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JORDAN TRIPLE SYSTEMS WITH COMPLETELY
REDUCIBLE DERIVATION OR

STRUCTURE ALGEBRAS

ERHARD NEHER

We prove that a finite-dimensional Jordan triple system over a field
k of characteristic zero has a completely reducible structure algebra iff it
is a direct sum of a trivial and a semisimple ideal. This theorem depends
on a classification of Jordan triple systems with completely reducible
derivation algebra in the case where k is algebraically closed. As another
application we characterize real Jordan triple systems with compact
automorphism group.

The main topic of this paper is finite-dimensional Jordan triple
systems over a field of characteristic zero which have a completely
reducible derivation algebra.

The history of the subject begins with [7] where G. Hochschild
proved, among other results, that for an associative algebra & the deriva-
tion algebra is semisimple iff & itself is semisimple. Later on R. D. Schafer
considered in [18] the case of a Jordan algebra £. His result was that Der f
is semisimple if and only if $ is semisimple with each simple component of
dimension not equal to 3 over its center. This theorem was extended by
K.-H. Helwig, who proved in [6]:

Let f be a Jordan algebra which is finite-dimensional over a field of
characteristic zero. Then the following are equivlent:

(1) Der % is completely reducible and every derivation of % has trace
zero,

(2) £ is semisimple,
(3) the bilinear form on Der f> given by (Dl9 D2) -> trace(Z>!Z>2) is

non-degenerate and every derivation of % is inner.

After some preparations in §§1—3 we will show in §4 that the same
theorem holds for Jordan triple systems. The proof in this case is different
from the Jordan algebra case. It relies on a classification of Jordan triple
systems whose derivation algebras are completely reducible. It is easy to
see that Kis an example for such a triple system, if

(a) Fis semisimple or if
(b) V is trivial, i.e. all products vanish.
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Surprisingly there occurs another type of example:
(c) V = X θ M with quadratic representation

P(x θ m)(y ®n) = (2(x, y)x - (x9 x)y) θ ((*, x)n + 2(x, y)m)

where ( , •) is a symmetric non-degenerate bilinear form on X. Our main
result says that these are essentially all examples. To be more precise, let V
be a Jordan triple system over an algebraically closed field. Then the
following are equivalent:

(I) Der Fis completely reducible.
(II) V = Vx θ V2 is a direct sum of two ideals V' where—up to

enumeration—one of the following two cases occurs:
(a) V1 is semisimple and V2 is trivial,
(β) V1 is semisimple and V2 is a direct sum of ideals which are

isomorphic to example (c).

In §5 we apply our results to characterize Jordan triple systems which
have a compact automorphism group. Another application is given in §6
where we prove that a Jordan triple system V has a completely reducible
structure algebra iff Fis a direct sum of a semisimple and a trivial ideal.

The author thanks M. Koecher and K. McCrimmon for various useful
suggestions and H. P. Petersson for having drawn his attention to [6].

1. A review of known results,

1.1. In this section we recall some known facts from the theory of Lie
algebras and derive a few consequences. Throughout, M denotes a finite-
dimensional vector space over a field k of characteristic zero and g is a
subalgebra of gΙ(Λf), the Lie algebra of all endomorphisms of M. By
definition, g is completely reducible (in M), if every g-invariant subspace
has a g-invariant complement.

(1.1) ([2] §6.5, Theoreme 4). g is completely reducible iff g is reductive
and the center of g consists of semisimple elements.

As a corollary we get

(1.2) If g is completely reducible, then every ideal of g is completely
reducible, too.

(1.3) ([1] §9.2, Prop. 3). Let K be an extension field of k. Then g is
completely reducible in M iff K ® g is completely reducible in K ® M.
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(1.4) g is called almost algebraic ("scindable" in [3]) if g contains the

semisimple and nilpotent components of all of its elements. The Lie

algebra of an algebraic subgroup of GL(M) is almost algebraic ([5). In

particular, the derivation algebra of an algebra or a triple system is almost

algebraic (for a direct proof see [3] Chap. 7, §1, Prop. 4).

The following lemma is contained in [6] p. 28 for the case where g is

the derivation algebra of an algebra:

LEMMA 1.1. Let g be almost algebraic and assume that the bilinear form

p on g defined by ρ(X, Y) = trace(XF) is non-degenerate. Then g is

completely reducible.

Proof. By [2] §6.4, Prop. 5 we know that g is reductive. Hence, using

(1.1), the assertion follows, if we can show that the center 3 of g consists of

semisimple elements. But 3 is again almost algebraic ([3] §5.1, Corollaire 1

of Prop. 3) and thus it is enough to show that 3 contains no nilpotent

elements. Let Z E 3 be nilpotent, then ZX is nilpotent for every l e g

and therefore tτace(ZX) — 0, forcing Z to be zero.

The following lemma is a trivial generalization of [2] §6.1 Proposi-

tion 1:

LEMMA 1.2. Let g be completely reducible. Define p as in Lemma 1.1.

Then p is non-degenerate iff the restriction of p to the center of g is

non-degenerate.

Proof. By (1.1) g is reducitve, i.e. g = g θ [ g , g], where [g, g] is

semisimple and 3 is the center of g. Since p is an invariant bilinear form,

this decomposition is orthogonal relative to p. But the restriction of p to

[g, g] is non-degenerate by [2] §6.1 Prop. 1. Hence p is nondegenerate iff

the restriction of p to 3 is non-degenerate.

1.2. In this section we recall some well-known results about Jordan

triple systems which are needed in the sequel. Thereby we also fix our

notation.

A Jordan triple system as it is considered in this paper is a finite-di-

mensional vector space V over a field k of characteristic zero together with a

trilinear map

{-'}:VXVXV->V:(u,v,w) -» {uvw} =:L(u,v)w
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which satisfies the following identities

(1.5) {uυw} — {wυu}

(1.6) [L(u9 v)9 L(x9 y)] = L({uvx}, y) - L(x9 {υuy})

for all w, v, w9 x9 y E V. In what follows we just speak of V as the Jordan
triple system without exhibiting the map {•••}.

The theory of Jordan triple systems is developed in [10], [11] and [14]
for a more general class of triple systems. Since the proofs of our main
results are only valid in the situation as defined above we restrict ourselves
to this case from the very beginning.

For a Jordan triple system V one defines the quadratic representation
P: V -> End Vby P(x) — \{xyx\. This is in fact a quadratic map since its
linearization P(x9 z) — P(x + z) — {(x) — P{z) satisfies P(x9 z)y =
{xyz}. As a result, Fis uniquely determined by P.

There are many identitites valid in V9 see e.g. [11] §2. We need the
following which is a translation of (JP12) in [11]:

(1.7) L(x, y)P(z) + P(z)L(y9 x) = P(z9 {xyz}).

There are several Lie algebras associated with Jordan triple systems.
In this paper we are concerned with the structure algebra and the
derivation algebra of V. The structure algebra appears in connection with
the derivation algebra of the Jordan pair (V,V) associated to V: By
definition, (A9 B) E Der(F, V) if

[A9 L(x9 y)] = L(Ax9 y) + L{x9 By)

and

[B9L(x9y)]=L(Bx9y)+L(x9Ay)

holds for all JC, y E V. Der(F, V) is a subalgebra of (fll(F), fll(K)) with
respect to componentwise multiplication. The structure algebra ?Γ(F) of V
is the image of Der(F, V) under the projection map onto the first
component:

Der( V,V) -*%(¥): (A, B) -> A.

