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THE NONREGULAR ANALOGUE OF

TCHEBOTAREV'S THEOREM

M. FRIED

Let L/K be a Galois extension of function fields in one variable
where K has exact constants F(#), the finite field with q elements. For /
a fixed integer and (£ a conjugacy class of ®(L/K\ this paper counts
the primes )p of K of degree / for which the Artin symbol

\ t> /

equals (£ (Theorem 1.4). The answer depends on the restriction of
elements of (I to the algebraic closure of F(q) in L: a proper extension
of F(#) in general.

For / = 1 [Fr; Proposition 2] followed Dirichlet's celebrated argu-
ment using the rationality of L-series. Tchebotarev's original "field
crossing argument" [T] is a part of the reduction to the cyclic case ([D]
and [M]) that at once removes the restriction on / and the need for
L-series (other than the Riemann hypothesis for curves over finite
fields). This more elementary argument also improves the error estimates
and therefore such practical applications as [FrS] and explicit forms of
Hubert's irreducibility theorem [Fr; §3]. We comment briefly on the
latter (§2) to facilitate its use in [Fr, 2; §4] for the explicit production of
rank 12 elliptic curves over Q.

Acknowledgement. This paper is a rewrite (with improvements) of
Moshe Jarden's rewrite (with improvements) of our original notes. In
particular, Lemma 1.2 improves one of the original arguments.

1. The nonregular analogue. Denote by K the algebraic closure of a
field K. A field extension K/k of transcendence dimension 1 is a function
field in one variable over A: if A: is algebraically closed in K.

Denote by F(q) = k the finite field of q elements. Let A^bea function
field of one variable over F(q). Choose a separating transcendence base t
for K/k. Denote by &κ the integral closure of k[t] in K. If Kf = F(qι) K,
then 6K, — F(qι) 6^. If £' is a prime ideal of 0^, lying over $ of degreey
andj' |/, then the relative residue class degree is [Gκ>/\)': ©K/^I = '//•
Hence, if g(p) denotes the number of prime ideals of Qκ, lying over )ρ9

theng(t))=y.
Denote by F(q)thefrobenius element of ®(F(q)/F(q)) (i.e., F{q)(x)

— xq for each x E.F{q)). Consider a finite Galois extension L of K of
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degree n and a conjugacy class (£ in ®(L/K) with, say, c elements.
Associate to © the set

where P'(K) is the set of all prime ideals of 0^ unramified in 6L, and

is the conjugacy class associated to a Frobenius element

\L/K]

for P̂ a prime of ΘL lying over £.
Use the following notation:

k = the algebraic closure of A: in L;

Λ = [k: k], n° = n/n=[L:k K] 9

is unramified in L and deg(t)) = /}

R(L/K) = (t) G P(ΛΓ) I») is ramified in L}

Our first result counts the elements of Cx(k)9 as did [Fr; Proposition
2]. But here a "field crossing argument" descendent from Tchebotarev's
ideas ([T]—a similar argument appears in [FrHJ] applied to a different
project) replaces the rationality of the Artin L-series. Thus the proof does
not mimic Dirichlef s original argument. Indeed, in almost every way it is
simpler than [Fr; Proposition 2] and it thereby simplifies the constant in
the "<9" notation.

THEOREM 1.1. // an element τ (equiυalently, every element) of ©
satisfies

(1) res^r) = τeskiF(q)),
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then

The "O" notation indicates a function bounded by A - Jq with A a computa-
ble function of g{K) {the genus of K) and \Rλ(L/K)\. Otherwise, it does
not depend on q, on K or on L.

Proof. Let r E ©, / = ord(τ) and k' = ¥{qf). From (1) ή\f. Thus
K' = k' K is a finite Galois extension of K and for L'= k' L, [Z/: K']
= [L:k K] = n°. Thus, we naturally identify ®{K'/K) with %{k'/k)
and thereby %{L'/K) with

(2) {(a,,a2) E © ( L / A : ) X ©(ΛyfcJlres^σ,) - res^σ2)}

[L p. 198].

In particular, consider the extension of T to L' through the element
f = (T,τesk,(F(q))). Then f is also of order/.

Divide the rest of the proof into parts.

Part A. Field crossing argument. If L ( f ) is the fixed field of f in U then
L ( τ ) = L ( f ) Π L is of index/in L. The restriction of the frobenius element
to k' Π L ( f ) is the identity, so k' Π L ( f ) = k, k' L ( f ) = Z/ and L ( f ) is a
function field of one variable over k. Let d—\k'\k\ — [U : L].

Consider P*(L ( f )) = {(]£ P(L ( f )) |deg(q) = 1 and q is unramified
over .SΓ}. Define

Cτ = {ίP ei>'(L)|deg(0j,n ̂ P) = 1 and [ ^ ] = r}.

