STIEFEL'S THEOREM AND TORAL ACTIONS

J. A. Daccach and A. G. Wasserman

Abstract

The second Stiefel-Whitney class of an orientable manifold admitting an effective codimension three toral action is shown to be Poincare dual to the fixed point sets of circle subgroups and cyclic subgroups of even order.

0. Introduction. Stiefel [5] proved that the second Stiefel-Whitney class of an orientable 3-manifold is zero. A simple generalization of this theorem is that the second Stiefel-Whitney class of an orientable $(n+3)$ manifold, M, vanishes if M admits a free action of T^{n}, the n-torus. If T^{n} acts almost freely and effectively on an orientable manifold M^{n+3}, that is, if all isotropy subgroups are finite, then $w_{2}(M)$ need not vanish; in fact $w_{2}(M)$ is Poincaré dual to the fixed point sets of cyclic subgroups of even order.

In this note, we consider an arbitrary effective action of T^{n} on an orientable manifold M^{n+3} and show that the Poincare dual of $w_{2}(M)$ is represented by the fixed point sets of circle subgroups and cyclic subgroups of even order.

In §1 we establish some notation and give a precise statement of the theorem. In §2 we reduce the proof of the theorem to the case of compact manifolds having only cyclic or circle isotropy subgroups. In $\S 3$ we study the cases of only cyclic isotropy subgroups or only circle isotropy subgroups and in $\S 4$ we prove the theorem by reducing to the two special cases of $\S 3$.

1. Statement of Theorem. If M is a manifold with a smooth action of T^{n} and H is any subgroup of T^{n} then $E(M, H)=\left\{x \in M \mid T_{x}^{n}=H\right\}$ where T_{x}^{n} is the isotropy subgroup at $x ; E(M, H)$ is open in $F(M, H)=$ $\{x \in M \mid h(x)=x$ for all $h \in H\}$, the fixed point set of H [3]. If X is any component of $F(M, H)$ then X is a closed submanifold of M and $X \cap E(M, H)$ is either empty or dense in the T^{n} / H space X by [3]; hence $\overline{E(M, H)}$ is a union of disjoint closed submanifolds of M.

If A^{a} is a closed submanifold of a manifold B^{b}, the Poincare dual of $A, \quad D(A) \in H^{b-a}\left(B ; Z_{2}\right) \simeq \operatorname{Hom}\left(H_{b-a}\left(B ; Z_{2}\right) ; Z_{2}\right)$, is defined by $\langle D(A), Z\rangle=$ number of points in $A \pitchfork Z \bmod 2$ where \pitchfork indicates the intersection of A with the cycle Z in general position [4].

If T^{n} acts smoothly and effectively on an orientable manifold M^{n+3}, then for any cyclic subgroup $H \subset T^{n}, \overline{E(M, H)}$ is a codimension two submanifold since H must act linearly, effectively, and in an orientation preserving manner on the three dimensional slice. If H is isomorphic to $S^{1}, \overline{E(M, H)}$ will in general have components of codimension two and four; let $\overline{E_{2}(M, H)}$ denote the components of codimension two. Finally, for T^{n} acting smoothly and effectively on an orientable manifold M^{n+3}, we define $A(M) \in H^{2}\left(M ; Z_{2}\right)$ by

$$
A(M)=\sum_{H \simeq S^{1}} D\left(\overline{E_{2}(M, H)}\right)+\sum_{H \simeq Z_{2 m}} D(\overline{E(M, H)}) .
$$

Theorem. If T^{n} acts smoothly and effectively on an orientable ($n+3$)manifold, M^{n+3}, then $A(M)=w_{2}(M)$, the second Stiefel-Whitney class of M.

The remainder of the paper is devoted to the proof of this theorem.

2. First reduction.

Lemma 1. It is suffficient to prove the theorem for compact manifolds without boundary.

