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DIRECT LIMITS OF FINITE SPACES OF ORDERINGS

MlECZYSLAW KULA, MURRAY A. MARSHALL AND ANDRZEJ SLADEK

Spaces of orderings which are direct limits of finite spaces of
orderings arise in a natural way. Every space of orderings is canonically a
quotient space of such a space. In this paper we examine the internal
structure of such spaces. In particular, we examine how the classification
theory for finite spaces of orderings carries over to such spaces. We also
establish a relationship between spaces of orderings which are direct
limits of finite spaces and certain corresponding types of ultrasums of
spaces of orderings. This has application to the problem of representing a
space of orderings as the space of orderings of a Pythagorean field.

Generally, we use the terminology and notation of [6, 7, 8]. Throughout

the paper, X denotes a space of orderings and G( X) denotes the underly-

ing group of X. Thus G( X) has exponent 2, and X is a closed subset of the

character group χ(G(X)) satisfying the usual axioms. If / i s a (quadratic)

form over G(X), then dim(/) denotes the dimension of /, d im a n (/)

denotes the dimension of the anisotropic part of/, and σ(/) denotes the

signature of / a t σ E X. We indicate that two forms/, g are isometric (resp.

Witt equivalent) by writing / = g or f=xg (resp. f~g or f~χg). The
value set of a form / i s denoted by D(f) or Dx(f). This consists of all

x G G(X) satisfying/= (x, x2,...9xn) for some x 2 , . . .,xπ G G(X). The

sum and product of forms /, g is denoted by / θ g and / ® g, and if n is a

positive integer, then n X / = f® ••• ®f(n times). If Y is also a space of

orderings, then a morphism from X to Y is a map φ*: X -> Y induced by a

group homomorphism φ: G(Y) -> G(X) in the sense that φ*(σ) = σ ° φ

for all σ G X

The Wiϊί ring of X is denoted by W( X). If σ E I , the ring homomor-

phism from W(X) into Z induced by σ is also denoted by σ. By [8, Lem.

7.1], G{ X) is naturally identified with the group of units of W{ X). Also, it

is well known (and easily verified, e.g., using [8, Lem. 4.1]) that X is

identified with the set of all ring homomorphisms from W(X) into Z.

Also, if φ*: X ^> Y is a morphism of spaces of orderings then the

associated group homomorphism φ: G(Y) -> G(X) induces a ring homo-

morphism (also denoted by φ) from W(Y) into W(X). Every ring

homomorphism from W(Y) into W(X) is of this form for some unique

morphism φ*: X -> Y. In this way the category of Witt rings of spaces of
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orderings and the category of spaces of orderings are equivalent. For a

ring-theoretic treatment of Witt rings of spaces of orderings, we refer the

reader to [3, 10].

1. Direct limits of finite spaces. As in [7] we will denote the direct

sum of a finite collection of spaces of orderings {X]9...,Xn} by X]

Θ ®Xn. The direct sum of an arbitrary collection of spaces of orderings

{Xt: i E /} also exists and will be denoted by Σ ί G /A^ . This is the space of

orderings X defined as follows: G(X) is Π ί e / G ( Â  ), the direct product in

the category of groups. The projection G(X) -» G(Xι) identifies Xi with a

closed subset of the character group χ(G(X)) and X{ Π Xj = 0 if / φ j . X

is defined to be the closure of U | G / X, in χ(G( X)). Note if / is finite then

U l G /Λ
r

z is already closed. If / i s a form over G(X), we denote b y / the

associated form over G(Xt). Since forms over G(X) define continuous

functions on X, it is clear that / ~ g <=> / ~ g, for all i E /. The proof that

X is a space of orderings and the direct sum of the collection {X;. i E /}

in the category of spaces of orderings is straightforward and will be

omitted. W(X) is identified with a subring of the direct product ring

. Observe that W(X) consists of all elements ( / ) ί G / in

satisfying:

(i) dim(/) = dim(/) (mod 2) for all ij E /, and

(ii) sup{dim a n(/): i E /} < oo.

If / is finite then (ii) is vacuous.

We consider direct limits (of directed systems) of finite spaces of

orderings. It turns out that these always exist in the category of spaces of

orderings. Let (X;. i E /) be a directed system of finite spaces of orderings.

Thus / is an ordered set and morphisms φ*: Xι -» X; are specified

whenever / <y. These are assumed to satisfy φy* ° φ* = φ,* whenever

/ < y < k. It is also assumed that / is directed, i.e., that for all /, j E /,

there exists k E / such that i,j < k. To define X : = l i m / e / Xι we first use

the associated group homomorphism φιJ: G(Xj) -> G ( ^ ) to form

G(X) : = Iim ; e /G(AΓ

/), the inverse limit in the category of groups. The

group homomorphism φz: G(X) -> G{Xt) induces a group homomor-

phism φz*: χ(G(Xι)) -» χ(G(X)), and X is defined to be the closure of

THEOREM 1.1. For any directed system (Xt: i E /) of finite spaces of

orderings, X as defined above is a space of orderings, and X is the direct

limit of the directed system (X/. i E /) in the category of spaces of orderings.

