times \mathbf{R}^{m} \rightarrow Y$ such that $h(x, 0)=f(x)$, for all $x \in U$. If $U$ can be taken to be all of $X$, then the embedding is said to be a (PL) flat embedding. Furthermore, the pair ( $Y, X$ ) is said to be a flat pair if the inclusion $X \hookrightarrow Y$ is a (PL) flat embedding. Note that if $(M, N)$ is a flat finite-dimensional manifold pair, then $N \cap \partial M=\partial N$ and $(\partial M, \partial N)$ is a flat manifold pair.

We use $Q$ to denote the Hilbert cube and by a $Q$-manifold we mean a separable metric manifold modeled on $Q$.

The purpose of this paper is to relate flat $Q$-manifold pairs with flat PL manifold pairs by using a relative version of the Chapman Splitting Theorem [6]. The following is our first result in this direction.

Theorem 1. Let ( $\mathfrak{M}, \mathfrak{K})$ be a flat compact $Q$-manifold pair. Then there exists a flat PL manifold pair $(M, N)$ and a homeomorphism $h$ : $(\Re, \mathscr{N}) \rightarrow(M, N) \times Q$.

Chapman [4] has proved that there exists a codimension 3 locally flat embedding $\mathscr{H} \leftrightarrows \mathscr{M}$ between $Q$-manifolds such that $\mathscr{N}$ has no tubular neighborhood and, moreover, no stabilization $\Re \times\{0\} \leftrightharpoons \mathfrak{N} \times \mathbf{R}^{n}$ has a tubular neighborhood. On the other hand, Milnor [9] and Kister [8] proved the stable existence of tubular neighborhoods for embeddings of finite dimensional manifolds. Consequently an analogue of Theorem 1 for locally flat $Q$-manifold pairs is not possible.

Let $M$ and $N$ be PL manifolds. An embedding (homeomorphism) $f$ : $N \times Q \rightarrow M \times Q$ is said to be a $Q$ PL embedding (homeomorphism) if there exists a PL embedding (homeomorphism) $g: N \times I^{n} \rightarrow M \times I^{m}$
such that $f=g \times$ Id: $\left(N \times I^{n}\right) \times Q_{n+1} \rightarrow\left(M \times I^{m}\right) \times Q_{m+1}$, where $\operatorname{Id}\left(q_{n+1}, \ldots\right)=\left(q_{n+1}, \ldots\right) \in Q_{m+1}$. If, in addition, $g$ is a PL flat embedding, then $f$ is called a QPL-flat embedding. The next theorem relates flat embeddings of $Q$-manifolds with PL flat embeddings of their underlying spaces.

Theorem 2. Let $N$ be a compact $P L$ manifold and let $M$ be a $P L$ manifold. A flat embedding $f: N \times Q \rightarrow M \times Q$ is isotopic to a QPL-flat embedding if and only if $f$ is homotopic to a QPL-flat embedding.

We say that two maps $f_{0}, f_{1}:\left(X, X_{0}\right) \rightarrow\left(Y, Y_{0}\right)$ are homotopic by pairs if there exists a homotopy $h_{t}:\left(X, X-X_{0}, X_{0}\right) \rightarrow\left(Y, Y-Y_{0}, Y_{0}\right)$ such that $h_{0}=f$ and $h_{1}=f_{1}$. If, in addition, $h_{t}$ is a homeomorphism for every $t \in I$, we say $f_{0}$ is isotopic by pairs to $f_{1}$.

The next theorem, which was virtually proved by Chapman in [5] for $M_{0}=N_{0}=\varnothing$, relates homeomorphisms of flat $Q$-manifold pairs with homeomorphisms of flat PL manifold pairs.

Theorem 3. Let $\left(M^{m+k}, M_{0}^{m}\right)$ and $\left(N^{n+k}, N_{0}^{n}\right)$ be flat compact $P L$ manifold pairs. A homeomorphism $h:\left(N, N_{0}\right) \times Q \rightarrow\left(M, M_{0}\right) \times Q$ is isotopic by pairs to a QPL homeomorphism if and only if $h$ is homotopic by pairs to a QPL homeomorphism.

At the end we give an example showing that the condition

$$
h_{t}\left(\left(N-N_{0}\right) \times Q\right) \subset\left(M-M_{0}\right) \times Q
$$

in the homotopy of Theorem 3, is necessary.
We let $\mathbf{R}^{n}$ denote Euclidean $n$-space, $I$ the closed unit interval $[0,1]$ and for $r>0, B_{r}^{n}=[-r, r]^{n} \subset \mathbf{R}^{n}$. As usual, $\partial B_{r}^{n}$ denotes the boundary of $B_{r}^{n}$ and $\dot{B}_{r}^{n}$ denotes its interior. For any space $X$ and $A \subset X$ we use Int ${ }_{X} A$ and $\mathrm{Bd}_{X} A$ to denote the topological interior and boundary of $A$ in $X$. The subscript will be omitted when the meaning is clear.

We represent $Q$ as $Q=I_{1} \times I_{2} \times \cdots$, where $I_{1}$ is a copy of the closed unit interval $[0,1]$. We also let $I^{n}=I_{1} \times \cdots \times I_{n}$ and $Q_{n}=I_{n} \times I_{n+1}$ $\times \cdots$, so that $Q=I^{n} \times Q_{n+1}$. We use 0 to represent $(0,0, \ldots) \in Q_{n}$. In this paper it will be convenient to identify $X$ with $X \times\{0\}$ in $X \times Q$ and, in general, $X \times I^{n}$ with $X \times I^{n} \times\{0\}$ in $X \times I^{n} \times Q_{n+1}$.

A compact subpolyhedron $Y$ of a polyhedron $X$ is said to be straight provided that Bd $Y$ is PL collared in both $Y$ and $X-$ Int $Y$. By a PL manifold we will mean a piecewise-linear manifold with or without boundary as in [1].

In general we use results and notation from [2] concerning $Q$-manifolds and from [7] concerning PL-topology.
2. A relative splitting theorem. Let $\mathfrak{N}$ be a compact connected $Q$-manifold and let $(M, N)$ be a flat PL manifold pair. Let $h$ : $\mathbb{R} \times$ $\left(B_{1}^{m},\{0\}\right) \times \mathbf{R} \rightarrow(M, N) \times Q$ be an open embedding.

A splitting of $h$ is a decomposition, $\mathfrak{N} \times B_{1}^{m} \times \mathbf{R}=\mathscr{N}_{1} \cup \mathscr{N}_{2}$, such that if $\mathfrak{R}_{0}=\mathfrak{M}_{1} \cap \mathfrak{N}_{2}, \mathfrak{N}_{1}=\mathfrak{N}_{1} \cap(\mathfrak{N} \times\{0\} \times \mathbf{R}), \quad \mathfrak{N}_{2}=\mathfrak{N}_{2} \cap$ $(\mathscr{N} \times\{0\} \times \mathbf{R})$, and $\mathscr{N}_{0}=\mathscr{N}_{1} \cap \mathscr{N}_{2}$, then
(1) $\mathfrak{R}_{1}$ and $\mathscr{R}_{2}$ are non-compact $Q$-manifolds which are closed in $\mathfrak{N} \times B_{1}^{m} \times \mathbf{R}$,
(2) $\Re_{1}$ and $\Re_{2}$ are non-compact $Q$-manifolds which are closed in $\mathfrak{N} \times\{0\} \times \mathbf{R}$,
(3) there is a polyhedron $A \subset M \times I^{n}$ such that if $B=A \cap\left(N \times I^{n}\right)$, then $A$ is PL bicollared in $M \times I^{n}, B$ is PL bicollared in $N \times I^{n}$, and $h\left(\mathscr{R}_{0}, \mathscr{\Re}_{0}\right)=\left(A \times Q_{n+1}, B \times Q_{n+1}\right)$,
(4) $\left(\mathscr{R}_{0}, \mathscr{R}_{0}\right)$ is a compact $Q$-manifold pair, and
(5) there is an open PL embedding $\varphi: N \times I^{n} \times \mathbf{R}^{m} \rightarrow M \times I^{n}$ such that $\varphi=\mathrm{Id}$ on $N \times I^{n} \times\{0\}$ and $\varphi\left(N \times I^{n} \times \mathbf{R}^{m}\right) \cap A=\varphi\left(B \times \mathbf{R}^{m}\right)$.

The purpose of this section is to prove the following relative version of the Chapman Splitting Theorem [6].

Theorem 2.1. There exists a splitting of $h, \mathfrak{M} \times B_{1}^{m} \times \mathbf{R}=\mathfrak{M}_{1} \cup$ $\mathfrak{R}_{2}$, such that the inclusions $\mathfrak{N}_{0} \hookrightarrow \mathfrak{R} \times B_{1}^{m} \times \mathbf{R}, \Re_{0} \leftrightharpoons \mathfrak{R}^{\circ} \times\{0\} \times \mathbf{R}$, and $\mathfrak{N}_{0}-\mathfrak{N}_{0} \hookrightarrow \mathfrak{N} \times\left(B_{1}^{m}-\{0\}\right) \times \mathbf{R}$ are homotopy equivalences.

Lemma 2.1. Splittings of hexist.
Proof. Since $h\left(\mathscr{N} \times B_{1}^{m} \times\{0\}\right)$ is compact and $h\left(\mathscr{N} \times B_{1}^{m} \times \mathbf{R}\right)$ is open in $M \times Q$, it follows that there is a compact polyhedron $K \subset M \times I^{n} l$ and an open set $U \subset M \times I^{n}$ such that

$$
\begin{aligned}
h\left(\mathfrak{N} \times B_{1}^{m} \times\{0\}\right) & \subset K \times Q_{n+1} \subset U \times Q_{n+1} \\
& \subset h\left(\mathfrak{N} \times B_{1}^{m} \times \mathbf{R}\right) \subset M \times Q
\end{aligned}
$$

Let $\tilde{K}=K \cap\left(N \times I^{n}\right)$. Since $\left(M \times I^{n}, N \times I^{n}\right)$ is a codimension $m$ flat PL manifold pair, we may assume without loss of generality that $N \times I^{n}$ $\times \mathbf{R}^{m} \subset M \times I^{n}$ and, for some $r>0, K \cap\left(N \times I^{n} \times B_{r}^{m}\right)=\tilde{K} \times B_{r}^{m}$. Therefore, there exists a polyhedron $R$ in $U$ such that
(a) $K \subset$ Int $R \subset R \subset U$,
(b) $\mathrm{Bd} R$ is PL bicollared in $M \times I^{n}$,
(c) if $R_{1}=R \cap\left(N \times I^{n}\right)$, then $\mathrm{Bd} R_{1}$ is PL bicollared in $N \times I^{n}$, and
(d) for some $r_{1}>0 \quad \mathrm{Bd} R \cap\left(N \times I^{n} \times B_{r_{1}}^{m}\right)=\mathrm{Bd} R_{1} \times B_{r_{1}}^{m}$. Since Int $R \times Q_{n+1}$ is a neighborhood of $h\left(\mathscr{N} \times B_{1}^{m} \times\{0\}\right)$ in $h\left(\mathfrak{T} \times B_{1}^{m} \times \mathbf{R}\right)$, we can decompose $\mathrm{Bd} R$ as $\mathrm{Bd} R=R^{\prime} \cup R^{\prime \prime}$, where

$$
R^{\prime} \times Q_{n+1} \subset h\left(\Re \times B_{1}^{m} \times(-\infty, 0)\right)
$$

and

$$
R^{\prime \prime} \times Q_{n+1} \subset h\left(\Re \mathbb{M} \times B_{1}^{m} \times(0, \infty)\right)
$$