We point out that this map is in general not injective. It is an immediate
consequence of (1.6) that

for all w, v E V, correspondingly L(u, v) E ?Γ(K). The subspace of ?Γ(K)
spanned by {L(w, υ); w, υ E V) is an ideal of 9"(K) called the inner
structure algebra and denoted by inn ?Γ(F).
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A derivation of V is a Λ -linear map D: F-> V satisfying D{xyz) —
{Dz, y9 z] + (x, Dy, z) + {x, y9 Dz) for all x9y9z G V9 i.e. an endomor-
phism D with (D9 D) G Der(F, F). The space Der F of all derivations of
Fis a Lie subalgebra of %{V). Since (L(w, v), -L(v, u)) G Der(F, F) it
follows easily that

Δ(w, υ) := L(w, t>) - L(t>, w) G Der F.

The span of (Δ(w, v)\ w, t> G F} is an ideal of Der Fdenoted by inn Der F
The elements of inn Der F are called inner derivations.

If K is an extension field of k and F a Jordan triple system over k, the
triple product of F can be naturally extended to K ® F. In this way
AT ® F becomes a Jordan triple system. As for algebras one proves

(1.8) $(K® V) ^K®^{V), ΌQX{K® V) = K®ΌerV.

A*subsystem of F resp. an ideal of F is a subspace U of F such that
{UUU} C (7 resp. {VVU} + {VUV} C ί7. One calls Vsimple if {FFF}
φ 0 and F contains only the trivial ideals 0 and F. Since {VVV} is an
ideal, we have in this case {VVV} = V.

The fc-linear span of all products in F of degree > n is denoted by
V(ny where {xyz} resp. {jcy{wtw}} or {x{yuv}w}... is considered to be of
degree 3 resp. 5 Obviously, V — V(])D V(3) D V(5) D - and each ̂ Λ )

is an ideal of F. If V(n) = 0 for some «, then Fis said to be nilpotent.
In the situation considered here every Jordan triple system F contains

a unique maximal nilpotent ideal Rad F which is called the radical of V.
Since (Rad F,Rad F) is the radical of the Jordan pair (V,V), it is
invariant under the automorphism group of (F, F) and thus also under its
Lie algebra (see e.g. [5] II §8 Prop. 6) which is Der(F, F). Hence

(1.9) Rad Fis invariant under

We will need another property of Rad F which follows from [11] Theorem
14.10:

(\\ti\ s u b s P a c e L(V,KdiάV) + L(RadF, F) of EndF
^ " ' consists of nilpotent endomorphisms.

A Jordan triple F is called semisimple, if its radical vanishes. It is
known ([14] §11) that the following properties are equivalent:

(1.11 .a) F is semisimple,

the trace form σ of F defined by σ (u, v)
(l.ll.b) / / \ / w

= i trace(L(w, v) + L(t>, u)) is non-degenerate,

(1.11 .c) K ® F is semisimple for every extension field Koίk,
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(1.11 .d) Vis the direct sum of its simple ideals.

It is also proved in [14] §11.6:

If Fis semisimple, then $(V) = i n n ^ F ) and Der V =
(1.12) inn Der F. Moreover, the projection Der(F, F) -

is an isomoφhism.

The existence of a Wedderburn decomposition of Fwas show in [9]:

For every Jordan triple system V (as defined above)
(1.13) there exists a semisimple subsystem S of V such that

F = R a d F Θ S .

It follows from [14] 11.3 Theorem 4:

If V is a simple Jordan triple system, then either ^(V)
/ - 14x operates irreducibly on V or V = F + θ F~ is the direct >

sum of two ?Γ(F)-irreducible subspaces F + and F~
satisfying

{KeK"eFe} C F ε , {VΎΎ} =0 forε = ± .

Using (1.11) we get as an easy corollary:

(1.15) If Fis semisimple, then ?Γ(F) is completely reducible.

LEMMA 1.3. LeJ Vbe semisimple and define the bilinear form p on
by p(X, Y) = trace(XΓ). Then p is non-degenerate.

Proof. First we make two reductions:
(1) Let K be an extension field of k. Then K<8> V is a semisimple

Jordan triple system by (1.1 l.c), D ® ?Γ(F) = !Γ(F® K) and p defined
for # ® Fis the bilinear extension of p \ ^{V). Without loss of generality
we may therefore only consider the case where k is algebraically closed.

(2) If F = F 1 θ θ Vn is the decomposition of F as sum of its
simple ideals, then we have the corresponding decomposition ^S(V) —
^ ( F 1 ) θ ®^{Vn) where ^ί(F') is canonically imbedded in ?Γ(K)
Since this decomposition is orthogonal relative to p it is enough to
consider the case where Fis simple. Because ^ ( F ) is completely reducible
we can apply Lemma 1.2 and see that we have to show that the restriction
of p to the center 3 of ^ ( F ) is non-degenerate.

If %(V) is irreducible, then the centralizer of $(V) in End(F) equals
kid and contains 3. But Id E ^ ( F ) since (Id, -Id) E Der(F, F) and thus
3 = k Id. Obviously, p 13 is nondegenerate.
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If *Γ(F) is not irreducible, then, by (1.14), we know that F = F + Θ Γ
is a direct sum of $( F)-irreducible subspaces V+ and V~ . Again, we have
Id e 9"(K), i.e.

Id = ΣL(ut, vt) =
i /

thus

id I v+ = 2 ^ ( « / + >»T) e σ ( κ ) , id

Every endomorphism of F which commutes with Id| F ε, e = ±, leaves
invariant F ε . This impUes s(3~(F)) = A:Id | F + ΘΛId| V~ . Obviously,
PI i(^{V)) is non-degenerate.

COROLLARY 1.4. Let V be semisimple. Then DerF is completely
reducible and the bilinear form p on Der V defined by ρ(X, Y) = trace( XY)
is non-degenerate.

Proof. Since Der F is almost algebraic it is, by Lemma 1.1, enough to
show the second assertion. Let Γ* denote the adjoint of T ε End F
relative to the trace form σ of F. Taking traces in the defining identitites
for (A, B) E Der(F, F) shows B = -A*. Because also (B, A) G
Der(F, F) we see that ?Γ(K) is invariant under * and thus ?Γ(K) = 9"+ (K)
θ ?Γ_(F) where ?Γ±(K) = {ΓG ?Γ(F); Γ* = ± Γ } . since D E Der F iff
( A D) E Der(F, F) we obtain Der F = ?Γ(K). Let S E ?Γ+ (F) and Γ E
31 (F). Then

trace(5Γ) = trace(ST)* = tmce(T*S*) = -trace(Γ5) = -trace(ST)

shows that ?Γ+(F) and ?Γ_(F) are orthogonal relative to p, in particular
p I Der F is non-degenerate.

An element e E F such that P(e)e = e is called a tripotent. Every
tripotent of F induces a Peirce decomposition

V=V2(e)ΘVλ(e)eV0(e)

where f̂ .(e) = {x E F; {eex} = ix} for / = 0,1,2. The Peirce spaces have
the following multiplication rules:

ίl 16) WWVAe)v*ie)} C Vt-Me)> i n particular, Vt{e) is a
^ ' ^ subsystem of F.

/ x K2(e) = imP(e) and P(e)\V2(e) is an involutorical
^ * automorphism of F2(e), hence
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V2(e) = V+(e) Θ V2 (e) with V{{e) = {x E V2(e); x
(1.18) = ex} for ε = ±, where we are using the abbreviation

P(e)x = x.

Together with the algebra product xy = {{xey} the subspace V2(e)
becomes a Jordan algebra denoted by V2(e)(e\ The triple product of V2(e)
can be expressed by the algebra product

(1.19) {xyz} = 2[x(yz) - y(xz) + (xy)z] for χ9 y9 z E V2(e).