Proof. Let Y = ΣιξΞίXr Then G(X) C G(Y) and Xis the image of 7

under the restriction map χ(G(Y)) -» χ(G(X)). We prove X is a space of
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orderings using [7, Lem. 3.3]. First note, since each G(Xt) is finite,
with the product topology, is a compact totally disconnected topological
group. For / <y define Vu — {x G G(Y): φ ίy(x7) = x j . This is closed in
G(Y) and G(X) = Π {VtJ: ί, 7 ε /, 1 <y}. Also, if/is a form over G(Y),
then the value set Dγ(f) — UierDXt(fi) is closed in G(Y). Now suppose
/, g are forms over G(X) and DY(f) Π Z>y(g) 7̂  0 . Thus the sets
£> r(/) Π Dγ(g) Π J^ are closed in G(Y) and using the fact that / is
directed and the fact that the maps φ/y preserve value sets, one verifies
that the intersection of finitely many such sets is not empty. Thus, by
compactness, Dγ(f) Π Dγ(g) n G ( I ) ^ 0 . It follows from [7, Lem.
3.3] that X is a space of orderings. The proof that X is the direct limit of
the directed system (Xt: i G /) in the category of spaces of orderings is
straightforward and will be omitted. ϋ

COROLLARY 1.2. Suppose X — I i m ι e / J ζ where each Xt is finite. Then

for any form f over G( X),
(i)/~0*>/.~0 for alii G/,

(ϋ)/w X-isotropic <&ft is Xrisotropic for all i G /,

Proof. Let Y — ΣierXr The first assertion is clear. By [7, Rem. 3.4]
and the proof of Theorem 1.1,/is X-isotropic <=> /is Y-isotropic. On the
other hand it is clear that / is Γ-isotropic <=» f. is X-isotropic for all / G /.
Also, by the proof of [7, Lem. 3.3], Dx(f) = Dγ(f) Π G(X). Since
Dγ(f) - Π / e / ^ ( / ) , and G{X) = Iimje/G(A;.), this implies Z)^(/) =
lim ^rDx(f). *~ D

THEOREM 1.3. Suppose X— limj.e/-YJ where each Xi is finite. Then

W( X) is the subring of the ring-theoretic inverse limit lim , e / W( Xt) consist-

ing of all ( / ) / G / satisfying sup{ώman(fi): i G /} < 00.

Proof. We use the notation of Theorem 1.1. It is clear that W(X)
C lim W(X() and every element ( / ) / e / of W{X) satisfies supldim^/):
/ G /} < 00. Since / is directed and Ψij(fj) ~ f, =>dim(/-) = dim(/;)
(mod 2), we know that every element of l im / e / W(Xι) satisfying this latter
condition is represented by a form over G(Y) so we are reduced to
proving the following Claim: Suppose / is a form over G(Y) satisfying
Ψijifj) = / for all / j ' 6 / such that / <y. Then there exists a form g over
G( X) satisfying / = g. For by hypothesis, any intersection of finitely
many of the closed sets Dγ(f) Π Vi} is not empty. Thus, by compactness
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of G{Y\ Dγ(f) Π G(X) 7* 0, say xλ E Dγ(f) Π G(X). Thus / =
( Xi)®£ where g is a form over G(Y) of dimension /? — 1, where
n — dim(/). Since g satisfies the same hypothesis as /, by induction
o n n, there exist x 2 , - . .9xn E G(X) such that g ^ (x2,.. , x n ) , s o / =
< * „ . . . , * „ > • •

A space of orderings which is expressible as a direct limit of finite
spaces of orderings will be referred to as a DLO finite space for short.
Note, if X is a DLO finite space of orderings then, with the inverse limit
topology, G( X) is a compact totally disconnected topological group and
W( X) is a totally disconnected topological ring.

REMARK 1.4. Suppose XΊs any space of orderings. The subspace of X
generated by a finite set {σ,,... ,σΛ} C X consists of all σ E X expressible
as σ = σp o*a where e l 9 . . . ,en E {0,1}. In particular, this subspace is
finite. Thus, the finite subspaces of X form a directed system when
ordered by inclusion. Suppose we denote the direct limit of this system by
X. Let φ*: X -> X be the natural morphism which exists by the universal
property of X. This is surjective and hence identifies X with a quotient
space of X. The corresponding inclusions φ: G(X) -> G(X) (resp. φ:
FF( * ) -> W(X)) identify G(X) (resp. JΓ(X)) with a dense subgroup of
G{ X) (resp. with a dense subring of W( X)). Since the results in [2] are a
bit confusing on this point, we emphasize that φ is not surjective except in
the trivial case where X is finite. Note also, by [9, Th. 1.4] and Cor. 1.2 (ii),
if/is a form over G{ X), then φ(/) is Jf-isotropic iff/is X-isotropic.

Suppose X is DLO finite, say X = lim i e fX r Let Xc := U/G/φ/*(Λr

/)
where φf: Xi -> Z is the induced morphism. Thus JΓ is dense in X Note
that the kernel of φ,: G(X) -> G ( ^ ) (resp. φf : H^(Z) -> fF(Z/)) is the
intersection of the kernels of σ o φ :̂ G{X) -» {± 1} (resp. σ © φ;: W{X) ->
Z), α ε J ζ . Thus the inverse limit topology on G(Z) (resp. fF(X)) is the
weakest topology such that the map σ: G( X) -» {± 1} (resp. σ: W( X) -» Z)
is continuous for each σ E Xc. The following theorem shows, in particu-
lar, that Xc depends only on the topology on G(X) (resp. W(X))9 i.e., is
independent of the particular presentation of X as a direct limit of finite
spaces.