Proof. We wish to prove that $A(M)=w_{2}(M)$ for an arbitrary orientable ($n+3$)-manifold M with effective smooth T^{n} action. If $A(M)-$ $w_{2}(M) \neq 0 \in H^{2}\left(M ; Z_{2}\right)$ then there is a singular cycle $Z \in H_{2}\left(M, Z_{2}\right)$ with $\left\langle A(M)-w_{2}(M), Z\right\rangle \neq 0$. But any such cycle is contained in a compact, invariant, submanifold with boundary X that is $Z=i_{*} Z^{\prime}$ for $Z^{\prime} \in H_{2}\left(X ; Z_{2}\right), i: X \hookrightarrow M$. Hence

$$
\begin{aligned}
\left\langle A(M)-w_{2}(M), Z\right\rangle & =\left\langle A(M)-w_{2}(M), i_{*} Z^{\prime}\right\rangle \\
= & \left\langle i^{*} A(M)-i^{*} w_{2}(M), Z^{\prime}\right\rangle=\left\langle A(X)-w_{2}(X), Z^{\prime}\right\rangle
\end{aligned}
$$

and so it is sufficient to prove the theorem for compact manifolds, possibly with boundary. Finally, let $Y=X \cup_{\partial X} X$ be the double of X and $j: X \hookrightarrow Y$. Then

$$
\begin{aligned}
\left\langle w_{2}(Y)-A(Y), j_{*} Z^{\prime}\right\rangle & =\left\langle j^{*} A(Y)-j^{*} w_{2}(Y), Z^{\prime}\right\rangle \\
& =\left\langle A(X)-w_{2}(X), Z^{\prime}\right\rangle
\end{aligned}
$$

so it is sufficient to prove the theorem for Y, that is, for compact manifolds without boundary.

If T^{n} acts effectively on the orientable manifold M^{n+3}, then T_{x}^{n}, the isotropy subgroup at x, can only be isomorphic to one of $\{e\}, Z_{m}, S^{1}$, $S^{1} \times Z_{m}, T^{2}$ or T^{3} because the isotropy subgroup must act linearly, effectively, and in an orientation preserving manner on the slice at x.

Lemma 2. It is sufficient to prove the theorem for compact manifold M without boundary, such that $E(M, H)=\phi$ for H isomorphic to T^{3}, T^{2} or $S^{1} \times Z_{m}$ and such that $E(M, H)=E_{2}(M, H)$ for H isomorphic to S^{1}.

Proof. Let H_{1}, \ldots, H_{r} be the isotropy subgroups isomorphic to T^{3}, T^{2} or $S^{1} \times Z_{m}$ and suppose that H_{1} is isomorphic to T^{3}. Then H_{1} is a maximal isotropy subgroup and hence $E\left(M, h_{1}\right)=F\left(M, H_{1}\right)$ is a closed submanifold of M of dimension $n-3$ since T^{3} must act effectively on fibre of the normal bundle of $F\left(M, H_{1}\right)$ in M. Let U be a closed, invariant tubular neighborhood of $E\left(M, H_{1}\right), \partial U$ the boundary of U. Then we have $H^{2}\left(M, M-U ; Z_{2}\right) \simeq H^{2}\left(U, \partial U ; Z_{2}\right)$ by excision and $H^{2}\left(U, \partial U ; Z_{2}\right) \simeq$ $H_{n+1}\left(U ; Z_{2}\right) \simeq H_{n+1}\left(F\left(M, H_{1}\right) ; Z_{2}\right)=0$ by Poincaré duality, and hence we have in the exact sequence

$$
H^{2}\left(M, M-U ; Z_{2}\right) \rightarrow H^{2}\left(M ; Z_{2}\right) \xrightarrow{i_{*}} H^{2}\left(M-U ; Z_{2}\right)
$$

that i_{*} is injective and hence it is sufficient to prove $i^{*}\left(A(M)-w_{2}(M)\right)$ $=0$, that is $A(M-U)=w_{2}(M-U)$.