Similarly $\mathrm{Bd} R_{1}=R_{1}^{\prime} \cup R_{1}^{\prime \prime}$, where

$$
R_{1}^{\prime} \times Q_{n+1} \subset h(\Re \times\{0\} \times(-\infty, 0))
$$

and

$$
R_{1}^{\prime \prime} \times Q_{n+1} \subset h(\Re \times\{0\} \times(0, \infty))
$$

Let

$$
\mathfrak{N}_{1}=\left(\mathscr{N} \times B_{1}^{m} \times(-\infty, 0)\right)-h^{-1}\left(\text { Int } R \times Q_{n+1}\right)
$$

and

$$
\mathfrak{R}_{2}=\left(\mathfrak{N} \times B_{1}^{m} \times(0, \infty)\right) \cup h^{-1}\left(R \times Q_{n+1}\right)
$$

Then we have $h\left(\mathscr{M}_{0}\right)=R^{\prime} \times Q_{n+1}$,

$$
\begin{gathered}
\mathfrak{R}_{1}=(\mathfrak{N} \times\{0\} \times(-\infty, 0))-h^{-1}\left(\text { Int } R_{1} \times Q_{n+1}\right), \\
\mathfrak{N}_{2}=(\mathfrak{N} \times\{0\} \times(0, \infty)) \cup\left(R_{1} \times Q_{n+1}\right),
\end{gathered}
$$

and $h\left(\mathscr{N}_{0}\right)=R_{1}^{\prime} \times Q_{n+1}$, thus giving the desired splitting of $h$.
Lemma 2.2. Let $\mathfrak{N} \times B_{1}^{m} \times \mathbf{R}=\mathfrak{N}_{1} \cup \mathfrak{R}_{2}$ be a splitting of h. Then we may assume there is a compact polyhedron $K \subset N \times I^{n}$ containing $B$ such that the inclusion $K \hookrightarrow h\left(\Re_{1}\right)$ is a homotopy equivalence.

Proof. We will first prove there is a compact polyhedron $K_{1}$ containing $B$ and an embedding $f: K_{1} \rightarrow h\left(\mathscr{\Re}_{1}\right)$ such that $f \mid B=\operatorname{Id}$ and $f$ is a homotopy equivalence.

Since $\mathfrak{N}$ is compact, then, has the homotopy type of a compact polyhedron $K_{2}$. Let $g: K_{2} \rightarrow h\left(\mathscr{N}_{1}\right)$ be a homotopy equivalence and let $\tilde{g}$ : $h\left(\mathfrak{N}_{1}\right) \rightarrow K_{2}$ be a homotopy inverse of $g$. Let $\varphi: B \rightarrow K_{2}$ be a PL map homotopic to $\tilde{g} \mid B$ and let $K_{1}$ be the mapping cylinder of $\varphi$. Let $\rho$ : $K_{1} \rightarrow K_{2}$ be the mapping cylinder retraction onto the base. Note that $K_{1}$ is a compact polyhedron containing $B$ and that the map $g \rho: K_{1} \rightarrow h\left(\Re_{1}\right)$ is
a homotopy equivalence with the property that $g \rho \mid B: B \rightarrow h\left(\mathscr{H}_{1}\right)$ is homotopic to the inclusion. Since $B \subset h\left(\mathscr{T}_{1}\right)$ is a $Z$-set, it follows that there is a $Z$-embedding $f: K_{1} \rightarrow h\left(\mathscr{\Re}_{1}\right)$ such that $f \mid B=\mathrm{Id}, f$ is homotopic to $g \rho$ and consequently, $f$ is a homotopy equivalence.

The compact set $f\left(K_{1}\right) \cup\left(B \times Q_{n+1}\right)$ is contained in

$$
h(\Re \subset \times\{0\} \times \mathbf{R})
$$

which is open in $N \times Q$. Therefore, there is an $l \geq 0$ and an open subset $U$ of $N \times I^{l}$ such that $f\left(K_{1}\right) \cup\left(B \times Q_{n+1}\right) \subset U \times Q_{l+1} \subset$ $h(\mathfrak{N} \times\{0\} \times \mathbf{R})$. Choose $U=U_{1} \cup U_{2}$, where $U_{1} \times Q_{l+1} \subset h\left(\mathscr{N}_{1}\right)$ and $U_{2} \times Q_{l+1} \subset h\left(\mathscr{T}_{2}\right)$. We may assume $f=\left(f_{1}, f_{2}\right): K_{1} \rightarrow U_{1} \times Q_{l+1}$ is an embedding. Let $f_{1}^{\prime}: K_{1} \rightarrow U_{1}$ be a PL map homotopic to $f_{1}$ such that $f_{1}^{\prime} \mid B=$ Id. Let $f_{2}^{\prime}: K_{1} \rightarrow I_{l+1} \times \cdots \times I_{k}$ be a PL map such that $f_{2}^{\prime}(B)=\{0\}$ and $f_{2}^{\prime} \mid K_{1}-B: K_{1}-B \rightarrow I_{l+1} \times \cdots \times I_{k}-\{0\}$ is one to one. It is easy to see that $f^{\prime}=\left(f_{1}^{\prime}, f_{2}^{\prime}\right): K_{1} \rightarrow U_{1} \times I_{l+1} \times \cdots \times I_{k}$ is a PL embedding which is homotopic to $f$ in $h\left(\mathscr{N}_{1}\right)$. Furthermore, since $B \times I_{n+1} \times \cdots \times I_{k}$ is bicollared, we can push $f^{\prime}\left(K_{1}-B\right)$ off $B \times I_{n+1} \times \cdots \times I_{k}$. This means we may assume $f^{\prime}\left(K_{1}\right) \cap\left(B \times I_{n+1} \times \cdots \times I_{k}\right)=B$. Consider the compact subpolyhedron $K$ of $N \times I^{k}$ defined by

$$
K=f^{\prime}\left(K_{1}\right) \cup_{B}\left(B \times I_{n+1} \times \cdots \times I_{k}\right)
$$

Then we have $B \times I_{n+1} \times \cdots \times I_{k} \subset K \subset N \times I^{k}$. Furthermore, the inclusion $K \leftrightharpoons h\left(\mathscr{\Re}_{1}\right)$ is a homotopy equivalence. This completes the proof of Lemma 2.2.

Lemma 2.3. There exists a splitting of $h$ such that the inclusion $\mathfrak{H}_{0} \hookrightarrow \mathfrak{N}$ $\times\{0\} \times \mathbf{R}$ is a homotopy equivalence.

Proof. Assertion. Let $\mathfrak{N} \times B_{1}^{m} \times \mathbf{R}=\mathfrak{R}_{1} \cup \mathfrak{R}_{2}$ be a splitting of $h$. Then there is a splitting of $h, \mathfrak{N} \times B_{1}^{m} \times \mathbf{R}=\mathscr{N}_{1}^{\prime} \cup \mathcal{N}_{2}^{\prime}$, such that $\mathscr{H}_{1}^{\prime} \subset \operatorname{Int} \mathscr{N}_{1}$ and the inclusions $\mathscr{N}_{0}^{\prime} \hookrightarrow \mathscr{H}_{2}^{\prime}-\operatorname{Int} \mathscr{N}_{2}$ and $\mathscr{K}_{0}^{\prime} \hookrightarrow \mathscr{N}_{1}^{\prime}$ are homotopy equivalences.

Proof of Assertion. Let $K$ be as in the Lemma 2.2. Without loss of generality we may assume there is an open set $U$ of $M \times I^{n}$ containing $A$ such that $U=U_{1} \cup U_{2}, U_{1} \cap U_{2}=A, U_{1} \times Q_{n+1} \subset h\left(\mathfrak{N}_{1}\right), U_{2} \times Q_{n+1}$ $\subset h\left(\Re_{2}\right)$, and for some $r>0, \varphi\left(K \times B_{r}^{m}\right) \subset U_{1}$. Let $D$ be a regular neighborhood of $\left(\varphi\left(K \times B_{r}^{m}\right) \times\{1\}\right) \cup\left(A \times I_{n+1}\right)$ in $U_{1} \times I_{n+1}$ satisfying the following properties:
(a) $D_{1}=D \cap\left(N \times I^{n+1}\right)$ is a regular neighborhood of $(K \times\{1\}) \cup$ $\left(B \times I_{n+1}\right)$ in $\left(U_{1} \cap\left(N \times I^{n}\right)\right) \times I_{n+1}$,
(b) $\operatorname{Bd} D \cap\left(N \times I^{n+1}\right)=\operatorname{Bd} D_{1}$, and
(c) $\operatorname{Bd} D \cap \varphi \times \operatorname{Id}_{I_{n+1}}\left(N \times I^{n+1} \times B_{r_{1}}^{m}\right)=\varphi \times \operatorname{Id}_{I_{n+1}}\left(\mathrm{Bd} D_{1} \times B_{r_{1}}^{m}\right)$ for some $r_{1}>0$.

Note that the inclusion $K \rightarrow D_{1}$ is a homotopy equivalence. Since $(K \times\{1\}) \cup\left(B \times I_{n+1}\right) \subset D_{1}$ is a $Z$-set, it follows that the inclusion Bd $D_{1} \rightarrow D_{1}$ is a homotopy equivalence.