THEOREM 1.5. Suppose X is DLO finite and σ E X. Then the following
are equivalent:

(i) σ E X',
(ii) σ: W(X) -* Z w continuous,

(iii) σ: ( J ( Z ) -> { — 1} w continuous.
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Proof. We use the notation of the proof of Theorem 1.1. The implica-
tions (i) => (ii) and (ii) => (iii) are trivial. To prove (iii) =» (i) suppose σ:
G(X) -> {±1} is continuous. Since G(X) = limjG/(?(.¥,•)> there exists
i E / and a character r on G(Xt) such that σ = T O φ.. For j > / define the
character σy on G(Xj) by σy = r © φ.^. If σy E ^ for some 7 > /, we are
done. Assume this is not the case. Then by [8, Lem. 4.1], there exist
aJ9 bj E G{Xj) such that b} E DXj(l, a,.), σ/αy) = 1, σ/6,) = - 1 . For
each j > / let J^ denote the set of (a, b) E G(F) X G(Y) such that
fy E DXj(l, dj), σj(aj) = 1, but σy (fy) = - 1 . This is closed in G(Y) X
G(Y) so for each 7 > i and each A: <y, the sets J^ Π ( ^ X J^) are
closed in G(Y) X <5(Γ). One checks that the intersection of finitely many
of these sets is not empty, so by compactness of G(Y) X G(Y), there exist
a,bE G(X) such that b E Dx(l9 a), σ(a) = 1, but σ(b) = - 1 . This
contradicts σ E X D

COROLLARY 1.6. Suppose X, Y are DLO finite and φ*: X-> Y is a
morphism. Then the following are equivalent:

(i)φ*(Xc)Q Yc,
(ii) φ: W{Y) -> W(X) is continuous,

(iii) φ: G(Y) -» G(X) is continuous.

Proof. The topology on W( X) is the weakest such that each σ E Xc

defines a continuous function on W(X)9 so (i) => (ii). (ii) => (iii) is trivial.
Finally, (iii) >̂ (i) follows from Theorem 1.5. D

Although a DLO finite space X may have several presentations as a
direct limit of finite spaces, there is a standard presentation. To obtain
this we denote by ^(X) the set of all finite subspaces of X which lie in
Xc.

COROLLARY 1.7. Suppose X is DLO finite. Then %(X) is a directed
system of finite spaces of orderings and X is the direct limit of this system.

Proof. Since a finite product of continuous characters on G(X) is
again a continuous character on G(X), it follows using Theorem 1.5 and
the argument in Remark 1.4 that the finite subspace of X generated by
σ , , . . . , σ π 6 Γ lies in Xc. This proves that %(X) is directed. The image of
G(X) in lim YE%{X) G(Y) via the natural map is dense and since the map
is continuous and G{ X) is compact, the image is closed. Thus the map is
surjective. It is injective since Xc is dense in X. It should be clear now that
X is the direct limit of the directed system %(X). D
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We are now in a position to characterize DLO finite spaces internally.

COROLLARY 1.8. Suppose X is a space of orderings and G(X) has the

structure of a compact topological group such that Γ ' : = { σ E l : σ is

continuous on G{X)} is dense in X. Then X is DLO finite and the topology

on G( X) is the induced inverse limit topology.

Proof. Immediate from the proof of Corollary 1.7. D

The content of Corollary 1.8 may also be phrased as follows:

COROLLARY 1.9. Let Xbe a space of orderings. Then X is DLO finite iff

there exists a subset B C X satisfying:

(i) [B] Π X is dense in X. (Here, [B] denotes the linear span of B in

(ii) The natural map φ: G(X) -> ( ± l ] β is onto. (Note, φ, is already

1-1 by (i).)

Proof. Suppose X has a subset B satisfying (i) and (ii). Then the

isomorphism φ induces a topology on G(X) giving it the structure of a

compact totally disconnected topological group. Also, Xc' = [B] Π X is

dense in X, so X is DLO finite by Corollary 1.8. Observe that B is a

maximal linearly independent subset of Xc. Conversely, if X is DLO finite

and B is any maximal linearly independent subset in Xc, then [B] Π X —

Xc is dense in X and φ is continuous and has dense image in {± \}B so by

compactness of G( X), φ is onto. D

2. Decomposition of DLO finite spaces. In this section we show

how the structure theory of finite spaces of orderings given in [6] carries

over to DLO finite spaces of orderings which satisfy certain finiteness

conditions. Throughout, we work in the category consisting of DLO finite

spaces together with morphisms which are continuous in the sense of

Corollary 1.6.

If Δ is any compact totally disconnected topological group of expo-

nent 2, we denote by χ c (Δ) the group of continuous characters on Δ.

Note, for any such Δ, Δ = { ± 1}", where a denotes the Z/2Z dimension

ofχ c (Δ) .