By doubling $M-U$ as in Lemma 1 we see that it is sufficient to consider compact manifolds without boundary having isotropy subgroups H_{2}, \ldots, H_{r}. Repeating this argument a finite number of times removes all isotropy subgroups isomorphic to T^{3}. If H_{s} is isomorphic to T^{2} and if $E(M, H)=\phi$ for H isomorphic to T^{3} then $E\left(M, H_{s}\right)=F\left(M, H_{s}\right)$ is a closed invariant submanifold of codimension four and hence $H_{n+1}\left(F\left(M, H_{s}\right) ; Z_{2}\right)=0$ as before and we may repeat the argument. Continuing in this manner, we remove next $F(M, H)$ for H isomorphic to $S^{1} \times Z_{m}$ since codimension $F(M, H)$ is four in this case and finally we remove the components of $F(M, H), H$ isomorphic to S^{1}, whose codimension is four.

3. Two special cases.

Proposition 3. Let T^{n} act effectively and smoothly on the closed orientable manifold M^{n+3} with all isotropy subgroups finite. Then $w_{2}(M)=$ $A(M)$.

Lemma 4. With the same hypothesis of Proposition 3, M^{n+3} / T^{n} is a closed orientable 3-manifold.

Proof. Let $\pi: M^{n+3} \rightarrow M^{n+3} / T^{n}$ denote the orbit map. To give a chart $\left(U_{l}, \phi_{l}\right)$ in M^{n+3} / T^{n} it is sufficient to give a smooth invariant map $\bar{\phi}_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow \mathbf{R}^{3}$. If $x \in M$ with $T_{x}^{n}=e$ then the slice at x, S_{x} is diffeomorphic to \mathbf{R}^{3} [1], and we take $U=T^{n} \times S, \bar{\phi}: T^{n} \times S \rightarrow S \simeq \mathbf{R}^{3}$. If $T_{x}^{n}=Z_{m}$ then $S_{x} \simeq C \times \mathbf{R}$ with $g \in Z_{m}$ acting linearly on $\mathbf{C} \times \mathbf{R}$ via $g(z, t)=(\xi z, t)$ for ξ an m th root of unity. Define $\bar{\Phi}: T^{n} \times_{Z_{m}} S_{x} \rightarrow \mathbf{C} \times \mathbf{R}$ via $\bar{\phi}(X, z, t)=\left(z^{m}, t\right)$.

To prove that M / T^{n} is orientable we note that T^{n} acts freely on $M-\cup_{H \neq e} F(M, H)$ so that $\left(M-\cup_{H \neq e} F(M, H)\right) / T^{n}$ is orientable and $\cup_{H \neq e} F(M, H) / T^{n}$ consists of isolated curves in M / T^{n} so M / T^{n} is orientable also.