Let

$$
\mathscr{R}_{1}^{\prime}=\mathbb{R}_{1}-h^{-1}\left(\operatorname{Int} D \times Q_{n+2}\right) \quad \text { and } \quad \Re_{2}^{\prime}=\mathbb{R}_{2} \cup h^{-1}\left(D \times Q_{n+2}\right) .
$$

Then we have

$$
\begin{aligned}
& h\left(M_{0}^{\prime}\right)=\operatorname{Bd} D \times Q_{n+2}, \quad \mathcal{N}_{1}^{\prime}=\mathcal{N}_{1}-h^{-1}\left(\text { Int } D_{1} \times Q_{n+2}\right), \\
& \mathcal{N}_{2}^{\prime}=\mathcal{N}_{2} \cup h^{-1}\left(D_{1} \times Q_{n+2}\right), \quad \text { and } \quad h\left(\mathcal{N}_{0}^{\prime}\right)=\operatorname{Bd} D_{1} \times Q_{n+2} .
\end{aligned}
$$

Since Bd $D_{1} \hookrightarrow D_{1}$ is a homotopy equivalence, the inclusion $\mathfrak{N}_{0}^{\prime} \hookrightarrow \mathscr{N}_{2}^{\prime}-$ Int $\mathscr{N}_{2}$ is a homotopy equivalence, hence there is a strong deformation retraction of $\mathscr{H}_{2}^{\prime}$ - Int $\mathscr{H}_{2}$ onto $\mathscr{\varkappa}_{0}^{\prime}$ (see [11, p. 31] for further details), and consequently, the inclusion $\mathscr{N}_{1}^{\prime} \leftrightarrow \mathcal{N}_{1}$ is a homotopy equivalence. On the other hand, since the inclusions $K \hookrightarrow D_{1} \times Q_{n+2}$ and $K \hookrightarrow h\left(\mathscr{\vartheta}_{1}\right)$ are homotopy equivalences, the inclusion $\mathrm{Bd} D_{1} \times Q_{n+2} \hookrightarrow h\left(\mathcal{T}_{1}\right)$ is a homotopy equivalence but, hence, $\mathscr{N}_{0}^{\prime} \hookrightarrow \mathscr{N}_{1}$ is a homotopy equivalence and, consequently, $\mathscr{\varkappa}_{0}^{\prime} \hookrightarrow \mathcal{X}_{1}^{\prime}$ is a homotopy equivalence. This concludes the proof of the Assertion.

Let us now return to the proof of the lemma. By Lemma 2.1 and the Assertion, there is a splitting of $h, \mathfrak{N} \times B_{1}^{m} \times \mathbf{R}=\mathfrak{N}_{1} \cup \mathfrak{R}_{2}$, such that the inclusion $\mathscr{N}_{0} \leftrightarrows \mathscr{N}_{2}$ is a homotopy equivalence. Again, by the Assertion, there is a splitting of $h, \mathcal{N}^{\prime} \times B_{1}^{m} \times \mathbf{R}=\mathcal{R}_{1}^{\prime} \cup \mathcal{R}_{2}^{\prime}$, such that $\mathscr{N}_{1}^{\prime} \subset \operatorname{Int} \mathscr{N}_{1}$ and the inclusions $\mathscr{N}_{0}^{\prime} \hookrightarrow \mathscr{N}_{2}^{\prime}-\operatorname{Int} \mathscr{N}_{2}$ and $\mathfrak{N}_{0}^{\prime} \hookrightarrow \mathcal{X}_{1}^{\prime}$ are homotopy equivalences. Since there is a strong deformation retraction of $\mathscr{N}_{2}$ onto $\mathscr{N}_{0}$, the inclusion $\mathscr{N}_{2}^{\prime}-\operatorname{Int} \mathscr{N}_{2} \hookrightarrow \mathscr{N}_{2}^{\prime}$ is a homotopy equivalence, but hence, $\mathscr{T}_{0}^{\prime} \hookrightarrow \mathcal{H}_{2}^{\prime}$ is a homotopy equivalence and, consequently, the inclusion $\mathfrak{N}_{0}^{\prime} \hookrightarrow \mathscr{N} \times\{0\} \times \mathbf{R}$ is a homotopy equivalence. This completes the proof of Lemma 2.3.

Lemma 2.4. Let $\Re \times B_{1}^{m} \times \mathbf{R}=\mathfrak{R}_{1} \cup \mathfrak{R}_{2}$ be a spliting of $h$ such that the inclusion $\mathscr{\Re}_{0} \leftrightarrows \mathscr{N} \times\{0\} \times \mathbf{R}$ is a homotopy equivalence and for some $r>0, \mathfrak{R}_{0} \cap\left(\mathfrak{N} \times B_{r}^{m} \times \mathbf{R}\right)=\mathscr{N}_{0} \times B_{r}^{m}$. Then there exists a splitting of $h, \mathfrak{N} \times B_{1}^{m} \times \mathbf{R}=\mathfrak{N}_{1}^{\prime} \cup \mathfrak{N}_{2}^{\prime}$, such that the inclusions $\mathscr{N}_{0}^{\prime} \leftrightarrows \mathfrak{N} \times$ $\{0\} \times \mathbf{R}$, $\Re_{0}^{\prime} \leftrightarrows \mathfrak{N} \times B_{1}^{m} \times \mathbf{R}$, and $\mathfrak{N}_{0}^{\prime}-\mathfrak{N}_{0}^{\prime} \leftrightarrows \mathfrak{N} \times\left(B_{1}^{m}-\{0\}\right) \times \mathbf{R}$ are homotopy equivalences.

Proof. The proof is similar to the proof of Lemma 2.3, but using the following fact for ANR's. If $Z \subset S, S=S_{1} \cup S_{2}, S_{0}=S_{1} \cap S_{2}$, and the inclusions $Z \cap S_{1}, Z \cap S_{2} \hookrightarrow S_{2}$, and $Z \cap S_{0} \hookrightarrow S_{0}$ are homotopy equivalences, then the inclusion $Z \hookrightarrow S$ is a homotopy equivalence.

Proof of Theorem 2.1. By Lemma 2.3, there is a splitting of $h$, $\mathfrak{N} \times B_{1}^{m} \times \mathbf{R}=\Re_{1} \cup \Re_{2}$, such that $\Re_{0} \leftrightharpoons \Re^{\prime} \times\{0\} \times \mathbf{R}$ is a homotopy equivalence. We will first show there exists a homeomorphism $h_{1}$ : $\mathfrak{N} \times B_{1}^{m} \times \mathbf{R} \rightarrow \mathfrak{M} \times B_{1}^{m} \times \mathbf{R}$ such that $h_{1}=\mathrm{Id}$ on $\mathfrak{N} \times\{0\} \times \mathbf{R}$ and $h_{1}\left(\Re_{0}\right) \cap\left(\Re \times B_{r_{1}}^{m} \times \mathbf{R}\right)=\Re_{0} \times B_{r_{1}}^{m}$ for some $r_{1}>0$.

Let $\varphi: N \times I^{n} \times \mathbf{R}^{m} \rightarrow M \times I^{n}$ be an open PL embedding such that $\varphi=\mathrm{Id}$ on $N \times I^{n} \times\{0\}$ and $\varphi\left(N \times I^{n} \times \mathbf{R}^{m}\right) \cap A=\varphi\left(B \times \mathbf{R}^{m}\right)$. Therefore, $\varphi \times \mathrm{Id}_{Q_{n+1}}: N \times Q \times \mathbf{R}^{m} \rightarrow M \times Q$ is an open embedding such that $\varphi \times \mathrm{Id}_{Q n+1}=\mathrm{Id}$ on $N \times Q \times\{0\}$ and

$$
\varphi \times \operatorname{Id}_{Q_{n+1}}\left(N \times Q \times \mathbf{R}^{m}\right) \cap h\left(\mathscr{N}_{0}\right)=\varphi \times \operatorname{Id}_{Q_{n+1}}\left(B \times \mathbf{R}^{m}\right)
$$

Hence, using a small continuous function $\lambda: \mathfrak{N} \times \mathbf{R} \rightarrow(0,1)$ such that if $(m, x, t) \in \mathfrak{N} \times \mathbf{R}^{m} \times \mathbf{R}$ and $\|x\| \times \lambda(m, t)$ then

$$
\varphi \times \operatorname{Id}_{Q_{n+1}}(h(m, 0, t), x) \subset h\left(\Re \times B_{1}^{m} \times \mathbf{R}\right)
$$

we can construct an open embedding $g$ : $\mathfrak{M} \times \mathbf{R}^{m} \times \mathbf{R} \rightarrow \mathfrak{N} \times B_{1}^{m} \times \mathbf{R}$ such that $g=$ Id on $\mathfrak{N} \times\{0\} \times \mathbf{R}$ and $g\left(\mathscr{\Re}_{0} \times \mathbf{R}^{m}\right)=g\left(\mathscr{N} \times \mathbf{R}^{m} \times \mathbf{R}\right)$ $\cap \mathfrak{R}_{0}$. Using the proof of Lemma 4.3 of [10], it is easy to find a homeomorphism $f: \mathfrak{N} \times B_{1}^{m} \times \mathbf{R} \rightarrow \mathfrak{N} \times B_{1}^{m} \times \mathbf{R}$ such that $f=\mathrm{Id}$ on $\mathfrak{N} \times\{0\} \times \mathbf{R}$ and $f=g$ on $\mathfrak{N} \times B_{r}^{m} \times B^{1}$ for some small $r>0$. Hence, there exists $r_{1}>0$ such that if $h_{1}=f^{-1}$, then $h_{1}\left(\mathscr{R}_{0}\right) \cap\left(\mathscr{N} \times B_{r_{1}}^{m} \times \mathbf{R}\right)$ $=\Re_{0} \times B_{r_{1}}^{m}$. This completes the construction of $h_{1}$.

By Lemma 2.4 there exists a splitting of $h h_{1}^{-1}, \mathfrak{T} \times B_{1}^{m} \times \mathbf{R}=\Re_{1}^{\prime} \cap$ $\mathfrak{N}_{2}^{\prime}$, such that the inclusions $\mathfrak{N}_{0}^{\prime} \leftrightarrows \mathfrak{N} \times B_{1}^{m} \times \mathbf{R}, \mathscr{N}_{0} \leftrightarrows \mathfrak{N} \times\{0\} \times \mathbf{R}$ and $\Re_{0}^{\prime}-\Re_{0}^{\prime} \hookrightarrow \Re^{\prime} \times\left(d \mathrm{~B}_{1}^{m}-\{0\}\right) \times \mathbf{R}$ are homotopy equivalences. Therefore, $\mathfrak{M} \times B_{1}^{m} \times \mathbf{R}=h_{1}^{-1}\left(\mathscr{R}_{1}^{\prime}\right) \cup h_{1}^{-1}\left(\mathscr{N}_{2}^{\prime}\right)$ is the desired splitting of $h$. This completes the proof of Theorem 2.1.
3. QPL-flat embeddings. The purpose of this section is to prove Theorem 2, which can be restated as follows.

Theorem 2. Let $N^{n}$ be a compact PL manifold and let $\left(M^{n+m}, N^{n}\right)$ be a flat PL manifold pair. If $h: N \times Q \rightarrow M \times Q$ is a codimension $m$ flat embedding homotopic to the inclusion, then there exists an $l \geq 0$ and $a$ codimension $m$ PL flat embedding $g: N \times I^{l} \rightarrow M \times I^{l}$ such that $h$ is isotopic to the $Q P L$ embedding $g \times \mathrm{Id}_{Q_{1+1}}$.

Corollary 3.1. Let $M^{n+m}$ be a PL manifold and let $f: Q \rightarrow M \times Q$ be a codimension $m$ locally flat embedding. Then there exists an $l \geq n$ and $a$ codimension $m$ PL flat embedding $g: I^{l} \rightarrow M \times I^{1-n}$ such that $g \times I d:$ $I^{l} \times Q_{l+1} \rightarrow\left(M \times I^{l-n}\right) \times Q_{l-n+1}$ is isotopic to $f: Q \rightarrow M \times Q$.