Two nonzero tripotents e and / are called orthogonal if / E V0(e)
which is equivalent to e E V0(f). A nonzero tripotent e is called minimal,
if e cannot be written as the sum of two orthogonal tripotents. We remark
that in this case e is a primitive idempotent of the Jordan algebra
[V2 (e)](e\ Using well-known results for Jordan algebras (see e.g. [4] IV
§5.5) we get

. v If k is algebraically closed and e E V is a minimal
^ ' tripotent, then Vf (e) = ke θ Rad F+ (e).

An orthogonal system is a tuple (e l 9 . . . 9 e r ) of pairwise orthogonal
t r i p o t e n t s . I n th i s case F h a s a Peirce decomposition relative \o(eλ9...9er)9

i.e. a decomposition

(1.21) F = 0 ^ where

*Όy = VJ0 = K ^ ) Π Π K0(e,) for 0 <y < r.

We also put for 1 < / < r

The Peirce spaces satisfy the following multiplication rules

(Λ -»̂ \ {VikVk/V/ni} C Vin9 and all other types of products are
(1.23) ι Jk kl lm) jn
v f zero.

The radical of V splits relative to (el9...9er). In particular, one
derives from [17] Lemma 6:

(λ Id) ^ ^ ^s s e m ^ s ^ m P ^ e ' t ' i e n a ^ ^ e P e i r c e spaces Vϊ} are
^ ' ' semisimple, too.
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In general, V need not contain any nonzero tripotents. However, one
knowns([10]3.3):

(λ Ίς\ If & is algebraically closed and Fis semisimple, then V
^ ' ' contains nonzero tripotents.

By induction, we get:

Let k be algebraically closed and V semisimple. Then V

(1.26) contains a maximal set of orthogonal minimal tri-

potents. The corresponding Peirce space Vm is zero.

2. Examples of Jordan triple systems with completely reducible de-
rivation algebra.

2.1. As in the preceding section let k be a field of characteristic 0.
Assume X is a finite-dimensional vector space over k and ( , ): X -* k is a
symmetric bilinear form. We put

(2.1) {xyz} = 2[(x, y)z + (z, y)x - (x, z)y].

It is well-known ([10]), that this triple system is in fact a Jordan triple
system, called the Jordan triple (system) of the quadratic form ( , •) and
denoted by [ X\ ( , •)]. Obviously, its quadratic representation is given by

(2.2) P{x) = 2{x,y)χ-{x,x)y.

From (2.1) one easily derives that the trace form σ is given by σ(x, y) —
2(JC, y) dim X. Hence, by (1.1 l.b), we get

, v A Jordan triple system of a quadratic form is semisim-
ple iff the form is non-degenerate.

Also, the next assertion trivially follows from (2.2) and (2.1):

A nonzero element e of X is a tripotent iff (e, e) — 1. In
(2.4) this case X = X2(e) = ke ® X2 (e) with X2 (e) = {x

EX; (e9x) = 0).

Jordan triples of quadratic forms occur in the following connection:

LEMMA 2.1. Let V be a Jordan triple and e E V a tripotent with
V — V2(e) and V2 (e) — ke. Then there exists a unique quadratic form
( , •) on Vsuch that Vis the Jordan triple of'(•, •).
The form is given by

(ae + x,βe + y) = <xβ ~ {{xey}, x j £ V2 (e).
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Proof. Since P(e) is an involutorical automorphism of V we get

{xey} E F2

+ (e) = ke for every x, y E F2~ (e). This shows that our form is

—up to a trivial identification—well-defined. From (1.19) we derive

P(u)υ = 2u(uϋ) — u2v, uv = j{uev}. Since

uv = (ae + u~ ){βe + v~) = (aβ — (u~ , v~ ))e + av~ +βu~

it is easily seen that (2.2) is valid in V, i.e. Fis the Jordan triple of ( , •)•

The uniqueness follows form (2.4) and (2.1).

There is a general method for constructing new Jordan triple systems

out of old ones which is stated in the following

THEOREM 2.2 ([14] 10 Theorem 2). Let V be a Jordan triple system with

quadratic representation P and φ E End V such that P(φx) — φP(x)φ for

all x E V. Then the quadratic map P ( φ ) where P^(x) = P(x)φ defines on

V the structure of a Jordan triple system.

We use this theorem in the following special case:

LEMMA 2.3. Let X, M be nonzero finite dimensional vector spaces over k

and ( , ) a symmetric non-degenerate bilinear form on X. We define a

quadratic representation on V — X @ M by

P(x θ m)(y θ n ) = (2(x, y)x ~ (x9 x)y)
[ ' } ®({x,x)n + 2(x,y)m)

where x, y E Xand m, n E M. Then

(a) (F, P) is a Jordan triple system,

(b) the decomposition V — X ® M is a Wedderburn decomposition with

the semisimple part X and M — Rad V9

(c) {VVV} = V.

(d) the derivation algebra of V consists of the mappings D(x θ m) —

Dλx ® D2m where D] E Der[Z;( , •)] and D2 E gl(Af) is arbitrary. In

particular, Der V is completely reducible.

(e) ^{V) and i n n ^ F ) are not completely reducible.

Proof, (a) We extend ( , •) to a bilinear form on V by setting

{x® m, y @ n) — (x, y) and define φ E End F, φ(x θ m) = x — m. Let

Q denote the quadratic representation of the Jordan triple system [F; ( , )].
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Then, using (2.2), we derive

Q(φ{x + m))(y + n) = Q(x - m)(y + n)

= 2(x, y)(χ - m) - (x, x)(y + n)

= φ[2(x, y)(x + m) - (x, x)(y - n)] = <pQ(x + m)φ(y + n).

Thus, by Theorem 2.2, we conclude that P — (? (φ) defines on V a Jordan
triple system. But

P(x + m)(y + n) = Q(x + m)(y - n)

which is just (2.5).
(b) From (2.5) and (2.2) it follows that the subsystem X of V is the

Jordan triple system of the quadratic form ( , •) | X Hence, by (2.3), it is
semisimple. On the other hand, {VVM} = M = {VMV} and {MMM} =
0 shows that M is a nilpotent ideal of V and therefore M C Rad V. Now
(b) easily follows.

(c) Since X is semisimple we have {XXX} = X. Moreover, there exists
x E X with (JC, JC) ¥= 0. Then P(x)M - M. Altogether, {VVV} - V fol-
lows.

(d) Let D be a derivation, x E X So Dx = y θ m for some j E X and
m E. M. Because DP(x)x = P(x)Dx + {ΛXDΛ;} we derive from (2.5)

(x, x ) ( j + m) = ^ ( x ) ^ + {xxy} + (Λ:, X)WI + 2(x9 x)m,

hence (x, x)m = 0. But since the x with (x9 x) Φ 0 form an algebraically
dense subset of X we have DX C X By (1.9) we also know DM CM —
Rad V. A straightforward computation using (Dxx9 x) = 0 for every Z^ E
Der[X;( , )] and x E X shows now that P e D e r F iff D | X E
Der[X;( , •)] and D\M E gί(M). Since Der[X;( , •)] is completely re-
ducible in Xby Corollary 1.4 it follows that Der Fis completely reducible
in V.

(e) Since i n n ^ F ) is an ideal of ?Γ(F) it follows from (1.2) that is
enough to show: inn?Γ(F) is not completely reducible. Putting

(z) : = (y9 z)xweget

= ((*, y)\άx + xy* - yx*) θ (nx* + my* + (x, j)Id M ).