Proof of Proposition 3. Let $x \in H_{2}\left(M ; Z_{2}\right)$ and let x be represented by a submanifold $Q^{2} \subset M$ [6]. We must show $\left\langle w_{2}(M), Q\right\rangle=\langle A(M), Q\rangle$. We may assume that Q intersects each fixed point set $F(M, H)$ transversally, that $Q \cap \cup_{H \neq e} F(M ; H)=\left\{p_{1}, \ldots, p_{r}\right\}$, and that in a neighborhood of an intersection point $p_{\imath} \in Q \cap F\left(M, H_{i}\right), Q$ coincides with a fiber of a tubular neighborhood. More precisely, there is a slice at p_{l}, $S_{p_{i}} \simeq C \times \mathbf{R}$ and a neighborhood $U_{p_{i}}$ of p_{i} in Q with $U_{p_{i}} \subset \mathbf{C} \times 0$. To compute $\left\langle w_{2}(M), Q\right\rangle$ we split $T(M) / Q$ as $\theta^{n+1} \oplus \eta^{2}$ where θ^{n+1} is a trivial bundle and then $\left\langle w_{2}(M), Q\right\rangle=\left\langle w_{2}\left(\eta^{2}\right), Q\right\rangle=\left\langle\chi\left(\eta^{2}\right), Q\right\rangle=$ number of zeroes of a generic section of $\eta^{2} \bmod 2$, where χ denotes the Euler class. First note that we have a splitting $T(M)=\theta^{n} \oplus \xi^{3}$ where θ^{n}, the bundle of tangents to the orbits, is trivial since all isotropy subgroups are finite. We must now split $\xi^{3} / Q=\eta^{2} \oplus \theta^{1}$. We have $d \pi: T(M) \rightarrow$ $T\left(M / T^{n}\right)$ is an epimorphism with kernel θ^{n} off the fixed point sets; therefore $d \pi: \xi^{3} \rightarrow T\left(M / T^{n}\right)$ is an isomorphism off the fixed point sets, and at a fixed point x of $H, d \pi_{x}$ has rank 1 . Since every orientable 3-manifold is parallelizable by Stiefel's theorem [5], we can find vector fields X_{1}, X_{2}, X_{3} which are linearly independent at every point of M / T^{n}. Around each point p_{\imath} we can choose a slice $S_{p_{t}} \simeq \mathbf{C} \times \mathbf{R}$ with coordinate functions ($z, t)$ such that $\pi\left(S_{p_{i}}\right)$ is a coordinate chart of M / T^{n} at $\pi\left(p_{t}\right)$ with coordinate functions (w, t) where $\pi(z, t)=\left(z^{m_{1}}, t\right)$. So we can consider in $\pi\left(S_{p_{t}}\right)$ the vector fields $\partial / \partial x, \partial / \partial y, \partial / \partial t$ where $w=(x, y)$. Since, up to permutation of the indices, the frame $X_{1}\left|\pi\left(S_{p_{t}}\right), X_{2}\right| \pi\left(S_{p_{t}}\right)$, $X_{3} \mid \pi\left(S_{p_{1}}\right)$ is homotopic to the frame $\partial / \partial x, \partial / \partial y, \partial / \partial t$ we can modify the vector fields X_{1}, X_{2}, X_{3} to $\tilde{X}_{1}, \tilde{X}_{2}, \tilde{X}_{3}$ so that in the neighborhood $\pi\left(S_{p_{t}}\right)$
we have $\tilde{X}_{i}=\partial / \partial x, \tilde{X}_{2}=\partial / \partial y, \tilde{X}_{3}=\partial / \partial t$. Note that the vector field Y_{1} on $S_{p_{i}}$ given by $Y_{1}=\partial / \partial t$ satisfies $d \pi\left(y_{1}\right)=\tilde{X}_{3}$. Then on $Q-P_{i}$ we have a well defined nonzero vector field Y_{2} that corresponds via $d \pi$ to the vector field \tilde{X}_{3}, since $d \pi$ is an isomorphism off the fixed point set. Restricting the vector field Y_{1} to U_{i} we have that $Y_{1}=Y_{2}$ in $U_{i}-\left\{P_{t}\right\}$. So Y_{2} extends to a nonzero vector field Y in Q. Let us use this vector field to split $\left.\xi^{3}\right|_{Q} \simeq \eta^{2} \oplus \theta$. Now $Z=d \pi^{-1}\left(\tilde{X}_{1}\right)$ is a section of $\eta^{2} \mid Q-\left\{P_{i}\right\}$. Denoting by χ_{i} the index of Z at P_{i} we have that $\chi\left(\eta^{2}\right) \bmod 2=$ $\sum_{i=1}^{r} \chi_{i} \bmod 2$. The map π restricted to U_{i} is given by $\pi(z)=z^{m_{i}}$ and $d \pi(Z)=\partial / \partial x$ for $Z \mid U_{i}-p_{i}$. Writing this in a matrix form we have

$$
m_{i} r^{m_{i}}\left(\begin{array}{cc}
\cos \left(m_{i}-1\right) \theta & -\sin \left(m_{i}-1\right) \theta \\
\sin \left(m_{1}-1\right) \theta & \cos \left(m_{i}-1\right) \theta
\end{array}\right)\binom{z_{1}^{i}}{z_{2}^{i}}=\binom{1}{0}
$$

where $z=r e^{i \theta}$ and $Z=\left(z_{1}^{l}, z_{2}^{i}\right)$ so in U_{i} the vector Z can be written in the form $Z=\left(1 / m_{i} r^{m_{i}}\right)\left(\cos \left(m_{i}-1\right) \theta,-\sin \left(m_{i}-1\right) \theta\right)$ which shows that the degree of Z at p_{l} is $1-m_{i}$. Then $\chi\left(\eta^{2}\right) \bmod 2$ is the number of p_{i} 's $\bmod 2$ such that m_{i} is even.