Corollary 3.2. Any two codimension $m(m \neq 2)$ locally flat embeddings $f_{0}, f_{1}: Q \rightarrow Q$ are ambient isotopic.

The following lemma is the main ingredient in the proof of Theorem 2. Its proof is virtually identical to the proof of Theorem 2 of [5].

Lemma 3.1. Let $M^{n+k+1}$ and $N^{n}$ be $P L$ manifolds and let $K \subset N$ be a compact set. Let $\alpha: N \times B_{1}^{k} \rightarrow \partial M$ be a PL embedding and let $h: I \times N \times$ $B_{1}^{k} \times Q \rightarrow M \times Q$ be an open embedding such that $h=\alpha \times \operatorname{Id}_{Q}$ on $\{0\} \times$ $N \times B_{1}^{k} \times Q$. Then there exists an $l \geq 0$, a compact $P L$ submanifold $N_{1}$ of $N$ with $K \subset$ Int $N_{1}$, a PL embedding $g: I \times N_{1} \times B_{1}^{k} \times I^{l} \rightarrow M \times I^{l}$ such that $g\left(I \times \operatorname{Int} N_{1} \times B_{1}^{k} \times I^{l}\right)$ is open in $M \times I^{l}$, and an open embedding $f$ : $I \times N \times B_{1}^{k} \times Q \rightarrow M \times Q$ such that
(1) $f=\alpha \times \mathrm{Id}_{Q}$ on $\{0\} \times N \times B_{1}^{k} \times Q$,
(2) $f=g \times \mathrm{Id}_{Q_{1+1}}$ on $I \times N_{1} \times B_{1}^{k} \times Q$,
(3) $f=h$ outside a neighborhood $U$ of $I \times N_{1} \times B_{1}^{k} \times Q$, and
(4) $f$ is isotopic to $h$ relative to

$$
\left(\{0\} \times N \times B_{1}^{k} \times Q\right) \cup\left(\left(I \times N \times B_{1}^{k} \times Q\right)-U\right)
$$

Proof of Theorem 2. Let $\alpha: N \times \mathbf{R}^{m} \rightarrow M$ be a PL embedding such that $\alpha=$ Id on $N \times\{0\}$. Let $\tilde{h}: N \times \mathbf{R}^{m} \times Q \rightarrow M \times Q$ be an open embedding such that $\tilde{h}=h$ on $N \times\{0\} \times Q$. Since

$$
\alpha \times \mathrm{Id}_{Q}:\left(N \times B_{2}^{m}\right) \times\{0\} \times Q_{2} \rightarrow M \times I_{1} \times Q_{2}
$$

and

$$
\tilde{h} \mid N \times B_{2}^{m} \times\{0\} \times Q_{2}: N \times B_{2}^{m} \times\{0\} \times Q_{2} \rightarrow M \times I_{1} \times Q_{2}
$$

are homotopic $Z$-embeddings, we may assume without loss of generality that $\tilde{h}: I_{1} \times\left(N \times \dot{B}_{2}^{m}\right) \times Q_{2} \rightarrow\left(I_{1} \times M\right) \times Q_{2}$ is an open embedding such that $\tilde{h}=\alpha \times \operatorname{Id}_{Q_{2}}$ on $\{0\} \times\left(N \times \stackrel{\circ}{B}_{2}^{m}\right) \times Q_{2}$, where $\alpha: N \times \dot{B}_{2}^{m} \rightarrow$ $\partial\left(I_{1} \times M\right)$ is a PL embedding. By Lemma 3.1 there exists a PL embedding $\tilde{g}: N \times B_{1}^{m} \times I^{l} \rightarrow M \times I^{l}$ such that $\tilde{g}\left(N \times B_{1}^{m} \times I^{l}\right)$ is open in $M \times I^{l}$ and $\tilde{g} \times \mathrm{Id}_{Q_{l+}}: N \times B_{1}^{m} \times Q \rightarrow M \times Q$ is isotopic to $\tilde{h} \mid N \times B_{1}^{m}$ $\times Q$. Therefore, $g=\tilde{g} \mid N \times\{0\} \times I^{l}$ is a codimension $m$ PL flat embedding and $g \times \mathrm{Id}_{Q_{l+1}}$ is isotopic to $h$. This concludes the proof of Theorem 2.
4. Triangulating flat $Q$-manifold pairs. Throughout this section, by a flat $Q$ manifold pair ( $\Re, \mathscr{O}$ ), we mean a flat $Q$-manifold pair for which $\Re$ is compact and $\mathfrak{N}$ can be triangulated with a PL manifold. We say that the pair ( $\mathfrak{M}, \mathfrak{N}$ ) can be triangulated if there exists a flat PL manifold pair $(M, N)$ and a homeomorphism $h:(\mathfrak{N}, \mathfrak{K}) \rightarrow(M, N) \times Q$.

## TheOrem 1. Every flat $Q$-manifold pair can be triangulated.

Proof. Let ( $\mathbb{R}, \mathcal{N}$ ) be a flat $Q$-manifold pair. Let $\varphi: \operatorname{Bd} I^{n} \rightarrow$ 凡 be a continuous map and let $\tilde{\varphi}$ : Bd $I^{n} \times Q \rightarrow \mathscr{T}$ be the composition Bd $I^{n} \times Q$ $\xrightarrow{\text { proj }} \mathrm{Bd} I^{n} \xrightarrow{\varphi}$ N. Let $\psi: \mathrm{Bd} i^{n} \times Q \rightarrow \mathcal{N}$ be a $Z$-embedding homotopic to $\tilde{\varphi}$. Since $\psi\left(\operatorname{Bd} I^{n} \times Q\right) \subset \mathscr{O}$ is a $Z$-set, there is an open embedding $f$ : $\mathrm{Bd} I^{n} \times Q \times[0,1) \rightarrow \Re$ such that $f=\psi$ on $\mathrm{Bd} I^{n} \times Q \times\{0\}$. Furthermore, since the inclusion $\mathfrak{H} \leftrightarrows \mathscr{\Re}$ is a flat embedding, there exists an open embedding $\tilde{f}:\left(\operatorname{Bd} I^{n} \times Q \times[0,1) \times B_{1}^{m}, \quad \operatorname{Bd} I^{n} \times Q \times[0,1) \times\{0\}\right) \rightarrow$ $(\mathscr{N}, \mathscr{N})$ such that $\tilde{f}=f$ on $\operatorname{Bd} I^{n} \times Q \times[0,1) \times\{0\}$. Let $\tilde{\psi}=\tilde{f} \mid \operatorname{Bd} I^{n} \times$ $Q \times\{0\} \times B_{1}^{m}$. Put

$$
\mathfrak{N}_{1}=\mathfrak{N} \cup_{\psi}\left(I^{n} \times Q \times B_{1}^{m}\right) \quad \text { and } \quad \mathscr{R}_{1}=\mathscr{N} \cup_{\psi}\left(I^{n} \times Q \times\{0\}\right)
$$

Note that $\left(\mathscr{N}_{1}, \mathscr{N}_{1}\right)$ is a flat $Q$-manifold pair and $\mathscr{\Re}_{1}$ has the homotopy type of $\mathscr{\Re} \cup_{\varphi} I^{n}$. Here is the main step in the proof. After having established this, it will be easy to deduce Theorem 1.

Assertion. If $\left(\mathscr{R}_{1}, \mathscr{R}_{1}\right)$ can be triangulated, then so can ( $\left.\mathfrak{\Re}, \mathfrak{\Re}\right)$.
Proof of Assertion. Let $\left(M^{\lambda+m}, N^{\lambda}\right)$ be a flat PL manifold pair and let $h:\left(\mathbf{R}^{n} \times Q \times B_{1}^{m}, \mathbf{R}^{n} \times Q \times\{0\}\right) \rightarrow(M \times Q, N \times Q)$ be an open embedding. Assume, without loss of generality, that $\left(\mathscr{R}_{1}, \mathfrak{R}_{1}\right)=(M \times$ $Q, N \times Q$ ) and

$$
(\Re, \mathfrak{N})=\left(M \times Q-h\left(\dot{B}_{1}^{n} \times Q \times B_{1}^{m}\right), N \times Q-h\left(\dot{B}_{1}^{n} \times Q \times\{0\}\right)\right) .
$$

By Theorem 2.1, there exists a straight PL submanifold $A$ of $M \times I^{q}$ such that if $B=A \cap\left(N \times I^{q}\right)$, then
(a) $B$ is a straight PL submanifold of $N \times I^{q}$,
(b) $\left(M \times I^{q}-\operatorname{Int} A, N \times I^{q}-\operatorname{Int} B\right)$ is a flat PL manifold pair,
(c)

$$
\begin{aligned}
h\left(B_{1 / 2}^{n} \times Q \times B_{1}^{m}\right) & \subset \operatorname{Int} A \times Q_{q+1} \subset A \times Q_{q+1} \\
& \subset h\left(\stackrel{\circ}{B}_{2}^{n} \times Q \times B_{1}^{m}\right),
\end{aligned}
$$

(d)

$$
\begin{aligned}
h\left(B_{1 / 2}^{n} \times Q \times\{0\}\right) & \subset \operatorname{Int} B \times Q_{q+1} \subset B \times Q_{q+1} \\
& \subset h\left(\dot{B}_{2}^{n} \times Q \times\{0\}\right)
\end{aligned}
$$

and
(e) the inclusions $\mathrm{Bd} A \times Q_{q+1} \hookrightarrow h\left(\left(\stackrel{\circ}{B}_{2}^{n}-B_{1 / 2}^{n}\right) \times Q \times B_{1}^{m}\right)$ and $\mathrm{Bd} B \times Q_{q=1} \leftrightharpoons h\left(\left(B_{2}^{n}-B_{1 / 2}^{n}\right) \times Q \times\{0\}\right)$ are homotopy equivalences.