This easily implies Id κ, Λ:̂ * — jx* and nx* E inn ?Γ(K) for all x, / E X,
n Ei M. Since the skew adjoint endomorphisms of X are spanned by
•xy* ~~ J *̂? x>y ^ X> and Hom(X, M) is spanned by nx*, n E M9 x E X
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we get

inn^(F) = kid Θ so(JT) Θ Hom(JT, M)

as direct sum of vector spaces. It follows that 0 φ Hom( X, M) C inn 5~( V)
is an abelian ideal. If inn?Γ(F) is completely reducible, then Hom( X, M)
is also completely reducible and (1.1) implies that every element of
Hom( X, M) is semisimple, but Hom(X, M) consists of nilpotent endo-
moφhisms.

REMARK 2.4. (a) We will see later (Theorem 2.7) that there are other
types of Jordan triple systems whose derivation algebras are completely
reducible. In the sequel we will refer to a Jordan triple system considered
in Lemma 2.3 as Example 2.3.

(b) For an Example 2.3 with V = X θ M it is easy to see that M is a
bimodule for X and Fis the split-null-extension of X by M.

(c) One can show <${V) = klά θ so(X( , •)) © Hom(F, M\ but we
don't need this in the sequel.

2.2. We consider the situation where the Jordan triple system V is a
direct sum of two ideals V1 and V2, We put

:= [A E gl(F); AVi C V\ i = 1,2},

βI,(K) := {A E gί(F), ΛF1 C F 2 , ,4F2 C F1}

Then gί(F) = gI0(F) θ gl^F) is a Z2-grading of the Lie algebra gί(F).
Correspondingly,

where gί/(F,F)-(gί/(F),gI/ (F)).

LEMMA 2.5. Let V= F1 θ F 2 be a direct sum of two ideals V\ Then
(a) Der(F, F) = Dero(F, F) θ Der^F, F) wΛere Der,(F, F) =

Der(F,F)ngI /(F,F)
(b) Dero(F, F) = Der(F!, F1) θ Der(F2, F2) is a direct sum of the

ideals Der(F', V1) C Dero(F, F).
(c) if (A, B) G gl^F, F), (Λ, 5) e Der^F, F) ///

- 0

, , } ( , , } = 0

for (/, 7) = (1,2), (2,1).
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Proof (a) Since TΓ: xι @ x2 -> JC1 Θ — x2 defines an automorphism of
V we have (π, TΓ) E Aut(F, F), thus

is an involutive automorphism of Der(F, F) and the decomposition in the
assertion is just the eigenspace decomposition of this automorphism,

(b) is obvious and (c) is a straightforward verification.

We will need the following corollary later:

COROLLARY 2.6. Let V—Vx®V2beα direct sum of two ideals V\

i = l , 2 .
(a) Der F = Der0 F Θ ΌerxV where Der, F = Der F Π g I,.(F)
(b) Der0 F = Der F 1 Θ Der F 2 is a direct sum of the two ideals Der Vi

C Der0 F.
(c) Lei D E gl^F). ΓΛen £> E ΌcτxViff

', F', F }̂ = {K>, £>F', Vj) = 0

/or (ί, y) = (1,2), (2,1).

Prw/. This is an immediate consequence of Lemma 2.5, if one
notes that the automorphism (A, B) -> (πAπ, ΉBΉ) leaves {(Z>, D) E
Der(F, F)} - Der F invariant.

THEOREM 2.7. Let V= V1 Φ V2bea direct sum of two ideals V\
(a) If V1 is semisimple and V2 is trivial, i.e. {V2V2V2} = 0, then

?Γ(F) and Der(F) are completely reducible.
(b) // F 1 is semisimple and V2 is nonzero and a direct sum of ideals

each of which is isomorphic to an Example 2.3, then Der V is completely
reducible, but ?Γ(F) is not.

Proof, (a) Since V^ = F 1 by (1.1 l.d) and since F 1 contains no
subspace / with {IVιV1} =0 = {VιIV}9 it follows from Lemma 2.5 that
Der^F, F) = 0. Consequently fΓ(K) = ^ ( F 1 ) Θ ?Γ(F2) is a direct sum of
ideals fΓ(Fθ C 3~(F). But ^ ( F 1 ) is completely reducible by (1.15) and
^ ( F 2 ) = gI(F 2) is also completely reducible, which implies that S'(F) is
completely reducible. Since DerF is a subalgebra of ?Γ(F) we have
Der F = Der F 1 Θ Der F 2 with Der F 2 = gI(F 2). Thus the remaining
assertion is a consequence of Corollary 1.4.
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(b) Here V is a direct sum of ideals Γ which are semisimple or
isomorphic to an Example 2.3. By (1.1 l.d) and Lemma 2.3.C we know
I{3) = /'" for all ideals Γ. Thus, by induction Der^F, F) = 0 and $(V) =
Θ^(/ ') , DerF = Θ DerΓ.

Since at least one /' is an Example 2.3, the ideal 9"(/') of ^(V) is not
completely reducible (Lemma 2.3.e) and hence 9*(K) is not completely
reducible by (1.2). However, all ideals Der/' are completely reducible and
therefore Der V is completely reducible.

3. The center of a Jordan triple system. The center of a Jordan
triple system Fis defined as the subspace

C(V) = ( c £ V;L(c,v) = L{v, c) for all v E F}.

LEMMA 3.1. (a) For w, υ E Fαm/ c, c l5 c2 E C( F) we have

{cυu} — {υcu} — {cuυ},

[L(u, v)9 L{cu c2)] = 0 = [P(w, ϋ), L(c l 9 c 2)].

(b) C( F) ώ a subsystem of F.

Proof, (a) Every c 6 C(F) satisfies {cυu} = {υcu} for all u, υ £Ξ V.
Since the right side of this equation is symmetric in u and v we also get
{cυu} = {α/ϋ} for all u, υ E V. From (1.6) we derive for c E C(F):
[L(w, t;), L(c, c)] = L({WUC}, c) — L(c, {υuc}) — 0 because {uυc} =
{UWC}. Now [L(w, ϋ), L(cj, c2)] = 0 follows by linearization since

2L(c,, c2) = L(c! + c2, c, + c2) - L(c,, c j - L(c 2, c2).

To prove the last equation we apply formula (1.7) with y — cλ,x — c2 and
z,w E V arbitrary. We get

P{z){cxc2w} = - {c2c}P(z)w} + {zw{c2cλz}}

- {c2,cv-P{z)w+ {zwz}} = {c2cxP{z)w}

which shows [P(z), L(cl9 c2)] = 0. Now the last equation follows by
linearization.

(b) We have for v E Fand c, E C(K) by applying (1.6) and (a):

L(v, {cxc2c3})

= L(υ,{cλc2c3}),

{cxc2c3} E
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The following lemma will be used in the next section:

LEMMA 3.2. Let V'= S θ R be a decomposition where S is a semisimple
subsystem and R is an ideal of V contained in the center of F.

(a) Every derivation of V leaves S invariant.
(b) For T G End i? we define Dτ G End Vby Dτ(s θ m) = Tm, where

s G S, m G R. Then Dτ G Der Viff
(1) Γ e Deri?
(2) T{stm) = {stTm} for all s91 G S9m G R and
(3) T{smn) = {sTmn} + {smTn} for all s G S, m9 n G /?.