Lemma 5. Let $\pi: E^{n+3} \rightarrow B^{n+1}$ be a smooth T^{n} vector bundle ν such that
(i) $F\left(E^{n+3}, H\right)=E\left(E^{n+3}, H\right)=B^{n+1}$ for some $H \simeq S^{1}$,
(ii) E is an orientable manifold,
(iii) T^{n} acts effectively on E^{n+1}.

Then $w_{2}\left(E^{n+3}\right)=A\left(E^{n+3}\right)=D\left(B^{n+1}\right)$.

Proof. Since H acts effectively on the fibers of E by (iii), $T_{x}^{n}=e$ for $x \notin B$ and hence $A\left(E^{n+3}\right)=D\left(B^{n+1}\right)$. We have $T(E)=\pi^{*}(T(E) \mid B)=$ $\pi^{*}(T(B) \oplus \nu)$. Since $H \simeq S^{1}$ acts effectively on E, E has a complex structure and is hence orientable and thus B is orientable and $w_{2}(E)=$ $\pi^{*}\left(w_{2}(B)+w_{2}(\nu)\right)$. Since $T^{n} / H \simeq T^{n-1}$ acts freely on $B, B / T^{n-1}$ is an orientable 2-manifold and thus $w_{2}\left(B / T^{n-1}\right)=0$. From the fibration p : $B \rightarrow B / T^{n-1}$ we have that $T(B)=p^{*} T\left(B \mid T^{n-1}\right) \oplus T_{F}$ where T_{F}, the tangent bundle along the fibers is a trivial bundle [1] and hence $w_{2}(B)=$ $p^{*} w_{2}\left(B \mid T^{n-1}\right)=0$. Thus $w_{2}(E)=\pi^{*} w_{2}(\nu)$. Now any $z \in h_{2}\left(E ; Z_{2}\right)$ can be written as $z=i_{*} z^{\prime}, z^{\prime} \in H_{2}\left(B ; Z_{2}\right)$ and z^{\prime} can be represented by a 2-manifold $Q \subset B$. Then

$$
\langle A(E), z\rangle=\langle D(B), z\rangle=Q \pitchfork B \bmod 2
$$

and

$$
\begin{aligned}
\left\langle w_{2}(E), z\right\rangle & =\left\langle\pi^{*} w_{2}(\nu), i_{*} z^{\prime}\right\rangle=\left\langle w_{2}(\nu), \pi_{*} i_{*} z^{\prime}\right\rangle \\
& =\left\langle w_{2}(\nu), z^{\prime}\right\rangle=\left\langle w_{2}(\nu \mid Q), Q\right\rangle=\langle\chi(\nu \mid Q), Q\rangle \\
& =\text { number of zeroes mod } 2 \text { of a generic section } s
\end{aligned}
$$

where χ denotes the Euler class. But this generic section can be used to put Q in general position with respect to B and the number of points in the intersection $s(Q) \cap B$ is just the number of zeroes of the section.

4. Proof of Theorem.

Definition. A T^{n} manifold M^{n+3} is said to be a nice T^{n} manifold if
(i) M is closed and orientable,
(ii) every isotropy subgroup is cyclic or isomorphic to S^{1},
(iii) for H isomorphic to S^{1}, such that $E(M, H) \neq \phi, E(M, H)$ has codimension two,
(iv) for every component F of $E(M, H), H$ isomorphic to S^{1}, $w_{2}(\nu(F, M)) \neq 0$ where $\nu(F, M)$ is the normal bundle of F in M.