By (a) thru (e), there is a homotopy equivalence between $Q$-manifolds
$\tau: h\left(\left(B_{2}^{n}-\stackrel{\circ}{B}_{1}^{n}\right) \times Q \times B_{1}^{m}\right) \rightarrow h\left(B_{2}^{n} \times Q \times B_{1}^{m}\right)-\operatorname{Int} A \times Q_{q+1}$
such that

$$
\begin{aligned}
\tau \mid h\left(\partial B_{2}^{n} \times Q \times B_{1}^{m}\right) & : h\left(\partial B_{2}^{n} \times Q \times B_{1}^{m}\right) \\
& \rightarrow h\left(B_{2}^{n} \times Q \times B_{1}^{m}\right)-\operatorname{Int} A \times Q_{q+1}
\end{aligned}
$$

is homotopic to the inclusion. Hence, there is a homeomorphism

$$
\tilde{g}: M \times Q-h\left(\stackrel{\circ}{B}_{1}^{n} \times Q \times B_{1}^{m}\right) \rightarrow\left(M \times I^{n}-\operatorname{Int} A\right) \times Q_{q+1}
$$

such that $\tilde{g}=\mathrm{Id}$ on $M \times Q-h\left(\dot{B}_{2}^{n} \times Q \times B_{1}^{m}\right)$. Similarly there is a homeomorphism

$$
g: N \times Q-h\left(\stackrel{\circ}{B}_{1}^{n} \times Q \times\{0\}\right) \rightarrow\left(N \times I^{n}-\text { Int } B\right) \times Q_{q+1}
$$

such that $g=$ Id on $N \times Q-h\left(\dot{B}_{2}^{n} \times Q \times\{0\}\right)$.
Let

$$
r_{t}: M \times Q-h\left(\stackrel{\circ}{B}_{1}^{n} \times Q \times B_{1}^{m}\right) \rightarrow M \times Q-h\left(\dot{B}_{1}^{n} \times Q \times B_{1}^{m}\right)
$$

be the strong deformation retraction of $M \times Q-h\left(\dot{B}_{1}^{n} \times Q \times B_{1} m\right)$ onto $M \times Q-h\left(\dot{B}_{2}^{n} \times Q \times B_{1}^{n}\right)$ along the rays of

$$
h\left(\left(B_{2}^{n}-\stackrel{\circ}{B}_{1}^{n}\right) \times Q \times B_{1}^{m}\right)
$$

It is not difficult to prove, using $r_{t}$, that the following map is homotopic to the inclusion:

$$
\begin{aligned}
& \left(N \times I^{q}-\operatorname{Int} B\right) \times Q_{q+1} \stackrel{g^{-1}}{\rightarrow} N \times Q-h\left(\stackrel{\circ}{B}_{1}^{n} \times Q \times\{0\}\right) \\
& \quad \rightarrow M \times Q-h\left(\stackrel{\circ}{B}_{1}^{n} \times Q \times B_{1}^{m}\right) \xrightarrow{\tilde{g}}\left(M \times Q^{q}-\operatorname{Int} A\right) \times Q_{q+1}
\end{aligned}
$$

Therefore, by Theorem 2, the pair
$\left(M \times Q-h\left(\stackrel{\circ}{B}_{1}^{n} \times Q \times B_{1}^{m}\right), N \times Q-h\left(\dot{B}_{1}^{n} \times Q \times\{0\}\right)\right)=(\mathscr{N}, \mathscr{N})$
can be triangulated. This concludes the proof of the Assertion.

We now return to the proof of Theorem 1. Since every compact ANR can be transformed into a compact contractible ANR by attaching a finite number of cells, it follows that we can construct a sequence of flat $Q$-manifold pairs ( $\mathfrak{\Re}, \mathfrak{\Re})=\left(\mathfrak{R}_{0}, \mathfrak{\Re}_{0}\right),\left(\mathfrak{N}_{1}, \mathfrak{R}_{1}\right), \ldots,\left(\mathfrak{N}_{p}, \mathfrak{\Re}_{p}\right)$, where each pair $\left(\mathscr{N}_{t+1}, \mathscr{N}_{t+1}\right)$ is obtained from $\left(\mathscr{N}_{1}, \mathscr{N}_{t}\right)$ by attaching a copy of $\left(I^{n} \times Q \times B_{1}^{m}, I^{n} \times Q \times\{0\}\right)$ as above, and $\Re_{p}$ is homeomorphic to $Q$. By Corollary 3.1 and, of course, since locally flat embeddings of Hilbert cubes are flat [3], the pair $\left(\mathscr{R}_{p}, \mathscr{\Re}_{p}\right)$ can be triangulated and, therefore, by the Assertion, the pair ( $\mathfrak{N}, \mathfrak{H}$ ) can be triangulated. This concludes the proof of Theorem 1.

Remark. For flat compact $Q$-manifold pairs, there is a completely different proof of Theorem 1 which avoids the use of the Relative Splitting Theorem 2.1.
5. $Q$ PL homeomorphisms. Let $M$ and $N$ be compact PL manifolds. Chapman [5] proved that a homeomorphism $h: N \times Q \rightarrow M \times Q$ is isotopic to a QPL homeomorphism if and only if $h$ is homotopic to a QPL homeomorphism. The purpose of this section is to obtain the same result at the level of flat $Q$-manifold pairs. We shall relay heavily on Chapman's paper [5].

Our first task is to prove the following theorem.

Theorem 5.1. Let $\left(M^{n+m+1}, M_{0}^{n+1}\right)$ be a flat compact PL manifold pair, $N^{n}$ a compact PL manifold and $\alpha: N \times\left(B_{1}^{m},\{0\}\right) \rightarrow\left(\partial M, \partial M_{0}\right)$ a $P L$ embedding. Let $h: I \times N \times\left(B_{1}^{m},\{0\}\right) \times Q \rightarrow\left(M, M_{0}\right) \times Q$ be a homeomorphism such that $h=\alpha \times \mathrm{Id}_{Q}$ on $\{0\} \times N \times B_{1}^{m} \times Q$. Then there exists an $l \geq 0$ and a $P L$ homeomorphism $g: I \times N \times\left(B_{1}^{m},\{0\}\right) \times I^{l} \rightarrow\left(M, M_{0}\right)$ $\times I^{l}$ such that $g=\alpha \times \operatorname{Id}_{I^{\prime}}$ on $\{0\} \times N \times B_{1}^{m} \times I^{l}$ and $h$ is isotopic by pairs to $g \times \mathrm{Id}_{Q_{1+1}}$ relative to $\{0\} \times N \times B_{1}^{m} \times Q$.

The proof of Theorem 5.1 requires some lemmas.

Lemma 5.1. Let $\left(M^{n+k+m+1}, M_{0}^{n+k+1}\right)$ be a flat compact $P L$ manifold pair, $\alpha: \mathbf{R}^{n} \times\left(B_{1}^{k+m}, B_{1}^{k}\right) \rightarrow\left(\partial M, \partial M_{0}\right)$ a PL embedding and $h: I \times \mathbf{R}^{n} \times$ $\left(B_{1}^{k+m}, B_{1}^{k}\right) \times Q \rightarrow\left(M, M_{0}\right) \times Q$ an open embedding such that $h=\alpha \times$ $\mathrm{Id}_{Q}$ on $\{0\} \times \mathbf{R}^{n} \times B_{1}^{k+m} \times Q$. Then there exists an $l \geq 0$ and a straight submanifold $A \subset M \times I^{l}$ such that:
(1) $B=A \cap\left(N \times I^{l}\right)$ is a straight submanifold of $N \times I^{l}$,
(2) $\mathrm{Bd} B=\operatorname{Bd} A \cap\left(N \times I^{l}\right)\left(\right.$ where $\mathrm{Bd} B$ is computed in $\left.N \times I^{l}\right)$,
(3)

$$
\begin{aligned}
h\left(I \times B_{1 / 2}^{n} \times B_{1}^{k+m} \times Q\right) & \subset \operatorname{Int} A \times Q_{l+1} \subset A \times Q_{l+1} \\
& \subset h\left(I \times B_{2}^{\circ} \times B_{1}^{k+m} \times Q\right),
\end{aligned}
$$

(4) the following inclusions are homotopy equivalences:

$$
\begin{aligned}
& \operatorname{Bd} A \times Q_{l+1} \leftrightharpoons h\left(I \times\left(\stackrel{\circ}{B}_{2}^{n}-B_{1 / 2}^{n}\right) \times B_{1}^{k+m} \times Q\right), \\
& \operatorname{Bd} B \times Q_{l+1} \hookrightarrow h\left(I \times\left(\stackrel{\circ}{B}_{2}^{n}-B_{1 / 2}^{n}\right) \times B_{1}^{k} \times Q\right),
\end{aligned}
$$

and

$$
(\operatorname{Bd} A-\operatorname{Bd} B) \times Q_{l+1} \leftrightarrows h\left(I \times\left(\dot{B}_{2}^{n}-B_{1 / 2}^{n}\right) \times\left(B_{1}^{k+m}-B_{1}^{k}\right) \times Q\right),
$$

(5) there exists an open PL embedding $\varphi: N \times I^{l} \times \mathbf{R}^{m} \rightarrow M \times I^{l}$ such that $\varphi=\operatorname{Id}$ on $N \times I^{l} \times\{0\}$ and

$$
\begin{equation*}
\operatorname{Bd} A \cap \varphi\left(N \times I^{l} \times \mathbf{R}^{m}\right)=\varphi\left(\operatorname{Bd} B \times \mathbf{R}^{m}\right) \tag{6}
\end{equation*}
$$

$(A, B) \cap\left[\alpha\left(\mathbf{R}^{n} \times\left(B_{1}^{k+m}, B_{1}^{k}\right)\right) \times I^{\prime}\right]=\alpha\left(B_{1}^{n} \times\left(B_{1}^{k+m}, B_{1}^{k}\right)\right) \times I^{\prime}$,
and

$$
\begin{align*}
(\operatorname{Bd} A, \operatorname{Bd} B) \cap[\alpha & \left.\left(\mathbf{R}^{n} \times\left(B_{1}^{k+m}, B_{1}^{k}\right)\right) \times I^{l}\right]  \tag{7}\\
& =\alpha\left(\partial B_{1}^{n} \times\left(B_{1}^{k+m}, B_{1}^{k}\right)\right) \times I^{l}
\end{align*}
$$

Proof. The proof is similar to the proof of Lemma 2.3 of [5], but using the Relative Splitting Theorem 2.1 and its proof instead of the Chapman Splitting Theorem [6].

If $X$ is a compact space, we define Cone $X=X \times[0,1] / X \times\{1\}$ and we shall assume $X \times\{0\} \subset$ Cone $X$.

Lemma 5.2. Let $h: I \times\left(B_{1}^{m},\{0\}\right) \times Q \rightarrow I \times\left(B_{1}^{m},\{0\}\right) \times Q$ be a homeomorphism such that $h=\mathrm{Id}$ on $\{0\} \times B_{1}^{m} \times Q$. Then $h$ is ambient isotopic by pairs to Id relative to $\{0\} \times B_{1}^{m} \times Q$.

Proof. Since there is a homeomorphism $\delta: I \times\left(B_{1}^{m},\{0\}\right) \times Q \rightarrow$ Cone $\left(\left(B_{1}^{m},\{0\}\right) \times Q\right)$ such that $\delta=\mathrm{Id}$ on $\{0\} \times B_{1}^{m} \times Q$ (for the construction of $\delta$, see proof of Lemma 5.1, IV of [3]), the problem reduces to proving that if $h^{\prime}: \operatorname{Cone}\left(\left(B_{1}^{m},\{0\}\right) \times Q\right) \rightarrow \operatorname{Cone}\left(\left(B_{1}^{m},\{0\}\right) \times Q\right)$ is a homeomorphism such that $h^{\prime}=\mathrm{Id}$ on $\{0\} \times B_{1}^{m} \times Q$, then $h^{\prime}$ is ambient isotopic by pairs to Id relative to $\{0\} \times B_{1}^{m} \times Q$. But this is just a version of the well-known Alexander trick.