/. (a) We consider Fas a bimodule for S by setting q(x) : = P(x),
/(x, 7) = L(Λ;, J ) , I J G S , and denote by V the split-Null-extension of
S by F(see [9] for details). Let D be a derivation of F. Then D: S -> Fis a
derivation of 5 into the bimodule F Since S is semisimple it follows from
the Remark on page 26 in [9] that there are sl9... 9snE S and vλ9...9vn G V
such that Zλs = Σ, A(̂ -, i;,-)̂  for 5 G 5 where A(5^ ϋf ) is an inner deriva-
tion of F Since the product inV= S ® Vsatisfies

it follows that

Δ(sx ®vus2®v2)(s3®v3)

= Δ(j!, .y2)̂ 3 θ Δ ( J , , s2)v3 + Δ(sl9 v2)s3 + Δ(t?l9 ^ 2 ) ^ 3 .

Hence A(^, ϋ,.)̂  = 0 θ Δ(si9 v^s. We put vt = ^ + rz with ίz G S and
rz G i?. Then Δ(si9 vt) — Δ(si9 tt) and thus

Ds = ΣΔfo, i?f> = Σ Δ ^ , ί,> e 5.
I I

(b) A straightforward computation shows that Dτ G Der F is equiva-
lent to (1), (2), (3) and the following two equations: T{smt] = {,s7raί},
Γ{msfl} = {Tmsn} + {msTn} for all s9 t E S9 m9 n E R. But since i? C
C(V) these equations are consequences of (2) and (3).

4. Jordan triple systems with completely reducible derivation alge-
bras. For the case where the ground field is algebraically closed we will
prove the converse of Theorem 2.7 inasmuch as the derivation algebras are
concerned. Before stating the theorem we want to recall that we are only
dealing with Jordan triple systems which are finite-dimensional over a
field of characteristic zero.
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THEOREM 4.1. Let V be a Jordan triple system over an algebraically
closed field. Then the following are equivalent:

(a) Der Vis completely reducible,
(b) V is a direct sum of two ideals V\ i = 1,2, where after a possible

change of numeration one of the following two cases occurs:
(1) V1 is semisimple and V2 is trivial,
(2) F 1 is semisimple and V2 is a direct sum of ideals which are

isomorphic to an Example 2.3.

Proof. The implication (b) =» (a) was already proved in Theorem 2.7.
To prove the converse, we proceed in several steps ((4.1) to (4.11)). We put
R = Rad V.

(4.1) Δ(V9R)=09 i . e . Λ C C ( F ) .

Proof. By (1.9) R is invariant under every derivation, hence the
formula [D, Δ(w, v)] = Δ(Z)w, v) + Δ(w, Dv) for D E Der V implies that
Δ(F, R) is an ideal of Der F. Now (1.1) and (1.2) show that Δ(F, R) is
reductive. On the other hand, Δ(F, R) consists of nilpotent endomor-
phisms by (1.10) and therefore is by EngeΓs theorem a nilpotent Lie
algebra. It follows that Δ(F, R) is abelian and, by applying (1.1) once
more, every element of Δ(F, R) is semisimple. Thus Δ(F, R) — 0.

(4.2) If F = Λ, then Fis trivial, i.e. {VW} = 0.

Proof. Since Fis nilpotent, there exists an m E N such that V^2m-1> ^ 0
but ^2m+i) = 0. We want to prove m = 1, so we assume m > 2. In this
case the linear span of {L(JC, y)\ x E V^9 y E ^ y ) , / +y > 2m — 2} is
abelian by Lemma 3.La, contained in DerF because of {xy{uvw}} E
*(, +/+3) = 0, and in fact is an ideal of Der F since DV(i) C V{ί) for every
Z> E DerF. From (1.1) and (1.2) we derive that L(x, y) for JC E ί̂ 0,
y E V{jy i +j >2m — 2, is semisimple and from (1.10) we see that
L(x, y) is nilpotent, hence L(JC, y) — 0. Since F = C(V) we have

{ίw{t;H>z}} = {t{uvw}x} — {{/WU}WZ}

for every /, w, ϋ, >v, z E F, which implies V(2m_l) — {V{2m_3)VV} — 0
because L(V(2m_3),V) ^ 0. This is a contradiction and shows m — \.

Because of (4.2) we assume in the sequel F φ R. We now come back
to the general situation and choose a semisimple subsystem S of F such



JORDAN TRIPLE SYSTEMS 153

that V — R® S9 which is possible thanks to (1.13). Then we are in the
situation considered in Lemma 3.2.

DerV = A(V,V) ΘexDerF (direct sum of ideals)
where Δ(F, F) = Δ(S, S) = {D E Der F; DS C S9

\ ' D\R = 0} and exDer V:= [D E Der F; DR C R,

Proof. By Lemma 3.2 every /> E Der F leaves £ and /? invariant;
hence D \ S is a derivation which is inner by (1.12), i.e. £> | S = Σ, Δ(sz , /z) | *S
for some si9 tt E S. This shows D = Σ, Δ(^/? ίf.) + (D - Σ, Δ(^z, rz)) with
Σf Δ(jf., ί,) E Δ(F, F) and /> - Σf Δ(^, ίf.) E ex Der F. Because Δ(^, tt)R
= 0, we have Δ(S, 5) = {/) E Der F; ΰ 5 C ( S , / ) | Λ = 0}. The equality
Δ(S, S) = Δ(F, F) is obvious from (4.1). It is also clear that Δ(F, F) and
ex Der F are subalgebras which annihilate each other, thus they are ideals
of Der V.

In order to extend derivations, Lemma 3.2.b shows that we need to
study the operation of the structure algebra of S on R. To this end we
choose a maximal orthogonal system (el9...9er) of minimal tripotents of
S. This is possible because the groundfield k is algebraically closed (1.26).
We prove next:

(4.4) L(S9S)\S= 2kL(et9ei)\R-

Proof. Let Vi} resp. Stj be the Peirce spaces of F resp. S relative to
(eu... ,er). We know S+ = ket by (1.20) and Sm = 0 by (1.26). Moreover,
for m E R we have {e^^m} = {^me,}. Hence, if m = mj + mj + mx +
m0 is the Peirce decomposition of m relative to eo we see 2m J +
Wj = 2m2 — 2m~l, which implies m, = 0 = m^ . Therefore

1 = 1

The definition of the Peirce spaces now implies R = φ[=0Ri with Rt =
R Π V£ where we put F^ = Foo. This shows V£ = ke(®Rι9 V~{ = 5^
for 1 < i < r and ^ 7 = 5/7 for ι ̂ =y.

We want to investigate L(S, S)R which is a sum of products
{uιJυklrmm}, u, υ E S, r E R. Such a product is zero whenever k, I ¥= m
and {/, j) Π {k91} = 0 set. The remaining cases are products of type
{",7 V m J e Fim n R = δimRm Therefore only L(ujm9 υjm) can operate
non-trivially on R. Using R C C(V) shows that the product {ujmυjmrmm}
E Rm also lies in Rj which implies L(ujm9 vJm)R = 0 unless j = m. In the
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case j = m we only need to look at a product of the type {UjjVjjfjj} We
decompose UJJ = αey + w~ , t^ = j8ey- + vJJ and get

But {ejΌ~. rjj} and {u~ efij) EVJJ ΠR = 0 which shows VJJ Rj = 0,
where the left-hand side is the product in the Jordan algebra V2(ej){ej\
Now (1.19) implies {u~ υJJ r^} = —2(ujj υJJ )/ .̂. But w~ t ^ E fce, and
thereforeL(w~ 9vj])\RE kL(e}, ej) \R.

exDer V = Der i?0 Θ (ΘJ= 1 Der2 i?y) is a direct sum of
(4.5) ideals where D} E Der2 R^ iff 2^ E Der Rj and for all

m,n E Rj Dj{mejn} = {Djmejn} + {mejDjn}.