Lemma 6. The theorem is true for nice T^{n} manifolds.
Proof. Let E be a tubular neighborhood of $\cup_{H \simeq S^{1}} E(M, H)$ with boundary ∂E. Consider the cohomology Mayer-Vietoris sequence for ($M, \bar{E}, M-E$) with Z_{2} coefficients

$$
\begin{aligned}
& \rightarrow H^{1}(\bar{E}) \oplus H^{1}(M-E) \xrightarrow{i_{1}^{*}+i_{2}^{*}} H^{1}(\partial E) \xrightarrow{\delta} H^{2}(M) \\
& \stackrel{j_{1}^{*} \oplus j_{2}^{*}}{\rightarrow} H^{2}(E) \oplus H^{2}(M-E) .
\end{aligned}
$$

By Proposition $3, j^{*} w_{2}(M)=w_{2}(M-E)=A(M-E)=j_{2}^{*} A(M)$, and by Lemma $5 j_{1}^{*} w_{2}(M)=w_{2}(\bar{E})=A(\bar{E})=j_{1}^{*} A(M)$, hence $w_{2}(M)-$ $A(M) \in$ image δ. To prove the lemma it suffices to show $i_{1}^{*}: H^{1}(E) \rightarrow$ $H^{1}(\partial E)$ is onto and hence that $\delta=0$. To prove that i_{1}^{*} is onto, we consider the Gysin sequence for one component $\pi: E_{1} \rightarrow F$ of the vector bundle $E \rightarrow \cup_{H \simeq S^{1}} E(M, H)$

$$
\rightarrow H^{1}\left(E_{1}\right) \xrightarrow{i_{1}^{*}} H^{1}(\partial E) \xrightarrow{\beta} H^{0}\left(E_{1}\right) \xrightarrow{\alpha} H^{2}\left(E_{1}\right)
$$

and note that $H^{0}\left(E_{1}\right) \simeq Z_{2}$ since E_{1} is connected and that $\alpha(1)=$ $\pi^{*} w_{2}\left(\nu\left(F, E_{1}\right)\right)$ [2], and $\pi^{*} w_{2}\left(\nu\left(F, E_{1}\right)\right) \neq 0$ by condition (iv). Hence α is

1-1, β is zero and $i_{i}^{*} \mid H^{1}\left(E_{1}\right)$ is onto. Taking direct sums over the components of E yields $i_{1}^{*}: H^{1}(E) \rightarrow H^{1}(\partial E)$ is onto.

To complete the theorem we need one final reduction lemma.
Lemma 7. It is sufficient to prove the theorem for nice actions of T^{n}.
Proof. We shall show that for any smooth effective action of T^{n} on an orientable manifold M^{n+3} and any $x \in H_{2}\left(M ; Z_{2}\right)$ there exists a nice action of T^{n} on a manifold \tilde{M}^{n+3} and an $\tilde{x} \in H_{2}\left(\tilde{M}, Z_{2}\right)$ such that $\left\langle w_{2}(M), x\right\rangle=\left\langle w_{2}(\tilde{M}), \tilde{x}\right\rangle$ and $\langle A(M), x\rangle=\langle A(\tilde{M}), \tilde{x}\rangle$. Clearly that will prove Lemma 7.

We may assume, by Lemma 2, that the action of T^{n} on M^{n+3} satisfies the niceness conditions (i), (ii) and (iii). Let x be represented by a closed submanifold $Q^{2} \subset M^{n+3}$ which is transverse to $F(M, H)$ for every isotropy subgroup H isomorphic to S^{1}. To construct the manifold \tilde{M} we will first choose an invariant neighborhood U of Q^{2} and then construct \tilde{M} so that U is contained in \tilde{M}. The class \tilde{x} will then be represented by $Q \subset U \subset \tilde{M}$. Clearly then

$$
\left\langle A(M), i_{*} Q\right\rangle=\left\langle i^{*} A(M), Q\right\rangle=\langle A(U), Q\rangle=\left\langle j^{*} A(\tilde{M}), Q\right\rangle
$$

and

$$
\begin{aligned}
\left\langle w_{2}(M), i_{*} Q\right\rangle & =\left\langle i^{*} w_{2}(M), Q\right\rangle=\left\langle w_{2}(U), Q\right\rangle \\
& =\left\langle j^{*} w_{2}(\tilde{M}), Q\right\rangle=\left\langle w_{2}(\tilde{M}), j_{*} Q\right\rangle
\end{aligned}
$$