Lemma 5.3. Let $\mathfrak{l}$ be a compact $Q$-manifold with $\pi_{1}(\mathfrak{\Re )}$ free or free abelien and let $f: I \times \vartheta \times \mathbf{R}^{m} \rightarrow I \times \vartheta \times B_{1}^{m}$ be an open embedding such that
(1) $f=\operatorname{Id}$ on $\{0\} \times \mathscr{\pi} \times\{0\}$,
(2) $f\left(I \times \mathfrak{H} \times \mathbf{R}^{m}\right) \cap\{0\} \times \mathscr{H} \times B_{1}^{m}=f\left(\{0\} \times \mathfrak{H} \times \mathbf{R}^{m}\right)$, and
(3) the inclusion

$$
\{0\} \times \mathfrak{R} \times\left(B_{1}^{m}-\{0\}\right) \hookrightarrow I \times \mathfrak{R} \times B_{1}^{m}-f(I \times \mathfrak{T} \times\{0\})
$$

is a homotopy equivalence.
Then there is a homeomorphism $h: I \times \mathfrak{N} \times B_{1}^{m} \rightarrow I \times \mathfrak{N} \times B_{1}^{m}$ such that $h=\operatorname{Id}$ on $\{0\} \times \mathfrak{l} \times B_{1}^{m}$ and $h f=\mathrm{Id}$ on $I \times \mathfrak{l} \times\{0\}$.

Proof. Using the construction of $h_{2}$ in the proof of Theorem 2 of [3] and the construction of $u$ in the proof of Assertion 1, Lemma 4.3 of [10], we may assume without loss of generality that $f=\mathrm{Id}$ on $\{0\} \times \mathfrak{N} \times B_{r}^{m}$ for some $r>0$. Since the inclusion $\{0\} \times \mathfrak{\pi} \times\left(B_{1}^{m}-\{0\}\right) \hookrightarrow I \times \mathscr{} \times$ $B_{1}^{m}-f(I \times \mathfrak{G} \times\{0\})$ is a homotopy equivalence, it follows that the inclusion $f\left(I \times \mathscr{N} \times \partial B_{r}^{m}\right) \hookrightarrow I \times \mathscr{} \times B_{1}^{m}-f\left(I \times \mathscr{N} \times \dot{B}_{r}^{m}\right)$ is a homotopy equivalence and, consequently a simple homotopy equivalence. Hence, there exists a homeomorphism

$$
\lambda: I \times \Re \times\left(B_{1}^{m}-\stackrel{\circ}{B}_{r}^{m}\right) \rightarrow I \times \mathscr{H} \times B_{1}^{m}-f\left(I \times \mathscr{} \times \stackrel{\circ}{B}_{r}^{m}\right)
$$

such that $\lambda=f$ on $I \times \mathfrak{\pi} \times \partial B_{r}^{m}$. Furthermore, we may choose $\lambda$ in such a way that $\lambda=\operatorname{Id}$ on $\{0\} \times \mathscr{N} \times\left(B_{1}^{m}-\dot{B}_{r}^{m}\right)$. Then $\lambda$ and $f \mid I \times \mathscr{N} \times B_{r}^{m}$ piece together to give a homeomorphism whose inverse is our desired homeomorphism $h$.

Lemma 5.4. Let $f: B_{3}^{n} \times\{0\} \times Q \rightarrow B_{3}^{n} \times B_{2}^{m} \times Q$ be a locally flat embedding such that
(1) $f=\operatorname{Id}$ on $B_{1}^{n} \times\{0\} \times Q$,
(2) $f\left(B_{3}^{n} \times\{0\} \times Q\right) \cap B_{1}^{n} \times B_{2}^{m} \times Q=B_{1}^{n} \times\{0\} \times Q$,
(3) the inclusion

$$
\partial B_{1}^{n} \times\left(B_{2}^{m}-\{0\}\right) \times Q \leftrightharpoons\left(B_{3}^{n}-\dot{B}_{1}^{n}\right) \times B_{2}^{m} \times Q-f\left(B_{3}^{n} \times\{0\} \times Q\right)
$$

is a homotopy equivalence, and
(4) there exists an open embedding $\phi: \stackrel{\circ}{B}_{2}^{n} \times \stackrel{\circ}{B}_{1}^{m} \times Q \rightarrow B_{3}^{n} \times B_{2}^{m} \times Q$ such that $\phi=f$ on $\dot{B}_{2}^{n} \times\{0\} \times Q$ and $\phi=\operatorname{Id}$ on $B_{1}^{n} \times \stackrel{\circ}{1}_{1}^{m} \times Q$.

Then there exists a homeomorphism $h: B_{3}^{n} \times B_{2}^{m} \times Q \rightarrow B_{3}^{n} \times B_{2}^{m} \times Q$ such that $h=\mathrm{Id}$ on $B_{1}^{n} \times B_{2}^{m} \times Q$ and $h f=\mathrm{Id}$.

Proof. By Theorem 1 of [3], $f$ is a flat embedding. Moreover, by Lemma 4.3 of [10], there exists an open embedding $\varphi: B_{3}^{n} \times \stackrel{\circ}{B}_{r}^{m} \times Q \rightarrow$ $B_{3}^{n} \times B_{2}^{m} \times Q$ such that $\varphi=f$ on $B_{3}^{n} \times\{0\} \times Q, \varphi=\mathrm{Id}$ on $B_{1}^{n} \times \dot{B}_{r}^{m} \times Q$ for some $r>0$, and $\varphi\left(B_{3}^{n} \times \stackrel{\circ}{B}_{r}^{m} \times Q\right) \cap B_{1}^{n} \times B_{2}^{m} \times Q=B_{1}^{n} \times \stackrel{\circ}{B}_{r}^{m} \times Q$. Lemma 5.4 now follows from Lemma 5.3.

Lemma 5.5. Let

$$
f: I \times B_{1}^{n} \times\left(B_{1}^{m},\{0\}\right) \times Q \rightarrow I \times \mathbf{R}^{n} \times\left(B_{1}^{m},\{0\}\right) \times Q
$$

be an embedding such that

$$
\begin{equation*}
f=\mathrm{Id} \quad \text { on }\{0\} \times B_{1}^{n} \times B_{1}^{m} \times Q \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
f\left(I \times B_{1}^{n} \times B_{1}^{m} \times Q\right) \cap\left(\{0\} \times \mathbf{R}^{n} \times B_{1}^{m} \times Q\right)  \tag{2}\\
=\{0\} \times B_{1}^{n} \times B_{1}^{m} \times Q
\end{gather*}
$$

$$
\begin{equation*}
\mathrm{Bd} f\left(I \times B_{1}^{n} \times B_{1}^{m} \times Q\right)=f\left(I \times \partial B_{1}^{n} \times B_{1}^{m} \times q\right) \tag{3}
\end{equation*}
$$

is bicollared in $I \times \mathbf{R}^{n} \times B_{1}^{m} \times Q$ and $f\left(I \times \partial B_{1}^{n} \times\{0\} \times Q\right)$ is bicollared in $I \times \mathbf{R}^{n} \times\{0\} \times Q$,
(4) the inclusions

$$
\begin{aligned}
f\left(I \times \partial B_{1}^{n} \times B_{1}^{m} \times d Q\right) & \hookrightarrow I \times\left(\stackrel{\circ}{B}_{2}^{n}-B_{1 / 2}^{n}\right) \times B_{1}^{m} \times Q \\
f\left(I \times \partial B_{1}^{n} \times\left(B_{1}^{m}-\{0\}\right) \times Q\right) & \hookrightarrow I \times\left(\stackrel{\circ}{B}_{2}^{n}-B_{1 / 2}^{n}\right) \times\left(B_{1}^{m}-\{0\}\right) \times Q
\end{aligned}
$$

and

$$
f\left(I \times \partial B_{1}^{n} \times\{0\} \times Q\right) \hookrightarrow I \times\left(\stackrel{\circ}{B}_{2}^{n}-B_{1 / 2}^{n}\right) \times\{0\} \times Q
$$

are homotopy equivalences, and
(5) there exists an open embedding

$$
\phi: I \times\left(\stackrel{\circ}{5}_{5}^{n}-B_{1 / 2}^{n}\right) \times \mathbf{R}^{m} \times Q \rightarrow I \times\left(\stackrel{B}{5}_{n}^{n}-B_{1 / 2}^{n}\right) \times B_{1}^{m} \times Q
$$

such that $\phi=\operatorname{Id}$ on $I \times\left(\dot{B}_{5}^{n}-B_{1 / 2}^{n}\right) \times\{0\} \times Q$, and
(i) $\phi\left(I \times\left(\dot{B}_{5}^{n}-B_{1 / 2}^{n}\right) \times \mathbf{R}^{m} \times Q\right) \cap f\left(I \times \partial B_{1}^{n} \times B_{1}^{m} \times Q\right)$

$$
=\phi\left(f\left(I \times \partial B_{1}^{n} \times\{0\} \times Q\right) \times \mathbf{R}^{m}\right)
$$

(ii)

$$
\begin{aligned}
\phi\left(I \times\left(\stackrel{\circ}{5}_{5}^{n}-B_{1 / 2}^{n}\right) \times \mathbf{R}^{m} \times Q\right) & \cap\left(\{0\} \times\left(\stackrel{\circ}{B}_{5}^{n}-B_{1 / 2}^{n}\right) \times B_{1}^{m} \times Q\right) \\
= & \phi\left(\{0\} \times\left(\stackrel{\circ}{5}_{5}^{n}-B_{1 / 2}^{n}\right) \times \mathbf{R}^{m} \times Q\right) .
\end{aligned}
$$

Then there is a homeomorphism

$$
h: I \times \mathbf{R}^{n} \times\left(B_{1}^{m},\{0\}\right) \times Q \rightarrow I \times \mathbf{R}^{n} \times\left(B_{1}^{m},\{0\}\right) \times Q
$$

such that $h=f$ on $I \times B_{1}^{n} \times B_{1}^{m} \times Q$ and $h$ is isotopic by pairs to Id relative to $\left(\{0\} \times \mathbf{R}^{n} \times B_{1}^{m} \times Q\right) \cup\left(I \times\left(\mathbf{R}^{n}-\stackrel{\circ}{B}_{3}^{n}\right) \times B_{1}^{m} \times Q\right)$.

Proof. We will construct a homeomorphism

$$
h: I \times \mathbf{R}^{n} \times\left(B_{1}^{m},\{0\}\right) \times Q \rightarrow I \times \mathbf{R}^{n} \times\left(B_{1}^{m},\{0\}\right) \times Q
$$

such that $h=f$ on $I \times B_{1}^{n} \times B_{1}^{m} \times Q$ and $h=$ Id on $\left(\{0\} \times \mathbf{R}^{n} \times B_{1}^{m} \times\right.$ $Q) \cup\left(I \times\left(\mathbf{R}^{n}-B_{3}^{n}\right) \times B_{1}^{m} \times Q\right)$. Then the isotopy follows from Lemma 5.2.