Proof. From (4.3) we know ex Der R = { ΰ 6 Der V; DR C R, D \ S
= 0}. Applying Lemma 2.3.b and (4.4) shows D E ex Deri? iff D — Dτ

where

T E Deri?, [Γ, L(ep ey)] = 0 for 1 <y < r

and

= {sTmn} + {smTn} for all s E 5, m, π E i?.

First of all, [Γ, L(ey , ey )] = 0 for 1 <y < r is equivalent to TRj C i?7 for
0 < 7 < r , i.e. T=Σr

J=QTj where 7).= Γ|7?y, Since iί = Θ ; = 0

Λ

7

 i s a

direct sum of ideals we get T E Deri? iff 7} E Deri?y for 0 <j < r.
Finally, since L(RJ9 Rk) — 0 fory ¥= k we have {̂ m«} = Σy=0{5m7τ2y} =
Σy=0{my^τ2y}. The summand 7 — 0 vanishes since %> = 0, moreover
{rrijSjj Πj) G Rj Π VJJ = 0 and thus {.s mw} = Σy = 1 {^ w^j}. This shows
that Γl̂ mw) = {.yΓmw} + {smTn} is equivalent to

Tj{mejή) = {Tjmejti} + {mefin) for 1 <y < r

and all m, « ^ ^ y The assertion now easily follows.

(4.6) i?0 is an ideal of V with {i? 0^Π = 0.

Proof. We have

{VR0V} = {VVR0} = {SSR0} + {5ΛΛ0} + {RRR0)

Here {5SΛ0} = 0 by (4.4). Further

{RR0S} = {i?0Λ05} = 2 {RoRoSoj} = 2 {*<A,#o} = 0
7=1 y-i
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and

{RRR0} = {R0R0R0}

Hence (4.6) follows if we can show {R0RQRQ} = 0. To this end we note,

using (1.2), that Der/?0 is completely reducible in R. Therefore

{R0R0R0} = 0 is a consequence of (4.2).

(4.7) {RRV} = 0.

Proof. Because of (4.6) and L(RJ9 Rk) = 0 fory =£ k it is enough to

show {RjRjV} = 0 for 1 <y < r. Here

{RJRJS} = {RJSRJ} = {RJSJJRJ} = {RjS+ Rj)

since [RjSj] Rj} C R Π VjJ = 0. Hence {RJRJS} = 0 iff {RjβjRj} = 0.
But Λ; C ^(e,-) and thus (1.19) shows that {£,•*,-£,•} = 0 also implies

{RJRJRJ} = 0. We therefore have to prove {RjβjRj} = 0. We can as-

sume Rj T^ 0 and for brevity let TV = RJ9 c = eJt We define

N[0] = N9 N[k]= {NcN[k~ι]} foτk>\.

Since the associative algebra generated by {L(a, c) \N\ a E iV} is nilpo-

tent ([11] Theorem 14.10), there is an m e N such that N[m] = 0, but

^[m-i] _̂  Q W e a s s u m e m > 2. Then the vector space / = {L(α, c) | iV;

a E. N[m~2]) is well defined. To prove that / consists of derivations of JV

we first note that the subsystem ke® N coincides with its center, hence,

by Lemma 3.1.a and (1.19) we have for rn,n,p E N

(*) 2{mnp) = {mc{ncp}} — {{mcn}cp} — {nc{mcp}}.

This implies for a E N[m~2] that {ac{mnp}} E i ? [ w + 1 ] = 0 and

{{acm}np} = 0. Thus L(a, c) \N E DerΛ .̂ Further, by (*), {ac{mcn}} =

0 = {{acm}cn} = {mc{αc«}}, which shows L(α, c) | Λ̂  E Der2 TV =

Der2 Rj.

Let Z) E Der2 N. Then 2)iV[A:] C N[k] and [ A L(α, c)] | N = L(Da9 c)

IN. Therefore / is an ideal of Der2 N which is abelian, because for

b E N[m'2] mdnEN we have

[L(b, c), L(a, c)]n = L{{bca},c)n = {nc{acb}} E N™ = 0.

Since Der2 N is completely reducible in N and L(a, c) \ N is nilpotent, we

conclude from (1.1) that / = 0, i.e. N[m~ι] = 0 which is a contradiction to

our definition of m. Thus m = 1, i.e. {Λyeyiίy} = {NcN} = 0.

If Λo ^ 0, then Θ j = 1 i?y = 0 and F = S ® i ί 0 is a

(4.8) direct sum of the semisimple ideal S and the trivial ideal
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Proof. We put i?+ = ΘΓ=1 Rj and compute {V, V, 5 θ i?+ } using
(4.7). We get

{VVS} + {VVR+ } = {555} + {i?55} + {SSR+ } C 5 θ R+

by (4.4). Similarly, {F, 5 θ i?+ , F} C 5 θ Λ+ . Taking into account (4.6)
we see that F = j R o θ ( J R + θ 5 ) i s a direct sum of two ideals. By (4.4) we
have (i?+ Θ5) ( 3 ) = JR+ Θ5. Since i?+ is the radical of i?+ Θ5, we derive
from Corollary 2.6, (4.6) and (4.7) that

Der V= Der(i?+ 0 5 ) θ Deri?0 θ Hom(Λ0, i?+).

Now a comparison with (4.3) and (4.5) shows Hom(i?0, i?+) = 0. Hence
i?+ = 0 in case Ro Φ 0 and (4.8) follows.

In what follows we assume Ro = 0 and show next

(4.9) If jRj 7* 0,7 =£ 0, then Vjk = 0 for 0 < A: < r with fc ̂ =7.

Proo/. First, we look at the case k = 0 and assume that Foy = 5Oy Φ 0.
Since 5Oy is semisimple by (1.24), it contains a tripotent/, (1.25). By (1.7)
we have

because {ffβj} e F2(ey). Thus />(*,.){#*,} = {//ey} e 52

+ (βj) - tey.
Since/E F^^), we know {ffβj} Φ 0, and P(f)βj E 5^ = 0 shows ey E
^i(/) © V0(f). Altogether, this gives {ffβj} = ey. Now, for n E i?7 we get
{/>} = {/«/} = 0, but In = {ejβjn} = {βjUβj} E F2(/), a contradic-
tion. Therefore 5Oy = 0.

Let 1 < * < r. Then ^ = ^ θ ^ where Vjt = {x ε ^ {eyxeΛ}
= ±JC}. It is obviously enough to prove ^ = 0. We define the Jordan
algebras & = [F2

+ (e, + εek)](e^εe«} and ® = {52

+ (βj + eek)YeJ+ee"\ Then

® is a subalgebra of the Jordan algebra β with the same unit element. We
assume Vfk — SJk Φ 0. Then Sjk contains an element which is invertible in
® (by [4] VIII Lemma 3.3) and hence also in &. Thus P(x) \ & is bijective.
On the other hand, we derive for n E Rj that P(x)n = \{xxn) E Vkk Π
VJJ = 0, which forces n to be zero, a contradiction.

(4.10) If Rj Φ 0, then V2(ej) is isomoφhic to an Example 2.3.

Proof. We know F2(ey) = 52(ey) θ RJa Let 5, / E 52(ey) and m,
n £ Rj. Then, using {i?i?K} = 0 by (4.7), we derive

P(s θ m)(t θ π ) = P(.y)^ θ P ( J ) / I +
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Because S2(ej) = kβj θ S2 (βj) we can apply Lemma 2.1 and (2.3) and
conclude that S2(βj) is the Jordan triple of a non-degenerate symmetric
bilinear form ( , •). A comparison with Lemma 2.3 now shows that (4.10)
follows if we can prove P(s)n — (s, s)n. To this end we decompose
s = aβj + s~ with a E k and s~ E S2 (ey). Since {s~ nej) = 0, we get

P(s)n = a2P(ej)n + P(s')n = a2n + P{s~)n.