THEOREM 2.1. Suppose X is the group extension of Y by the group Δ in

the sense of [7] where Y is DLO finite and Δ is compact totally disconnected

with exponent 2. Then X has, in a natural way, the structure of a DLO finite

space.
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Proof. By definition, G(X) = G(Y) X Δ and X = Y X χ(Δ). Giving
G(X) the product topology, Xc = Yc X χc(Δ), and X is DLO finite using
Corollary 1.8. D

For any space of orderings X, the translation group gτ(X) is defined as
in [9]. For X DLO finite, the group to consider is gτ(Xc) - { γ 6
χc(G(X)): yXc = Xc). Using the density of Xc in X and the modification
of [6, Lem. 4.2] mentioned in [9, Rem. 2.1], it follows that gr(Xc) = gr(X)
Π χc(G(X)). Note if X is the group extension of Y by Δ as in Theorem
2.1, then gτ(Xc) = gr(7c) X χc(Δ) and Y is the residue space of X
corresponding to χc(Δ) C gτ(Xc). Conversely, we have the following:

THEOREM 2.2. Suppose X is DLO finite and H is any subgroup of
gr( Xc). Then the residue space Y of X corresponding to H is DLO finite and
X is the group extension of Y by a compact totally disconnected group
Δ = χ(H) as in Theorem 2.1. In particular, if H = gr(Xc), then gr(76) = 1.

Proof By definition Y is the quotient space of X obtained by
restricting elements of X to G(Y) := {a E G(X): y(a) = 1 for ally E H}.
This is closed in G( X) since each γ E H is continuous. Y is DLO finite by
an easy application of Corollary 1.8. Also, since G(Y) is a closed sub-
group of G(X), there exists a closed subgroup A c G ( I ) such that
G( X) — G( Y) X Δ. The rest of the assertions are clear. G

THEOREM 2.3. Suppose Xt is DLO finite for all i G /. ΓΛeft X=Σι^rXι

is DLO finite and Xc = U / e / ^ c .

n / e / G ( ^ ) is compact totally disconnected with the
product topology. Since U z e /X z is dense in X and X* is dense in Xi9

Ll. e / A;c is dense in X U / e / ^ C Xc\ so Xc is dense in X. Thus X is DLO
finite by Corollary 1.8. Suppose σ E Xc. By continuity, σ factors through
HiEJG(X,) for some finite set / C /. Let Y=Σι€ΞjX, and Z = Σt(=κXi
where K= I\J. Then 1 = Γ Θ Z s o b y choice of /, σ E 7. Since / is
finite there exists / E / such that σ E Xim Using the continuity of σ once
more, this implies σ E Λ^ •

For X DLO finite, we define a relation — c on Xc by declaring σ ~cτ
to mean that either σ = τ o r there exists a 4-element fan V C X' with
σ, T E K. Thus if %(X) is defined as in Corollary 1.7, then for σ, T E Xc,
σ ~ c T holds iff σ, r lie in the same connected component of Y for some
Y E %(X). Thus, by results in [6, 9], ~c is an equivalence relation on Xc.
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The equivalence classes of Xc with respect to ~c are called the connected
components of Xc. We say Xc is connected if it has only one connected
component.

THEOREM 2.4. Every DLO finite space X decomposes uniquely as
X = ΣiE.IXι where X^ is connected for each i E /.

Proof. If X = ΣiErXi is such a decomposition then, by Theorem 2.3,
Xc = U|€Ξ/A7, so by [8, Cor. 7.5(i)], the sets X[, i E /, are the connected
components of Xc and Jiζ is the subspace of X obtained by closing X?
topologically. This proves uniqueness.

To prove existence, let {C,: / E /} be the connected components of
Xc. For each Y E %(X), let I(Y) = {/ e /: 7 n C ; ^ 0 } . Thus 7 =
2, e/(y> ̂  where Yt•,— Y Π C, . This follows from the decomposition theory
in [6, 9]. For / E /, let %(X)i = {Y E % ( * ) : Y C C,}. Note <&(*)„
ordered by inclusion, is a directed system of finite spaces of orderings.
Denote by Xι the direct limit of this system. Observe that the inclusions
Y C X for YE βll(X)i together with the universal property of Xt yields a
morphism ψ*: X,-* X for each i E / and hence a morphism ψ*: Σ ι e / A) ->
X On the other hand, for each Y E %(A), Y = Σ / e / ( y ) ΪJ as above, so the
inclusions Yi C Xz induce a morphism Γ -> Σ / G / ( y ) A, -» Σ / G / A,. By the
universal property of X this lifts to a morphism φ*: X -* ΣιEίXr It is
clear that ψ* o φ* = 1 and φ* o ψ* = 1 so X = ΣiGίXr •

We denote the stability index of a space of orderings A by
Various characterizations of st(X) are given in [8, 11]. Suppose X is DLO
finite and %(X) is defined as in Corollary 1.7. If Ye%(X)9 then
st(Ύ) < st(X). On the other hand, if/? is an anisotropic Pfister form over
G(X) and if, for each Y E 6lL(X), there exists a form # r over G(X) such
that/? =y2 X ίy, then, by Theorem 1.3, there exists a form q over G{X)
such that/? =χ2X q. It follows from [8, Th. 6.2] that st(X) = sup{st(7):