As in the proof of Lemma 3.1 of [5], there are homeomorphisms

$$
\lambda_{0}: I \times \mathbf{R}^{n} \times B_{1}^{m} \times Q \rightarrow I \times \mathbf{R}^{n} \times B_{1}^{m} \times Q
$$

and

$$
\lambda_{1}: I \times \mathbf{R}^{n} \times\{0\} \times Q \rightarrow I \times \mathbf{R}^{n} \times\{0\} \times Q
$$

such that $\lambda_{0}=f$ on $I \times B_{1}^{n} \times B_{1}^{m} \times Q, \lambda_{1}=f$ on $I \times B_{1}^{n} \times\{0\} \times Q$, $\lambda_{0}=\operatorname{Id}$ on $\left(\{0\} \times \mathbf{R}^{n} \times B_{1}^{m} \times Q\right) \cup\left(I \times\left(\mathbf{R}^{n}-\stackrel{\circ}{B}_{3}^{n}\right) \times B_{1}^{m} \times Q\right)$, and $\lambda_{1}$ $=$ Id on $\left(\{0\} \times \mathbf{R}^{n} \times\{0\} \times Q\right) \cup\left(I \times\left(\mathbf{R}^{n}-\stackrel{\circ}{B}_{3}^{n}\right) \times\{0\} \times Q\right)$. Unfortunately, $\lambda_{0}^{-1}\left(\left(I \times B_{3}^{n} \times\{0\} \times Q\right)-f\left(I \times B_{1}^{n} \times\{0\} \times Q\right)\right)$ may not be contained in $I \times\left(B_{3}^{n}-\dot{B}_{1}^{n}\right) \times\{0\} \times Q$. In order to modify $\lambda_{0}^{-1}$ to obtain $h^{-1}$, by using Lemma 5.4, we need to prove the following facts:
(I) the inclusion

$$
\begin{aligned}
& \left(I \times \partial B_{3}^{n} \times\left(B_{1}^{m}-\{0\}\right) \times Q\right) \\
& \cup\left(\{0\} \times\left(B_{3}^{n}-\stackrel{\circ}{B}_{1}^{n}\right) \times\left(B_{1}^{m}-\{0\}\right) \times Q\right) \\
& \cup f\left(I \times \partial B_{1}^{n} \times\left(B_{1}^{m}-\{0\}\right) \times Q\right) \\
& \quad \hookrightarrow\left(I \times B_{3}^{n} \times\left(B_{1}^{m}-\{0\}\right) \times Q\right)-f\left(I \times \stackrel{\circ}{B}_{1}^{n} \times B_{1}^{m} \times Q\right)
\end{aligned}
$$

is a homotopy equivalence, and
(II) there is a neighborhood $U$ of

$$
\begin{aligned}
A= & \left(I \times \partial B_{3}^{n} \times\{0\} \times Q\right) \cup\left(\{0\} \times\left(B_{3}^{n}-\dot{B}_{1}^{n}\right) \times\{0\} \times Q\right) \\
& \cup f\left(I \times \partial B_{1}^{n} \times\{0\} \times Q\right)
\end{aligned}
$$

in $\left(I \times B_{3}^{n} \times\{0\} \times Q\right)-f\left(I \times \dot{B}_{1}^{n} \times\{0\} \times Q\right)$ and an open embedding $\Phi: U \times \mathbf{R}^{m} \rightarrow\left(I \times B_{3}^{n} \times B_{1}^{m} \times Q\right)-f\left(I \times \dot{B}_{1}^{n} \times B_{1}^{m} \times Q\right)$
such that
(i) $\Phi=$ Id on $U \times\{0\}$,
(ii) $\Phi\left(U \times \mathbf{R}^{m}\right) \cap\left(A \times B_{1}^{m}\right)=\Phi\left(A \times \mathbf{R}^{m}\right)$, and
(iii) $\Phi=$ Id on $\left(I \times \partial B_{3}^{n} \times \dot{B}_{r}^{m} \times Q\right) \cup\left(\{0\} \times\left(B_{3}^{n}-\dot{B}_{1}^{n}\right) \times \dot{B}_{r}^{m} \times\right.$ $d Q)$ and for each $(t, x, q, y) \in I \times \partial B_{1}^{n} \times Q \times \dot{B}_{r}^{m} \Phi(f(t, x, o, q), y)=$ $f(t, x, y, q)$, for some $r>0$.

Proof of (I). It follows from the fact that the inclusion

$$
f\left(I \times \partial B_{1}^{n} \times\left(B_{1}^{m}-\{0\}\right) \times Q\right) \hookrightarrow I \times\left(\stackrel{\circ}{B}_{2}^{n}-B_{1 / 2}^{n}\right) \times\left(B_{1}^{m}-\{0\}\right) \times Q
$$

is a homotopy equivalence.
Proof of (II). Using the fact that there is a homeomorphism

$$
\varphi: I \times B_{5}^{n} \times B_{1}^{m} \times Q \rightarrow I \times B_{5}^{n} \times B_{1}^{m} \times Q
$$

such that $\varphi^{-1}=\operatorname{Id}$ on $\left(\{0\} \times B_{5}^{n} \times B_{1}^{m} \times Q\right) \cup\left(I \times \partial B_{5}^{n} \times B_{1}^{m} \times Q\right)$ and $\varphi^{-1}=f$ on $I \times B_{1}^{n} \times B_{1}^{m} \times Q$, it is not difficult to see that we may assume, without loss of generality, there exists $r>0$ such that $\phi=\mathrm{Id}$ on $\{0\} \times\left(B_{4}^{n}-\stackrel{\circ}{B}_{3 / 4}^{n}\right) \times \stackrel{\circ}{B}_{r}^{m} \times Q$ and, for each $(t, x, q, y) \in I \times \partial B_{1}^{n} \times Q$ $\times \dot{B}_{r}^{m}, \phi(f(t, x, o, q), y)=f(t, x, y, q)$ (see first part of the proof of Lemma 5.3).

The desired open embedding $\Phi$ can be obtained from $\phi$ by observing that there is a homeomorphism

$$
\tau: I \times B_{5}^{n} \times\left(B_{1}^{m},\{0\}\right) \times Q \rightarrow I \times B_{3}^{n} \times\left(B_{1}^{m},\{0\}\right) \times Q
$$

such that $\tau=\mathrm{Id}$ on $I \times B_{2}^{n} \times B_{1}^{m} \times Q$,

$$
\begin{aligned}
\tau\left(\{0\} \times\left(B_{4}^{n}-\grave{B}_{2}^{n}\right) \times B_{1}^{m} \times Q\right)= & \left(\{0\} \times\left(B_{3}^{n}-\grave{B}_{2}^{n}\right) \times B_{1}^{m} \times Q\right) \\
& \cup\left(I \times \partial B_{3}^{n} \times B_{1}^{m} \times Q\right),
\end{aligned}
$$

and

$$
\tau\left(\{0\} \times\left(B_{5}^{n}-\dot{B}_{4}^{n}\right) \times B_{1}^{m} \times Q\right)=\left(\{1\} \times\left(B_{3}^{n}-\stackrel{\circ}{5} / 2_{n}\right) \times B_{1}^{m} \times Q\right)
$$

This completes the proof of Lemma 5.5.
Proof of Theorem 5.1. The proof of Theorem 5.1 is virtually identical to the proof of Theorem 2 of [5] but using our Lemma 5.1 instead of their Lemma 2.3, our Lemma 5.5 instead of their Lemmas 3.1 and 5.3.

Our next step is to prove the following theorem.

Theorem 5.2. Let $\left(M^{n+m+1}, M_{0}^{n+1}\right)$ and $\left(N^{n+m}, N_{0}^{n}\right)$ be flat compact PL manifold pairs and let $\alpha:\left(N, N_{0}\right) \rightarrow\left(\partial M, \partial M_{0}\right)$ be a PL embedding. Let $h: I \times\left(N, N_{0}\right) \times Q \rightarrow\left(M, M_{0}\right) \times Q$ be a homeomorphism such that $h=\alpha$ $\times \operatorname{Id}_{Q}$ on $\{0\} \times N \times Q$. Then there exists an $l \geq 0$ and a PL homeomorphism $g: I \times\left(N, N_{0}\right) \times I^{l} \rightarrow\left(M, M_{0}\right) \times I^{l}$ such that $g=\alpha \times \operatorname{Id}_{I^{\prime}}$ on $\{0\}$ $\times N \times I^{l}$ and $h$ is isotopic by pairs to $g \times \mathrm{Id}_{Q_{l+1}}$ relative to $\{0\} \times N \times I^{l}$.

The proof of Theorem 5.2 requires two more lemmas.

Lemma 5.6. Let $M^{n+k+1}$ be a PL manifold, $\alpha: \mathbf{R}^{n} \times B_{1}^{k} \rightarrow \partial M$ a $P L$ embedding and $h: I \times \mathbf{R}^{n} \times B_{1}^{k} \times Q \rightarrow M \times Q$ an open embedding such that $h=\alpha \times \mathrm{Id}_{Q}$ on $\{0\} \times \mathbf{R}^{n} \times B_{1}^{k} \times Q$. Then there exists a straight submanifold $A \subset M \times I^{l}$, a PL embedding $g: I \times B_{1}^{n} \times B_{1}^{k} \times I^{l} \rightarrow A$ such that $g=\alpha \times \operatorname{Id}_{I^{\prime}}$ on $\{0\} \times B_{1}^{n} \times B_{1}^{k} \times I^{l}$, and an open embedding $f$ : $I \times \mathbf{R}^{n} \times B_{1}^{k} \times Q \rightarrow M \times Q$ such that
(1) $f=\alpha \times \mathrm{Id}_{Q}$ on $\{0\} \times \mathbf{R}^{n} \times B_{1}^{k} \times Q$,
(2) $f=g \times \mathbf{I d}_{Q_{l+1}}$ on $I \times B_{1}^{n} \times B_{1}^{k} \times Q$, and
(3) $f$ is isotopic to $h$ relative to $\left(\{0\} \times \mathbf{R}^{n} \times B_{1}^{k} \times Q\right) \cup\left(I \times\left(\mathbf{R}^{n}-\right.\right.$ $\left.\left.\stackrel{\circ}{B}_{2}^{n}\right) \times B_{1}^{k} \times Q\right)$.

Proof. The proof is contained in the proof of Theorem 2 of [5].