Then there is a map h: P?{L{ΐ)) -> Cτ as follows: For an element q E
P^{L(JF)) there exists a unique q' E P(L') lying over q. Then 9 = h{q) =
q' Γ) ΘL. Since

is the frobenius acting on k\ then it must be f and its restriction to L is
therefore T. From the formula

_ /ί L/K

I 9 J



306 M. FRIED

Also, if £ = *P n βjr, then βκ/p c QL&/q = &. So 6^/U = Λ and 9 E C r.
Finally, we conclude that for ^ E Cτ, h"\9) contains exactly d

elements. Since ΘL/^P = k\ for q' a prime of ΘL, over <3\ θ L / q ' = A;'. So
there are [Z/: L] = dprimes q[>... ,q'd E P(L') above P̂ and

Thus, if q; Π eL(¥) = qf., then θ ^ / q , = fc and q, E A " ^ ^ ) with q; the
unique element of P{L') that lies over q,. Clearly, therefore, q l 5 . . . 9qd are
the distinct elements of A 1

Part B. Counting the cardinality of Cτ. From the Riemann hypothesis
for curves

where 0{Jq) is bounded by A {q with A equal to twice the genus of
L ( f ). Thus A is bounded by the maximum of 1 and ([L ( f ): k(t)] - 1)
([L ( f ) : k(t)] — 2), for any nonconstant / E L. In particular, A is bounded
by [L:k(t)]2. From (4)

(5) \P?(L&)\ = q+o(fi)9

but here the O notation must be adjusted to include a function of
\RX(L/K) I as stipulated in the statement of the theorem. Since there are d
primes of P,*(L(f)) for each one of Cτ,

\CΊ\=(\/d).q+θ({q).

Part C. Conclusion of the proof. From Part B

(6)

Over every element of Cλ(K) there lie exactly g = [L ( τ ) : K] elements of
U Cτ. If we show that g d = n°9 then | CX(K) |= (C/Λ°) q + O ( ^ ) and
the theorem is done. But g = ft//and d = //[&': k] and the result follows
immediately. D

The next two lemmas consider the cardinality of Ct{K) for / general,
but L/K is cyclic. Again, let K be a function field in one variable over
¥{q) = k.
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LEMMA 1.2. Let Kr be a finite extension of K and let F(qu) be the
algebraic closure of k in K'. For a multiple v of u let

p;/u(κyκ) = {»' E PΌ/U(K') \ dφ' n eκ) Φ V).

Then, for any c > i, \P^/u(K'/K)\= O(qe'υ). The constant in the O
notation may be chosen independent of υ.

Proof, If p' G P'υ/u(Kf/K\ then β^/P' = F(qv). Therefore, the re-
sidue field of p'= &κ (1 p' is F(qJ), with j SL proper divisor of v. So
j < v/2. Over every such p there lie at most [Kf: K] elements of P(K').
Thus, from the simple estimate \Pj(K) \= O(qJ), conclude that

\P:/U(K'/K)\<[K':K] 2 |'

= 0{(v/2) • qv/1) = 0(qεv). D

Return to the notation of the proof of Theorem 1.1 where k is the
algebraic closure of k in L.

LEMMA 1.3. Assume that L/K is a cyclic extension and that the unique
element τ o/(S generates %(L/K). Let v be a positive integer for which

For any ε > \, \ CΌ(K) | = (l/v • n°) • qv + O(qεv) where the constant in
the O notation may be chosen to be independent of v.

Proof. Let k' = F(qc), k' = k' • k and U = k' • L. Then L' is a
cyclic extension of K' and k' is the algebraic closure of k' in L'. Also, (7)
implies that k Π k' = k. As in the proof of Theorem 1.1, identify <3(L'/K)
with {(σ,,σ2) E ®(L/K) X G(k'/k)\κs£σλ) = res^σ2)}. Consider T'
= (T, τesk,(F(qv))). Since T' fixes k', T' E ®(L'/K'). Define

Cτ, = i f E PίiίΓ') of degree 1 (over k') \ ί L'^f \ = r

As RX{L'/K') consists of extensions of elements of Uj]vRj(L/K),

\RX{L'/K')\ <\R{L/K)\ • max{deg(t>) \P E R(L/K)}.

From Theorem 1.1 conclude

(8) \CA=(l/n°)-q'

Define Q = {ί>' E Cτ. |deg((9K n p') = υ}.
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From (8) and Lemma 1.2, | Q | = (l//i0) qΌ + O(qεv).
Compare CV(K) and Cτ', by the argument of Part A of the proof of

Theorem 1.1, especially expression (3): for every element p E Cυ{K) there
are exactly vprimesp'l9...9p'Ό9ofΘκ, over p with

L'/K' \ _ τ,

Thus p\ E Q . Conversely, if p' E Q then (3) shows &κΓ\p' E Q i f ) .
The lemma follows easily. D

The proof of our main theorem reduces the computation of | Ct(K) \
in the general case to the case where L/K is cyclic. Among other places,
[D] and [M] contain the idea for this.