THEOREM 2.5. i w X DLO finite and n >: 0, /Ae following are equiva-
lent:

(i)St( *)</! ,
(ii) Γ̂ E ̂  wλere % denotes the class of singleton spaces and, induc-

tively, ^k+λ consists of all DLO finite spaces Y expressible in the form
Y s ( Σ ι e / η

( 1 )) Θ (lJEj{oj}) where Yt E % for all i E /. (Here, Y™ de-
notes the group extension of Yt by {± 1} and {θj} denotes a singleton space.)
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Proof, (ii) =̂> (i): If 7 is as in (ii) and k > 0, then st(7) < k + 1 ^

st( Y,) < A: for all / E /. Thus, by induction, if X G ^ then st( X)<n.

(i) =» (ii): Suppose X is DLO finite, si(X) < w. By Theorems 2.2, 2.4,

and induction on w, it is enough to show that if Xc is connected and

\XC \^ 1, then gr(XΓ) ^ 1. Since st(7) < st(X) < AI for all 7 G %(X), it

follows from the proof of [9, Th. 2.6] that there is a uniform bound on the

length of chains

(*) y C y C . . . C y

where 7 G %(A"), γf =£ 1, γ, E χ c(G(X)), and Fγ is a non-fan for / =

0,...,/. Suppose (*) is a chain of this type of maximal length. We claim

y{ £ gτ(Xc). For let σ E Xc. Since Xc is connected, there is a finite

subspace Z C A^ with 7 c Z, σ G Z, and with σ and 7γ lying in the same

connected component of Z. Since Y is a subspace, Yy — Z γ Π K Thus Z γ

is a non-fan for / = 0,..., / and these sets are linearly ordered by inclusion

by[ l l ,Th. 1.3]. From this and (*) it follows that Z γ i £ Z γ for/ = 1,...,/.

By the maximal choice of / and the structure theory in the finite case, Zyj

is a connected component in Z. Thus σ £ Zy/. In particular, this implies

σγ7 E XΓ. Since σ E Xc is arbitrary, this proves yι E gr(Λ^). Thus we have

%r(Xc) i= 1 and the proof is complete. We remark the proof given does

not cover the trivial case where 7 is a fan for all Y E ^(X). In this case,

if σ, T E Xc are arbitrary then γ = σ τ E gr(λ^) so the result is valid in

this case also. D

THEOREM 2.6. Suppose X is DLO finite and n > 0. Then the following
are equivalent'.

(i)sup{|£(y,σ)|: 7 E l ( I ) , α E 7} < n. (Here E(Y, σ) is defined

as in [11].)

(ii) X E SM wΛere S o denotes the class of singleton spaces and, induc-

tively, SA + 1 is the class of all DLO finite spaces 7 expressible as Y =

Σ / e / ϊ7 α / ) where a{ is a cardinal number and 7Z E S/, for all i E /. (Here,

Y{a) denotes the group extension of 7 by the group {± l}ft.)

/. This follows by induction using results in [11], but the same

sort of proof as in Theorem 2.5. D

EXAMPLE 2.7. The following illustrate why some finiteness conditions

are necessary to get structure results like Theorems 2.5 and 2.6:

(i) X = {σ0} Θ ({σ,} Θ ({σ2} θ ) ( 1 ) ) ( 1 ) . This satisfies X ~ {σ0} θ

X°\ so if we attempt to decompose X using Theorems 2.4 and 2.2

successively, we have "infinite descent".
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(ii) X = (({σo}
(1) θ {a,})(1) θ {σ2})(1) - . This satisfies gτ{Xc) =

1 but at the same time Xc is connected, so both types of decomposition
are "blocked" right from the start.

REMARK 2.8. It is not known if DLO finite spaces exist with Xc

connected, \X\Φ 1, and gr(Jf) = 1. The following shows that if Jf is such
a space then Xc is uncountable. For suppose Xc is countable. Then there
exists a countable sequence

where Xi is a finite subspace of X and Xc = U ^ o Xr Thus X — lim .^0 Xt.

Since Xc is connected we can choose (*) so that gr( JSζ ) φ 1 for all / > 0.

Denote by [Xt] the linear span of Xi in χ(G(X)). First assume there exists

n > 1 such that gr( Jζ ) C [A)_,] for all / > /?. Since X7_, is a subspace of

Xz this implies gr(A^) C g r ^ ^ ) for / > /i. Since these groups are finite

and ^ 1, there exists γ e Γ Ί ^ g r ^ ) , γ φ 1. Thus γ G gr(Z c) c gr(ΛΓ),

so gr(X) φ 1. Now assume no such n exists. Then, replacing (*) by a

suitable subsequence, we can assume gr(Xz) g^^Xj.J for all / > 1. Thus

there exists α, E G(X) such that at E Λr^.1 but ai g g r ( ^ ) ± . Thus, if

6I _1 E G(X) is arbitrary, there exists bt E G(X) such that 6I 6I _1 E Λ ^ ,

and όt € griX^. (Take ^ = bt_x if Z?/_ι ^ g r ( ^ , and bt = a.b^ if
bt_x E gr(Jϊ))"1" •) S i n c e G(X) - l i m />o G (^C) ' t h i s yields an element x E

G(X) satisfying x7 ί &(Xi)
± for"all « > 0. Thus, by [10, Th. 6.6], and

Corollary 1.2, x and — x are both rigid and gr(A') φ 1.