where $i: U \leftrightharpoons M, j: U \leftrightharpoons \tilde{M}$ are inclusions.
Since Q is transverse to $U_{H \simeq S^{1}} F(M, H)$ the intersection is finite, say $\left\{P_{1}, \ldots, P_{r}\right\}$. Also for any isotropy subgroup $H \simeq S^{1}, F(M, H)$ is an $(n+1)$-dimensional oriented closed manifold with free action of $T^{n} / H \simeq$ T^{n-1}, hence $F(M, H) / T^{n}$ is a 2-manifold and $\pi: \cup_{H \simeq S^{1}} F(M, H) \rightarrow$ $\cup_{H \simeq S^{1}} F(M, H) / T^{n}$ is a union of principal T^{n-1} bundles. Choose neighborhoods V_{i} of $\pi\left(P_{i}\right)$ in $F(M, H) / T^{n}$ with V_{l} diffeomorphic to the open disc D^{2}. Then $\pi^{-1}\left(V_{i}\right) \simeq T^{n} / H \times V_{i}$. Let $C=\cup_{H \simeq S^{1}} F(M, H)-$ $\cup_{i=1}^{r} \pi^{-1}\left(V_{i}\right)$. Note that C is compact and invariant and hence $M-C$ is an open invariant neighborhood of Q. Let U be an open invariant neighborhood of $Q, Q \subset U \subset M-C$ such that $\bar{U} \subset M-C$ and \bar{U} is a manifold with boundary and let $M_{1}^{n+3}=$ double of $\bar{U}=\bar{U} \cup_{\partial \bar{U}} \bar{U}=$ $\partial(\bar{U} \times I)$. Note that M_{1} is not a nice T^{n} manifold, in fact, the normal bundle of every fixed point set $F\left(M_{1}, H\right)$ in M_{1} is trivial. But M_{1} does
have the property that $H^{2}\left(F ; Z_{2}\right) \neq 0$ for any component F of a fixed point set $F\left(M_{1}, H\right), H \simeq S^{1}$. (One could have a T^{2} action on M^{5} for example, with $\left.F\left(M^{5}, H\right) \simeq S^{3}\right)$. To prove the last statement we note that

$$
\bigcup_{H \simeq S^{1}} F(\bar{U}, H) \subset \bigcup_{H \simeq S^{\prime}} F(M-C, H)=\bigcup_{i=1}^{r} T^{n} / H_{t} \times V_{t}
$$

and hence

$$
\bigcup_{H \simeq S^{1}} F(\bar{U}, H)=\bigcup_{i=1}^{r} T^{n} / H_{i} \times W_{i}
$$

for W_{l} a compact 2-manifold with boundary $\subset V_{i} \simeq D^{2}$. Thus

$$
\bigcup_{H \simeq S^{\mathbf{1}}} F\left(M_{1}, H\right)=\bigcup_{\imath=1}^{r} T^{n} / H_{l} \times\left(W_{l} \cup_{\partial W_{l}} W_{l}\right)
$$

and

$$
H^{2}\left(W_{l} \cup_{\partial W_{l}} W_{l} ; Z_{2}\right) \neq 0
$$

To construct the manifold \tilde{M} we shall modify the manifold M_{1} by twisting the normal bundle at each component of each fixed point set $F\left(M_{i}, H\right), H \simeq S^{1}$ to satisfy condition (iv) of niceness. Let F_{1}, \ldots, F_{r} be the components of $\cup_{H \simeq S^{1}} F\left(M_{1}, H\right)$ and let $\left\{p_{t}, \ldots, p_{r}\right\}=Q \cap$ $\cup_{H \simeq S^{l}} F\left(M_{1}, H\right)$ with $p_{l} \in F_{l}, F_{l}$ a component of $F\left(M_{l}, H_{i}\right)$. Choose $q_{i} \in F_{i}$ so that p_{1} and q_{l} are on different orbits. Choose a tubular neighborhood C_{l} of the orbit q_{l}, diffeomorphic to $T^{n} \times{ }_{H_{l}} \mathbf{C} \times D^{2}$.