From (1.19) we derive

P(s-)n = ±{s~s-n} = -\{{s~ejs~}eJn}.

But {s~ βjS~ } — 2P(s~ )βj = —2(5" , s~ )βj implies

P(s~ )n = ±(s~ , 5~ ){eJeJn] = ( j " , 5~ )n

and P(5)« = (5, s)n follows. Finally, we complete the proof of Theorem
4.1 by showing

Let A:={j; Rj^O), c = 2j^AeJ9 Vλ := V2(c) θ
(4.11) Fi(c) and F 2 = Φ y e y 4F2(e7). Then K = F 1 θ V2 is a

direct sum of ideals where F 1 is semisimple.

Proof. By (4.9) and the assumption Ro = 0 we get K ^ F ' Θ F 2

which is obviously a direct sum of ideals. Since Rad V1 = V] Π Rad F =
0, we see that F 1 is semisimple.

We come back to the general situation considered in the paper: Fis a
finite-dimensional Jordan triple system over a field of characteristic zero.
In this situation we have

COROLLARY 4.2. // Der F is completely reducible, then Rad F is con-
tained in the center of V and {V, Rad V, Rad F} = 0.

Proof. Let K be an extension field of k. Then Der(K ® F) = K ®
Der Fby (1.8) and Der(# ® F) is completely reducible in K ® Fby (1.3).
Since Rad(#® F) = # ® RadF and C(K®V) = K®C{V) we may
assume that k is algebraically closed. But in this case the assertion is just
(4.1) and (4.7).

The following theorem is a generalization of a theorem of K.-H.
Helwig ([6]) which was quoted in the introduction.
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THEOREM 4.3. For a Jordan triple system V the following statements are

equivalent:

(a) Der V is completely reducible and every derivation of V has trace

zero,

(b) V is semisimple 9

(c) the bilinear form {Dx, D2) -»traceί-DjZλj) °f Der V is non-degener-
ate, and every derivation of V is inner.

Proof. We put R = Rad V and choose a semisimple subsystem S oί V

such that V = S θ R, which is possible by (1.13). If (a) or (c) holds, then,

using Lemma 1.1 in case (c), Der V is completely reducible and we can

apply Corollary 4.2 to conclude R C C(V) and {RRV} = 0. Let T = Id Λ .

Then Dτ e Der F b y Lemma 3.2.(b). But obviously Dτ has trace zero or is

inner iff R = 0, i.e. F i s semisimple. Therefore both (a) and (c) imply (b).

If (b) holds, then Der V is completely reducible and the trace form of

Der V is non-degenerate by Corollary 1.4. Moreover let σ be the trace

form of the Jordan triple V. Then σ is non-degenerate and every deriva-

tion of V is skew relative to σ and therefore has trace zero. It is also

known that every derivation is inner (1.12). Hence (b) implies (a) and (c).

COROLLARY 4.4. // Der V is semisimple, then V is semisimple too.

5. Real Jordan triple systems with compact automorphism group.
We apply Theorem 4.3 to classify real Jordan triple systems with compact

automorphism group.

We first recall that a real Jordan triple system is called compact (resp.

of non-compact type) if its trace form σ is positive-definite (resp. negative-

definite).

THEOREM 5.1. Let V be a real Jordan triple system. Then A u t F is

compact iff V is semisimple and for every simple component V* of V one of

the following three cases occurs:

(1) V1 is compact,

(2) V1 is of non-compact type,

(3) V1 is isomorphic to the Jordan triple system defined on an Euclidean
space(X,( , •» by

(5.1) P(x)y = 2(x9 y)x~{x,x)y

where ~ is a non-trivial orthogonal reflection.
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Proof. We assume that Aut Fis compact and proceed in several steps:

(5.2) V is semisimple.

Proof. If Aut V is compact, it is well-known that there exists a
positive-definite form on V such that Der V consists of skew-adjoint
endomorphisms. In particular, Der V is completely reducible and every
derivation of V has trace zero. Hence (5.2) is a consequence of Theorem
4.3.

(5.3) We can assume: Vis simple.

Proof. Let V= F 1 θ @Vq be the decomposition of V into its
simple components. Then Aut VJ is canonically imbedded into Aut V as a
closed subgroup, hence Aut VJ is compact.

By [15] Satz 3.3 we know that V has a Cartan involution a. Let
V — V+ θ V_ be the corresponding eigenspace decomposition. Then V+

is compact and V_ is of non-compact type. Obviously we may assume
V+ φ 0 and F_ φ 0.

(5.4) L(x + , x_) — L(x_ , x + ) = P(x+ , Λ_) for every x+ E F ± .

Proof. We can apply [15] Theorem 2.3.(b) (taking λ = trace form) and
see that [D, a] = 0 for every derivation D of V. In particular, we get
αΔ(x+ , x_ )a = Δ(x+ , x_ ). But αΔ(x+ , x_ )a = —Δ(x+ , x_ ) and
hence Δ(x+ , x_) = 0, which is equivalent to the first equation of (5.4).
To prove the second, let u — u+ +u_ E V. Then, by applying the first
equation (5.4), we get

(x+x_ u) — {x+x__ M+ } + (J\:+X_ u_) — (x+ w+x_ } + (x_x+ w_ }

i.e. L ( x + , x_) = P ( x + , x_).
We recall from [12] §1.1 that every element x E V+ has a minimal

decomposition, i.e. x = Σ " = 1 λ 7 e/ where λy E R and (eλ,...,en) is an
orthogonal system of minimal tripotents. In particular, F + has many
tripotents.

( λ If c is a tripotent in V+ , then F_ = ( F _ Π F2

+ (c)) θ

^•^ (κ_nκo(c)).

Proof. Let x_ E F_ have the Peirce decomposition x_ = jμ2

+ + JF2~ +
yλ +j 0 with>' 2

± E F2

±(c)andyz E Vt{c\ i = 1,0. Then {cx^c} = {x_cc}
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by (5.4). But the left hand side equals 2 j 2

+ — 2j/2~ , whereas the right hand

side is 2y2 + 2y2 + JV Hence y77 ~ 0 = yx. Since L(c, c)V^ C F_ and

P(c)V_ C F_ , we get the claimed splitting of F_ .

, v F = F2(c) where c is a tripotent of F + which is minimal
i 5 6 j i n F + .

Proof. First, we assume: For every minimal tripotent c of F + the

Peirce space Fj(c) is non-zero.

Let x E F_ Π F2(c), c a minimal tripotent of F + . Then L(c, x)F,(c)

= L(JC, c)Vλ{c) = P(x9 c)Vλ{c) = 0. Hence

F _ Π F 2 (c) C I2(c) = {ye V2{c); L(y, c)Vx{c) = L{c9 y)Vx{c) = 0 } .

But I2(c) is an ideal of V2(c) ([16] Corollary 1.8) and V2(c) is simple by

[13]. If I2(c) = V2(c)9 then c E /2(c) implies K,(c) = 0. Therefore, by our

assumption, F_ Π V2(c) C /2(c) = 0 and, by (5.5), V_ C F0(c). From the

Peirce multiplication rules now follows L(c, F_) = 0. Since this holds for

every minimal tripotent of V+ and since every element of K+ has a

minimal decomposition as mentioned above, we conclude L ( F + , V_) — 0

= P(K + , F_). This implies that F = F + Θ F _ is a direct sum of two

non-trivial ideals, a contradiction to (5.3).