3. Topological structure of Xc C X. For a space of orderings X and
σ θ l the local stability index st(Z, σ) is defined as in [11]. Thus,

= sup{st(X, σ): σ E A'}.

THEOREM 3.1. Suppose X is DLO finite and σ E Xc. Then the following

are equivalent'.

(i) {σ} is open in Xc\

(ii) {σ} is open in X,

(iii) st(X, σ) < oo.

Farmer, st( A, σ) = sup{st(7, σ): 7 E <&(*), σ E Y).

Proof. The equivalence of (i) and (ii) follows from the density of Xc in
X. Also, if {σ} is open in X, then by definition of the topology on X, there
exist al9. . . ,an E G(X) such that X{ax,. . . ,tf,J = {σ}. (Recall
X(ax,...,an) : = {T E Jί: T ( ^ ) = 1 for all / = 1,...,«}.) Thus, by [11, Th.
3.4], (ϋ) => (iii). Let / = sup{st(7, σ): 7 E % ( ί ) , σ E 7}. Clearly
st(X, σ) > /. Now suppose / < oo. Suppose σ (Ξ Y where 7 E
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Since Y is finite, {σ} is open in 7 so by [11, Th. 3.4] there exist elements

α i y , . . . ,a/γ E G(X) such that Γ ( α i y , . . . ,alΎ) — {σ}. Consider the Pfister

form pγ — (1, aχγ)® ®(1, aιγ). By the proof of Theorem 1.3 there

exists a form/? = (bl9... 9bs) over G( X) (where s — 2ι) such that/? = γpγ

for all r e % ( I ) such that σ <Ξ Y. Note that σ(/?) = 2ι whereas τ(p) = 0

for all r e Xc

9 τ φ σ. It follows, in particular, that 2s"1 X /? and

( 1 , & I ) ® ® ( 1 , 6S) have the same signature at all τ E Xc and hence

are isometric. Thus, applying [8, Lem. 6.3] repeatedly, p is a Pfister form,

say/? = (1, ax)® ••• ®(1, a,). Then it is clear that ^ ( Λ , , . . .,a,) Π Γ =

{σ} and hence that X(al9...9a/) = {σ}. This proves st(X, σ) < / and

completes the proof. D

THEOREM 3.2. Suppose X is DLO finite. Then the following are equiva-

lent'.

(ii) Xc with the induced topology is discrete, and X is the Stone-Cech

compactification of Xc.

The proof of Theorem 3.2 uses another result which is of some

independent interest:

THEOREM 3.3. Suppose X is any space of orderings, \X\> 1, and f is a

form over G(X) satisfying the inequality dim(/) > | σ ( / ) | 2st(X'σ)~ι for all

σ E X. (Here, we observe the convention 0 oo = 0.) Then f is isotropic.

Note, in particular, Theorem 3.3 asserts that, if sί(X) = 1, then every

totally indefinite form over G(X) is isotropic. Theorem 3.3 should be

viewed as a generalization of this well-known property of SAP spaces.

Proof of Theorem 3.3. By [9, Th. 1.4], we can assume X is finite. The

proof is by induction on the global stability index st(X). If X — X{

® - - - ®XS and if the result is true for each Xt with \Xt\> 1, then it is true

for X. Thus, by [9, Th. 1.3] we can assume X— Y°\ notation as in

Theorem 2.5, and | Y\> 1. Thus f = fx ®f2t where t is an element of

G{X)\G(Y) and/,,/ 2 are forms over G(Y). Scaling/by / if necessary, we

can assume dim(/,) > dim(/2). Let σ E Y. Note if e E {± 1} is suitably

chosen, then |σ(/,) + eσ(f2) |> |σ(/j) j . Extend σ to an element r G l i n

such a way that τ(t) = e. Thus | τ ( / ) | > | σ ( / , ) | . Also st(AΓ,τ) = st(7, σ)

+ 1 so

> dim(/) >|τ(/)| 2*™'1 >\σ(fx)\ 2*™
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SO

( / 1 ) | ( / 1 ) | 2

for all σ E 7. Finally, st (7) = st(X) — 1 so by induction on the stability
index,/! is 7-isotropic, so/is X-isotropic. •

Proof of Theorem 3.2. Assume (i), say st(X) = 2k < oo. Thus, by
Theorem 3.1, Xc is discrete in X To show Xis the Stone-Cech compactifi-
cation of Xc\ we show that every function φ: Xc -> {±1} extends to a
continuous function ψ: X -> {± 1}. Consider 2kφ: Xc -» Z. By [8, Ths. 5.5
and 6.4], for all Y E ^l(X), there exists an anisotropic form/y over G(Y)
representing 2kφ. Thus, by Theorem 3.3, there exists σ E 7 such that

dim(/y) < |σ(/ y ) | 2*<Y)-χ < 2*2*"' = 22k'\

so by Theorem 1.3, there exists a form / over G(X) such that σ(/) =
2*φ(<0 for all σ E Xc. Define ψ: X ^ {±1} by ψ(σ) = 2'kσ{f) for all
σ E X This is continuous and extends φ.