Let

$$
M_{2}=\left(M_{1}-\bigcup_{i=1}^{r} C_{t}^{\prime}\right) \cup_{f} \bigcup_{i=1}^{r} C_{t}^{\prime \prime}
$$

where

$$
C_{l}^{\prime}=T^{n} \times_{H_{l}} \mathbf{C}(2) \times \dot{D}^{2}, \quad C_{l}^{\prime \prime}=T^{n} \times_{H_{l}} \mathbf{C}(1) \times D^{2},
$$

where $\mathbf{C}(r)$ denotes the closed disk of radius r in \mathbf{C}, and $f: T^{n} \times{ }_{H_{t}} \mathbf{C}(1) \times$ $\partial D^{2} \rightarrow T^{n} \times_{H_{i}} \mathbf{C}(2) \times \partial D^{2}$ is given by $f(t, z, \theta)=\left(t, e^{\imath \theta} z, \theta\right)$. Note that $F\left(M_{2}, H_{t}\right)=F\left(M_{1}, H_{t}\right)$. See Figure 1.

Figure 1

Finally \tilde{M} is constructed by choosing $M_{3} \subset M_{2}$ so that M_{3} is a manifold with boundary and $\cup_{H \simeq S^{1}} F\left(M_{2}, H\right) \subset$ int $M_{3}, U \subset M_{3}$ and setting $\tilde{M}=$ double of $M_{3} . \tilde{M}$ clearly satisfies conditions (i), (ii) and (iii) of niceness and $Q \subset U \subset \tilde{M}$. So we need only show that condition (iv) is satisfied. To that end we note that $\nu\left(F\left(M_{1}, H_{i}\right)\right)$ is a trivial bundle and therefore has a nonvanishing section X. Then, in M_{2}, we have a nonvanishing section of $\nu\left(F\left(M_{2}, H_{i}\right), M_{2}\right) \mid F\left(M_{2}, H_{l}\right)-T^{n} / H_{i} \times D^{2}$. Recall that $F\left(M_{2}, H_{t}\right)=$ $T^{n} / H \times\left(W_{i} \cup_{\partial W_{i}} W_{i}\right)=T^{n} / H \times B^{2}$ where B^{2} is a closed 2-manifold.

We shall show that $\left\langle w_{2}\left(\nu\left(F\left(M_{2}, H_{1}\right), H_{2}\right), B^{2}\right\rangle \neq 0\right.$. The section X restricts to a section of $\nu\left(F\left(M_{2}, H_{i}\right), M_{2}\right) \mid B^{2}-D^{2}$ and we want to look at this section in local coordinates on D^{2}. Then $\tilde{X}: \partial D^{2} \rightarrow \mathbf{C}$ has the form $\tilde{X}(\theta)=e^{i \theta} X(\theta)$ where $\operatorname{deg} X=0, X: \partial D^{2} \rightarrow \mathbf{C}-\{0\}$, since X extends to $D^{2} \subset M_{1}$ and therefore $\operatorname{deg} \tilde{X}(\theta)=1$ and hence extending \tilde{X} generically gives $\left\langle\chi\left(\nu\left(F\left(M_{2}, h_{1}\right)\right), B^{2}\right\rangle \neq 0\right.$ where χ is the Euler class.

References

[1] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York and London, 1972.
[2] J. W. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Math. Studies No. 76, Princeton University Press, 1974.
[3] D. Montgomery, Orbits of highest dimension, Seminar on Transformation Groups, Annals of Math. Studies No. 46, Chapter IX, Princeton University Press, 1960.
[4] M. Seifert and W. Threlfall, A Textbook of Topology, Academic Press, 1980.
[5] E. Stiefel, Richtungsfelder and Fernparallelisus in Mannigfaltigkeiten. Comm. Math. Helv., 8 (1936), 3-51.
[6] R. Thom, Quelques propriétés globales des variètés différentiables, Comm. Math. Helv., 28 (1954), 17-86.

Received March 17, 1982. The first named author was partially supported by FAPESPFundação de Amparo À Pesquisa do Estado de São Paulo-BRASIL Proc 81 |0803-3.

The University of Michigan
Ann Arbor, MI 48109
AND
Universidade Federal de São Carlos
SÃo Carlos-SP. BRASIL- 13560
The University of Michigan
Ann Arbor, MI 48109