THEOREM 1.4. Let (£ be a conjugacy class of cardinality c of %{L/K)
represented by an element T. Let v be a positive integer for which

(9) resJf(τ) = re

For any integer / > 0, Ct{K) is empty if / 2 D m o d ή. Otherwise, ife> \,
then

(10) \C,{K)\= (c/l • n0) • q' + θ(q"')

where the constant in the O notation may be chosen independent of v.

Proof. If Q(K) contains a prime p and if ^ E P(L) lies over p, then

But (9) implies

res/

Clearly, I = v mod n. Now assume that ή \ I — v.
Let d — (υ,ή) — {l,ή). Then the algebraic closure of k in the fixed

field K' = L ( τ ) of T is ¥(qd). Define:

σι/d{κ') = {*>'

) ' i s u n r a m i f i e d o v e r K a n d d e g ( Θ Λ : Π p') = I).
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From Lemmas 1.2 and 1.3, with n' — [L: k K']9

(11) \q/d(K')\= {d/l n') • (q«)'/d +

Consider the map h: C'l/d{K') -* C,(K) by h(p') = βκ Π t>'. Since

there exists a unique element ? ε f (L) over p' and it satisfies

ί 9
By the definition of iΓ,

Thusp E C,(K).
Conversely, suppose p G C,{K) and 9 E P(L) lies over p with

Then for p' = K' n <3\

So t)r G Cι/d(Kf) and Λ(t>0 = t).
The order of Λ~ι(t>) is therefore the number of ^ e P(L) that lie

over )ρ and satisfy

\L/K] == T.
J

They are conjugate among each other by the centralizer, CG(τ), of r. Thus,

|*- !(t>)| = \CG(T)\/\D(9)\=\G\/\D(9)\ • \e\ = [K': K]/c

where D{^) - ®(L/K') is the decomposition group of $> in G. From

\C,(K)\ = (rf c// «' [ΛΓ': K]) ί 1 + O{q' ')

= {c/l n°) q'+θ(qεl). D
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2. Application to Hubert's irreducibility theorem. We review quickly

(so as to display the improvements) the heart of the application of
Theorem 1.1. to the explicit form of Hubert's Irreducibility Theorem of
[Fr; §3]. For simplicity start over Q, but the idea works as well over any
number field.

Consider/(x, y) E Z[x, y], an irreducible polynomial that is monic
iny.

Goal: Find an explicit arithmetic progression P in Zfor which f(x0, y)
is irreducible over Q for x0 E P. Here is how to find P.

Let Ωy be the splitting field of/over Q(x). Identify Ώf/Q(x)) with a
(transitive) subgroup G of Sn9 n = deg^(/). Let / be any proper subset of
{1,2,...,«} and let Sn jbe the subgroup of Sn consisting of elements that
map / into itself. Let Gj—GΓ\SnI and let 7} be the transitive representa-
tion of G arising from the action of G on the right cosets of Gr Choose
Ίj E G such that Tr(rr) fixes no integer. Finally, choose £ =
(τ(l),... ,τ(r)} C G such that τr E £for each /.

Let/?(z) be a prime of Z and a(i) E Z, i = 1,... ,r, with the following
properties. Let Lt be the reduction modulop(i) of Ωy and use the notation
of §1 to define F(/?(/)) as the algebraic closure of F(/?(/)) in Lr Then the
decomposition group of some prime lying over x — a(i)mod(p(i)) in Lt

contains τ(ι) whose restriction to F(/?(/)) is F{p(i)), and Z^τ(/)) (as in Part
A of the proof of Theorem 1.1) has an F(/?(/))-rational point lying over
x — a(i)mod(p(i)). Let g(L) be the genus of L.

THEOREM 2.1. Let P = {a,a + U =ιp(i),a + 2 Π;=1 /?(/),...}
a = a(i)(p(i)), i — 1,... ,r. Γλefl /(xo> >0 ^ irreducible for x0 E P.
distinct primes p{i), i — 1,... ,r m ŷ fee chosen subject only to the conditions

(1) restriction ofτ(i) to F(/?(/)) generates @(F(/?(/))/F(/?(/)));

Proof. The proof of [Fr; Theorem 3] shows that it is sufficient to
choose the /?'s and α's so that the decomposition group of a prime of Lι

over x — a(i)mod(p(i)) contains τ(/). Note that this is so according to
the proof of Theorem 1.1 if Lf{i)) has an F(/?(/))-rational point lying over
x — a(i)mod(p(i)); it is irrelevant whether Li/Ψ{p(i))(x) is ramified
over x — β(/)mod(/?(/)). Condition (2), according to the Riemann hy-
pothesis for curves, guarantees the existence of an a(i) corresponding to
an allowablep(i). D
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