Suppose (ii) holds but (i) fails. Thus

st(X) = sup{st(7): 7

= sup{st(7,σ): 7 E % ( I ) , σ E 7} = oo

so there are arbitrarily large finite fans in Xc\ but, by Theorem 3.1,
st(X, σ) < oo holds for all σ E Xc. These facts can be used to construct a
sequence of fans F,, F 2 , . . . in Xc of increasing size and mutually disjoint.
(For if F 1 , . . . ,F^_ 1 are already constructed just let m = sup{st(X, σ):
α ε K , U U K M } and pick F^ to be any fan in Xc with | F^ |> 2m.
then F^ Π Ĵ  = 0 for / = 1,... ,k - 1.) Now pick σ, E Vi for each / > 1,
and define φ: Xc -> {0,1} by φί^) = 1 for i = 1,2,... and φ(σ) = 0 if
σ $ {σ1,σ2,...}. This extends to a continuous ψ: Z-» {0,1} so by [8,
Lem. 5.4] there exists k > 0 and a form/over G( X) such that σ(/) = 2*
ψ(σ) for all σ E X This contradicts [8, Th. 5.5] since if / is sufficiently
large, | Vt\> 2k so Σσ&yσ(f) = 2k ** 0 mod| Vέ\. Π

COROLLARY 3.4. Suppose X is DLO finite, st(X) < oo, and φ: Xc -» Z
ώ any function. Then the following are equivalent:

(i) There exists a form f over G(X) such that σ(/) = φ(σ) for all
σ E Xc.

(ii) φ( Xc) is a finite set and Σ σ G vφ(o) = 0 mod | F | Λo/ίfe /<9r all finite
fans V c Xc.



DIRECT LIMITS OF FINITE SPACES OF ORDERINGS 403

Proof, (i) => (ii) is true by [8, Th. 5.5]. (ii) => (i) follows by an argument
similar to the first half of the proof of Theorem 3.2. D

EXAMPLE 3.5. We conclude this section with an example of how
Corollary 3.4 can fail if st(X) = oo. Define X{ = {σ} and for each / > 1
define Xi+X = (Xi® Ar

/)
(1), notation as in Theorem 2.5. Thus X = 2%λ X,

is DLO finite by Theorem 2.3. We claim there exists an anisotropic form/
over G{X,) such that dim(/) = 2' and σ(/) = ±2 for all σ G Xr Define
/, = (1,1). Suppose / is defined. Let Λ, be the hyperbolic form over
GiX,) with dimension equal to 2' = dim(/). Define forms /', / " over
G(Xι Θ X.) by / ' = (/, h,) and /" = (Λ,, / ) . Finally, define / + 1 = // Θ
f"tι where /, is an element of Gi^+^GiXj θ Xt). This proves the claim.
Since Xc'= 0™=ιXι by Theorem 2.3, the function φ: Xc ^ Z, defined by
φ(σ,) = σ,(/) if σ, G Xn is well defined. Since φ(σ) = ±2 and since each
non-trivial fan in Xc lies in some Xn φ satisfies condition (ii) of Corollary
3.4. However, since / is anisotropic of dimension 21, there cannot be a
form/over G(X) satisfying (i) of Corollary 3.4. Note, by Theorem 3.1, Xc

is discrete in X, so φ is even continuous.

4. Direct limits and ultrasums. Recall that an ultrafilter % on a set
/ is a collection of subsets of / satisfying: (i) 0 $ % (ii) if /, K G % then
/ Π K ε %, and (iii) if / g %, then / \ / ε %.

Let {Xt\ i ε /} be any collection of spaces of orderings, let X —
Σ ι e /A;, and if / C /, let A> = Σ / e y A). Thus, if A: = / \ J , then A = Xy θ
Λ^ so, in particular, Xj is a subspace of X Thus, if % is any ultrafilter on
/, then XG^' — ^J^G^XJ is a subspace of X We refer to Xσ^ as the
ultrasum of the collection {Λ̂ : / ε /} determined by %. Note that
G(Xΰli) — (/(X)///^, where i/% is the subgroup consisting of all x ε
G(X) satisfying {/ ε /: xt = 1} G %, and W (̂X%) = W(X)/J%, where
/ % is the ideal consisting of all/ G W{X) satisfying {/ G /: / - 0} G %.

REMARK 4.1. Suppose we denote by β(I) the Stone-Cech compactifi-
cation of the discrete set /. Thus the clopen subsets of β(I) are in 1-1
correspondence with the subsets of / and the points of β(I) are in 1-1
correspondence with the ultrafilters on /. One can verify that the Witt
rings W(Xj\ J C /, form a sheaf of Witt rings over β(I) in the terminol-
ogy of [10, Ch. 8]. The stalks of this sheaf are the Witt rings

LEMMA 4.2. Suppose K is the ultraproduct of the Pythagorean fields {Kt:

i G /} determined by some ultrafilter G(l. Then K is a Pythagorean field and
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Xκ is naturally identified with the ultrasum ( Σ ^ / A ^ ) ^ . {Here, Xκ denotes

the space of orderings of the field K).