Therefore, there exists a minimal tripotent c of F + such that Vλ(c) — 0.

Since Fis simple, this forces VQ(c) to vanish and (5.6) follows.

We denote by X+ the underlying vector space of the Jordan triple

system F + . Then

There exists a scalar product ( , ) o n l + such that F +

(5.7) is the Jordan triple system associated to ( , •). More-

over, { x + y + j + z _ } = 2 < x + , y + ) z _ .

By (5.6) we know V^ — {V+)2{c) where c is a minimal

tripotent of F + . Therefore ( F + )2 (c) — Re and Lemma 2.1 says that F +

is the Jordan triple associated to a bilinear form ( , ) on X+ . It is easy

to compute that the trace form σ of F + is

σ(x, y) = ̂ trace(L(x, y) + L(y9 x)) = 2(x9 y) dim X+

which implies that ( , ) is positive-definite.

Let d E F + and assume (d9 d)= 1. Then by (2.4) J is a tripotent of

F + = ( F + ) 2 ( ί / ) . In particular, c E F2(rf) and L(c, c)(K_ Π K0(rf)) = 0.

But F_ C F2(c) and therefore L(c, c) | ( F _ Π F 0(J)) = 2 Id which shows

F_ Π F0((i) = 0 and, by (5.5), F_ C F2

+ (d). Hence, for x + G F + arbi-

trary, ( x + x + z _ ) = 2(x+ , x + ) z _ . Since ( x + ^ + z _ } = {y+x+z_ }, we

get by linearization!x+y+ z_ } = 2{x+ , j + > z_ .
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We denote by X_ the underlying vector space of the Jordan triple
V_ . Then

There exists a scalar product ( , ) on X_ such that F_
(5.8) is the Jordan triple associated to — ( , •). Moreover,

Proof. Let { } denote the Jordan triple product of V and V~ the
Jordan triple system with triple product — { }. Then V~ is simple,
Aut V~ — Aut V is compact and — a is a Cartan involution of V9 hence
(y-)+ = v 9 (γ~)_ = γ+ . We therefore can apply (5.7) to F_ and get
(5.8).

Let X be the underlying vector space of V. Then X has a scalar
product ( , •), given by ( x + + x_ , y+ +y-) = (x+9y+)+ ( x _ , y _ ) .
We define x =x+ +x_ — x+— x_ . Then " is a nontrivial orthogonal
reflection. Moreover, we have for x9y9 z E V

(5.9) {xyz} - 2[(x, y)z + (z, j ) x - (χ9 z)y].

Proof. From (5.7) resp. (5.8) and (2.1) we derive

Λ

Moreover, by (5.4), we know {x+y+z_} — {x+z_j+} = {z_x+y+}
and (x_j_z + } = {x_z+y_} = {z+x__y_}. Hence, by (5.7) resp. (5.8),
we get for ε = ± :

{xεy_εzε}=2e(x£,zε)y_ε and

It is now a straightforward verification, that in all cases the triple product
{xεyμz8}, ε, jti, 8 = ±, can be expressed by the right-hand side of (5.9).
This proves (5.9).

Since P(x)y = i{Λyx} = 2(x, y)x - (JC, x)y by (5.9) we have fi-
nally proved one direction of Theorem 5.1. We consider now the other
direction: Let V= V1 ® - ®Vq be the decomposition of V into its
simple ideals and G = (Aut Vx) X X(Aut Vq). Then Aut V/G is finite,
since it is represented by automoφhisms which map isomoφhic ideals
onto each other. It is therefore enough to show that Aut VJ is compact for
1 <y < q. This is clear if Vj is compact or of non-compact type since
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every automorphism is orthogonal relative to the trace form. Hence it
remains to prove that Aut V is compact for a Jordan triple V given by
(5.9).

Let φ E Aut F. Then φ is orthogonal relative to the trace form σ of V
which is σ(x, y) = 2(x9 y) dim F. Hence (x9 y) = ( φx, φy) for I J 6 K

Moreover

2(x9 y)φx - (x9 x)φ(y) =

= 2(φx,φy)φx ~ (φx, ψx)φy

implies (x, x)φ(y) = (φx, φx)φy for all J ί j E F , i.e. φ(y) — aφy with
a E R, α > 0. Taking the determinant shows a = 1. Thus φ is also
orthogonal relative to ( , •). Conversely, it is obvious that a map with
ψ(y) — ψ(y) a n d (φx, φy)— <^? y) for every x9 y E V is an automor-
phism of V, i.e. A u t F = {φ E 0(F,< , •»; φ(y) = φ ( y ) for all y E F}
which clearly is a compact group.

6. Jordan triple systems with completely reducible structure algebras.
As a further application of Theorem 4.1 we will classify Jordan triple

systems with completely reducible structure algebras, even in the case
where the ground field is not algebraically closed. The link to Theorem 4.1
is provided by the following

LEMMA 6.1. // ?Γ(K) is completely reducible, then Der V is completely
reducible..

Proof. Since ?Γ(K) is completely reducible there is a decomposition
y= wx θ @Wq where the Wι are ^(F)-irreducible subspaces. This
yields a decomposition

into Der(F, F)-irreducible subspaces. Hence Der(F, F) is completely re-
ducible.

The map θ: Der(F, F) -> Der(F, F): (Λ, B) -* {B, A) is an involutive
automorphism of Der(F, F) inducing a decomposition

where % = {(^, ^) E Der(F, F)} and 91 = {(A, -A) E Der(F, F)}.
Since Der(F, F) is completely reducible, every nilpotent element can be
imbedded in a three-dimensional split simple subalgebra of Der(F, F) ([8]
HI Theorem 17.1). Because [%9%]C% and [X, 91] C 91 the same
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property holds for % by [8] III Lemma 8. Moreover % is almost algebraic
and thus the center of % is almost algebraic, too. Thus [8] III Theorem
17.2 implies that %is completely reducible.

Now % -» Der V: (A, A) -> A is an isomorphism, in particular Der V
is reductive. If D is in the center of Der V9 (D9 D) is in the center of %
and thus semisimple, which shows that D is semisimple. By (1.1) Der Fis
completely reducible.

THEOREM 6.2. For a Jordan triple system V the following are equivalent:
(a) ?Γ(F) is completely reducible,
(b) F is the direct sum of a semisimple and a trivial ideal.

Proof. Since (b) => (a) was already proved in Theorem 2.7 it remains
to show (a) => (b).

We first consider the case where the ground field k is algebraically
closed. Since DerF is completely reducible we can apply Theorem 4.1
which in conjunction with Theorem 2.7(b) shows (b), i.e.

V= {VVV} ΘRadF

where {VVV} is a semisimple ideal and Rad F is a trivial ideal.

In general, let k be an algebraic closure of k. Since k® {VVV} —
{ϊc ® V, k ® V, ic ® V} we see that {VVV} is a semisimple deal, similarly
Rad Fis a trivial ideal. Because k®V=(k® {VVV}) ®(k® Rad F) we
get V= {VVV} ΘRadF.

REMARK 6.3. If V= 71 θ / 2 is a direct sum of ideals where / ι is
semisimple and I2 is trivial, then 71 = {VVV} and I1 — RadF, i.e. the
decomposition in Theorem 6.2(b) is unique.

It seems to be worthwhile to mention the following

COROLLARY 6.4. Let fbe a unital Jordan algebra. Then f is semisimple
iff the structure algebra of fy is completely reducible.
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