Lemma 5.7. Let $M^{n+2}$ be a PL manifold, $N^{n}$ a compact $P L$ manifold, $\alpha: \mathbf{R} \times N \rightarrow \partial M$ a $P L$ embedding and let $h: I \times \mathbf{R} \times N \times Q \rightarrow M \times Q$ be an open embedding such that $h=\alpha \times \operatorname{Id}_{Q}$ on $\{0\} \times \mathbf{R} \times N \times Q$. Then there exists a bicollared submanifold $A \subset M \times I^{l}$, a $P L$ homeomorphism $g$ : $I \times\{0\} \times N \times I^{l} \rightarrow A$ such that $g=\alpha \times \operatorname{Id}_{I^{\prime}}$ on $\{0\} \times\{0\} \times N \times I^{l}$, and an open embedding $f: I \times \mathbf{R} \times N \times Q \rightarrow M \times Q$ such that
(1) $f=\alpha \times \operatorname{Id}_{Q}$ on $\{0\} \times \mathbf{R} \times N \times Q$,
(2) $f=g \times \operatorname{Id}_{Q_{l+1}}$ on $I \times\{0\} \times N \times Q$, and
(3) $f$ is isotopic to $h$ relative to $(\{0\} \times \mathbf{R} \times N \times Q) \cup\left(I \times\left(\mathbf{R}-\dot{B}_{1}^{1}\right)\right.$ $\times N \times Q$ ).

Proof. We consider a PL handle decomposition of $N, N_{-1} \subset N_{0} \subset N_{1}$ $\subset \cdots \subset N_{n}=N$, where $N_{-1}$ is a regular neighborhood of $\partial N$ in $N$ and each $N_{t}$ is obtained from $N_{t-1}$ by adding disjoint handles of index $i$.

Set

$$
X_{t}=\left(\left[0, \frac{1}{2}\right] \times \mathbf{R} \times N\right) \cup\left(I \times \mathbf{R} \times N_{t}\right) \subset I \times \mathbf{R} \times N
$$

and

$$
\begin{aligned}
Y_{i} & =\left(\left[0, \frac{1}{2}\right] \times B_{n-i+1}^{1} \times N\right) \cup\left(I \times B_{n-i+1}^{1} \times N_{i}\right) \\
& \subset I \times B_{n-i+1}^{1} \times N, \quad-1 \leq i \leq n
\end{aligned}
$$

It is clear that there exists a collection $\left\{\varphi_{j}\right\}_{1}^{p_{t}}$ of PL embeddings $\varphi_{j}$ : $I \times \mathbf{R} \times \mathbf{R}^{m-l} \times B_{1}^{i} \rightarrow(I \times \mathbf{R} \times N)$ - Int $X_{i-1}$ such that
(a) $\varphi_{j}\left(I \times \mathbf{R} \times \mathbf{R}^{n-i} \times B^{i}\right) \times \partial X_{i-1}=\varphi_{J}\left(\{0\} \times \mathbf{R} \times \mathbf{R}^{n-i} \times B_{1}^{i}\right)$,
(b) $\varphi_{j}\left(I \times \mathbf{R} \times \mathbf{R}^{n-i} \times B_{1}^{i}\right) \cap \partial Y_{i-1}=\varphi_{J}\left(\{0\} \times B_{n-i+2}^{1} \times \mathbf{R}^{n-i} \times B_{1}^{i}\right)$, (c)

$$
X_{i}=X_{l-1} \cup \bigcup_{1}^{p_{i}} \varphi_{j}\left(I \times \mathbf{R} \times B_{1}^{n-i} \times B_{1}^{l}\right)
$$

(d)

$$
\begin{aligned}
& \qquad Y_{i}=\left(Y_{i-1} \cap\left(I \times B_{n-i+1}^{1} \times N\right)\right) \cup \bigcup_{1}^{p_{1}} \varphi_{j}\left(I \times B_{n-i+1}^{1} \times B_{1}^{n-l} \times B_{1}^{l}\right) \text {, } \\
& \text { and }
\end{aligned}
$$

(e) the $\varphi_{j}\left(I \times \mathbf{R} \times \mathbf{R}^{n-t} \times B_{1}^{i}\right)$ 's are pairwise disjoint.

By inductively working through these "handles" we will prove the following statement.
$S_{i}(-1 \leq i \leq n)$ : There exists a straight submanifold $A_{t} \subset M \times I^{l_{t}}$, a PL embedding $g_{i}: Y_{i} \times I^{l_{t}} \rightarrow A_{t}$ such that $g=\alpha \times \operatorname{Id}_{I^{l_{i}}}$ on $\{0\} \times B_{n-t+1}^{1}$ $\times N \times I^{l_{l}}$, and an open embedding $f_{i}: I \times \mathbf{R} \times N \times Q \rightarrow M \times Q$ such that $f_{i}=g_{t} \times \operatorname{Id}_{Q_{l_{t+1}}}$ on $Y_{i} \times Q$, and $f_{l}$ is isotopic to $f$ relative to $(\{0\} \times \mathbf{R}$ $\times N \times Q) \cup\left(I \times\left(\mathbf{R}-B_{n+3}^{1}\right) \times N \times Q\right)$.

It is easy to establish $S_{-1}$ (see proof of Theorem 2 of [5]). Furthermore, $S_{i+1}$ can be obtained from $S_{i}$ by applying Lemma 5.6 to the open embeddings

$$
\begin{aligned}
f_{i} \varphi_{j}: I \times\left(\stackrel{\circ}{B}_{n-i+1}^{1} \times \mathbf{R}^{n-i-1}\right) \times\left(B_{1}^{i+1}\right. & \left.\times I^{l_{t}}\right) \times Q_{l_{t}+1} \\
& \rightarrow\left(\left(M \times I^{l_{2}}\right)-\operatorname{Int} A_{i}\right) \times Q_{l_{i}+1}
\end{aligned}
$$

We finish the proof of Lemma 5.7 by letting $h$ be $h_{n}$ and $A$ be

$$
g_{n}\left(I \times\{0\} \times N \times I^{I_{n}}\right)
$$

Proof of Theorem 5.2. Let us assume $N_{0} \times \mathbf{R}^{m}$ is contained in $N$ as an open subset. By Lemma 5.7 we may assume without loss of generality that there exists a straight submanifold $A$ of $M$, containing $M_{0}$ as a flat submanifold, and a PL homeomorphism $\beta: I \times N_{0} \times \partial B_{1}^{m} \times Q \rightarrow \mathrm{Bd} A$ such that $\beta=\alpha$ on $\{0\} \times N_{0} \times \partial B_{1}^{m}, h=\beta \times \mathrm{Id}_{Q}$ on $I \times N_{0} \times \partial B_{1}^{m} \times Q$,
and $h\left(I \times N_{0} \times\left(B_{1}^{m},\{0\}\right) \times Q\right)=\left(A, M_{0}\right) \times Q$. Theorem 5.2 now follows by applying Theorem 5.1 to $h \mid I \times N_{0} \times B_{1}^{m} \times Q$ and Theorem 2 of [5] to $h \mid I \times\left(N-\left(N_{0} \times \dot{B}_{1}^{m}\right)\right) \times Q$. This completes the proof of Theorem 5.2.

We will now prove Theorem 3, which can be restated as follows.

Theorem 3. Let $\left(M^{n+m}, M_{0}^{n}\right)$ and $\left(N^{n+m}, N_{0}^{n}\right)$ be flat compact PL manifold pairs. Let $\alpha:\left(N, N_{0}\right) \rightarrow\left(M, M_{0}\right)$ be a PL homeomorphism and let $h_{t}:\left(N, N-N_{0}, N_{0}\right) \times Q \rightarrow\left(M, M-M_{0}, M_{0}\right) \times Q$ be a homotopy such that $h_{0}$ is a homeomorphism and $h_{1}=\alpha \times \mathrm{Id}_{Q}$. Then $h_{0}$ is isotopic by pairs to a QPL homeomorphism.

Proof. By Theorem 3.2 of [10], $h_{0}$ is isotopic by pairs to a homeomorphism $h:\left(N, N_{0}\right) \times Q \rightarrow\left(M, M_{0}\right) \times Q$ such that $h=\alpha \times \mathrm{Id}_{Q_{2}}$ on $N \times$ $\{0\} \times Q_{2}$. Hence, by Theorem 5.2, there exists an $l \geq 0$ and a PL homeomorphism $g:\left(N, N_{0}\right) \times I^{l} \rightarrow\left(M, M_{0}\right) \times I^{l}$ such that $h$ is isotopic by pairs to $g \times \mathrm{Id}_{Q_{l+1}}$. This concludes the proof of Theorem 3 .

Remark. The hypothesis $h_{t}\left(\left(N-N_{0}\right) \times Q\right) \subset\left(M-M_{0}\right) \times Q$, in the homotopy of Theorem 3, is necessary. To see this, let $h: \partial B_{1}^{n} \times Q \rightarrow$ $\partial B_{1}^{n} \times Q$ be a homeomorphism which is not ambient isotopic and hence not homotopic to a $Q$ PL homeomorphism. Using a coordinate-switching technique, it is not difficult to construct a homeomorphism $\tilde{h}: B_{1}^{n} \times Q \rightarrow$ $B_{1}^{n} \times Q$ such that $\tilde{h}=$ Id on $\{0\} \times Q$ and $h=h$ on $\partial B_{1}^{n} \times Q$ (see proof of Lemma 3.1 of [3]). It is clear that there is a homotopy $h_{t}:\left(B_{1}^{n},\{0\}\right) \times$ $Q \rightarrow\left(B_{1}^{n},\{0\}\right) \times Q$ such that $h_{0}=\tilde{h}$ and $h_{1}=$ Id. Nevertheless, $\tilde{h}$ is not ambient isotopic by pairs to a QPL homeomorphism, otherwise, $h$ would be homotopic to a QPL homeomorphism, contradicting the choice of $h$.

## References

[1] T. A. Chapman, On the structure of Hilbert cube manifolds, Compositio Math., 24 (1972), 329-353.
[2] , Lectures on Hilbert cube manifolds, C.B.M.S. Regional Conference Series in Math., No. 28, 1976.
[3] , Locally flat embeddings of Hilbert cubes are flat, Fundamenta Math., 87 $\overline{(1975),}$ 184-193.
[4] _ Constructing locally flat embeddings of infinite dimensional manifolds without tubular neighborhoods, preprint.
[5] ___, Homotopic homeomorphisms of Hilbert Cube Manifolds, Lecture Notes in Math., vol. 438, Springer-Verlag, Berlin and New York, 1975, pp. 122-136.
[6] , Surgery and handle straightening in Hilbert cube manifolds, Pacific J. Math., 45 (1973), 59-79.
[7] J. F. P. Hudson, Piecewise-Linear Topology, W. A. Benjamin, Inc., New York, 1969.
[8] J. M. Kister, Microbundles are fiber bundles, Annals of Math., 80 (1964), 190-199.
[9] J. Milnor, Microbundles I, Topology, 3, Suppl. 1 (1964), 53-80.
[10] W. O. Nowell, Tubular neighborhoods of Hilbert cube manifolds, Pacific J. Math., 83 (1979), 231-252.
[11] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
Received January 15, 1982. Supported in part by NSF Grant MCS77-18723 A04.
Universitaria Mexico
20, D.F. Mexico