Proof. By definition, KΊs the ring (U^jK^/M^ where M% is the ideal

consisting of all a E Π / G / # , such that {/ E /: aι — 0} E %. The check

that ^ is a Pythagorean field is straightforward. For the second assertion,

one simply verifies that the natural map from K/K2 into (Π ι e /A' //A' /

2)///^

is a group isomorphism which preserves value sets of binary forms. The

result then follows from [8, Lem. 4.1]. More explicitly, it follows from

LEMMA 4.3. Suppose X, Y are spaces of orderings. Then a group

homomorphism a: G(Y) -> G{X) induces a morphism α*: X -» Y iff a{—\)

= - 1 anda(Dγ(l9a)) C Dx(l9a(a)) for all a E G(Y).

Proof. One implication is clear. The other follows from [8, Lem.

4.1]. D

In case / is a directed set, ultrafilters compatible with the ordering on /

are of special interest. These are just ultrafilters % on / with the property

that for all / E /, the set / ( / ) : = {j E /: j > /} belongs to 6li. Such

ultrafilters exist by an easy application of Zorn's Lemma.

LEMMA 4.4. Suppose (Xf. i E /) is a directed system of finite spaces of

orderings and % is an ultrafilter on I compatible with the ordering. Then

there are natural morphisms α*: (ΣieίXi)% -» lim ι G /X t and β*: lim / e /X t

-> ( Σ / e / A ^ swc/z ίAαf α* o β* = the identity.

Proof. Let AΓ=Σ/ e/-Jζ . α* is just the composite of the inclusion

Xe^ C X followed by the projection X -» I i m / e / A"z. The definition of jS* is

a bit more interesting. First note that, by the universal property of the

direct limit, it is enough to define morphisms /?*: Xι -+ X^ such that, if

i <y, then β* = β* ° φ* where the φ*: Xt -> Â  are the morphisms

defining the directed system. Let x E G(X). For fixed y E G(A) ) define

I(U y) — {j E /: y > / and φ Z 7 ( ^ ) — ̂ j Since G{Xt) is finite, /(/) E %,

and /(/) is the disjoint union of the sets /(/, y), y E G{Xi), it follows that

there exists a unique βt{x) E G(Xt) such that /(/, βXx)) E %. Observe

that jSyi G(A") -^ ̂ (A^) is a group homomorphism, /?,(— 1) = — 1, and if

y E D(\9 x)9 then ^ ( j ) E J5(l, βt{x)). Thus ^ induces a morphism j8f:

Â  -> A" by Lemma 4.3. Note that the kernel of βt contains all x such that

{j E /: x7 = 1} E % so β*: Xz -> X^. Finally, if j > /, then 0. = φ o o ^
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so β* = βf ° φ*j. This completes the definition of /?*. Observe that if

JC E I i m j e / G ( A)), then βj(x) = Xj. Thus α* o β* = 1. •

THEOREM 4.5. Suppose X is any DLO finite space. Then there exists a

Pythagorean field K and morphisms α*: Xκ -> X, β*: X -* Xκ such that
α* o β* = 1.

Proof. Suppose X— l im / e /Jζ- where each A,- is finite. By [1] or [4]

there exists a Pythagorean field Ki with XKι = J!ζ. The result follows by

applying Lemmas 4.2 and 4.4. D

To analyze further the conclusion of Theorem 4.5 we note the

following:

LEMMA 4.6 Suppose X, Y are spaces of orderings and α*: X -» Y and

β*: Y -> A are morphisms satisfying a* ° β* = 1. TTtew

(i) α* identifies Y with a quotient space of X, and for any form f over

G(Y), ifoc(f) is isotropic then f is isotropic, and

(ii) β* identifies Y with a subspace of X.

Proof. The hypothesis implies α* is onto and yβ* is 1-1. It also implies

β o α = l s o α i s l - l and β is onto. The assertion that 7 is a quotient

space of X is now clear. Also, if α ( / ) is isotropic, then so is β{a(f)) — /,

so (i) is clear. To complete the proof of (ii), it is necessary to check that

β*(Y) is a subspace of X. This amounts to showing that if σ E X Satisfies

σ(a) = 1 for all a E ker(β), then σ E β*(Y). Let b E G(X). Then

β(a(β(b))) - j8(6) so a(β(b)) 6 E ker(β). Thus σ(a(β(b)) 6) = 1, i.e.,

Since b E: G(X) is arbitrary, this implies σ = j8*(α*(σ)), so σ E β*(Y). D

COROLLARY 4.7. £Ί;ery DLO finite space of orderings is isomorphic to a

subspace of the space of orderings of a suitably chosen Pythagorean field.

Proof. Immediate from Theorem 4.5 and Lemma 4.6(ii). D

COROLLARY 4.8. Every space of orderings X is isomorphic to a quotient

space of the space of orderings of a suitably chosen Pythagorean field K.

Further, this representation of X can be achieved in such a way that for a

form f over G( X)9 f is X-isotropic iff f is X^isotropic.

Proof. Immediate from Remark 1.4, Theorem 4.5, and Lemma

i D
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