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EXPONENTIAL RINGS, EXPONENTIAL
POLYNOMIALS AND

EXPONENTIAL FUNCTIONS

Lou VAN DEN DRIES

In this paper we define the category of exponential rings and
develop some of its basic properties.

Introduction. An exponential ring, or E-ring for short, is a pair
(i?, E) with R a ring—in this paper always commutative with 1—and E a
morphism of the additive group of R into the multiplicative group of units
of R, that is, E(x + y) = E(x)E(y) for all x9 y in i?, and E(0) = 1.
Examples are (R, ax), a any positive real, and (C, ex). Of course, any ring
R can be expanded to an £-ring (R, E) by putting E(x) — 1 for all x\
such brings will be called trivial. Ken Manders observed that an Zί-ring
whose underlying ring has no nilpotents φ 0 and has characteristic a
prime/? > 0 is trivial: in such a ring each x satisfies 1 = E(0) — E(px) =
E{x)p, so (E(x) - \y = 0, which implies E(x) = 1.

Related notions of exponential ring have been considered by M.
Beeson, by B. Dahn and Wolter, and by A. Wilkie, all in connection with
the longstanding open problem of A. Tarski on the decidability of the
field of reals with exponentiation. An effective positive solution to this
problem seems unlikely without major advances in transcendental number
theory: such a solution would give us a decision method to answer any
question: is ee = p/qΊ>> where/?, q are positive integers. Of course there is
such a decision method, but, as we don't know yet whether ee is rational,
we don't know how it works.

Now in mathematical practice it is less the effectiveness of Tarski's
decision method for the real field which matters—though this aspect is
interesting—but rather the information the method provides on the
algebraic-topological nature of the definable sets in Rm, and on the
asymptotic behavior of definable functions. For example in semi-algebraic
and real algebraic geometry this use is formalized in the Tarski-Seidenberg
theorem (in an inconstructive version) and in a result like the finiteness of
the number of connected components of a semi-algebraic set.

Parts of this use of Tarski's work on the elementary theory of the reals
offer more hope of being generalized to the E-ήng (R, ex). The following
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conjecture seems to me justified:
Each subset of Rm definable (with parameters) in the language of

E-rίngs has finitely many connected components.
In fact, what I have in mind is a stronger conjecture, that definable

sets have cylindrical decompositions, a little bit similar to those for
semi-algebraic sets constructed by G. E. Collins [C]. This stronger conjec-
ture has the advantage that one only needs to prove it for quantifier free
definable sets. For m = 1 this has been done long ago by Hardy [H], with
effective versions more recently given by Richardson [R] and Macintyre
[M]. (In the case m = 1 the components are of course intervals.) The case
m — 2 will be treated in [D]. To prepare the ground for [D] we solve here
two basic problems:

(1) What is the structure of the free E-rings, respectively of the free
E-algebras over a given E-ringΊ

(2) When is the map p \-+p (assigning to an E-polynomial in Xl9... 9Xm

over (R, E) the corresponding R-valuedfunction in m variables) infective!
The answer to (1) is completely satisfactory, see §1 and §2, in

particular (2.4). For (2) we have a sufficient condition in terms of the
existence of derivations of certain type—see §3 and (4.1)—and we get
positive answers in the cases (R, ex) and (C, ex). The case (R, ex) gener-
alizes in fact to brings (/?, E) where R is an ordered field and E(x) >
1 + x for all x. If we add to this inequality the assumption that £-poly-
nomial functions in one variable over R have a maximum on each segment
[a, b]9 then we can also give effective finite bounds on the number of roots
such functions can have in R, see (4.11). (This is related to results for R
due to Richardson [R] and Macintyre [M].)

After a first draft of this paper was written we learned that the result
in (4.6) for (C, ex) was also proved by W. Henson and L. Rubel by
completely different methods, namely Nevanlinna theory, see Notices
Amer. Math. Soc, November 1981. (In contrast, we only use elementary
algebra.)

Let us also mention here that the one variable case of (4.6) had been
obtained before by A. Wilkie using differential algebra (unpublished).

1. Polynomial brings.
(1.1) In the following let R be an E-ήng with exponential map

denoted by E, and m a positive integer.
We are going to define the ring of E-polynomials in the indeterminates

Xl9...9Xm over R, denoted by R[Xl9... ,Xm]E It will have the structure of
a group ring over the ordinary polynomial ring R[XX9...9Xm]. Its additive
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group will be constructed as a direct sum

and for each k >: — 1, the additive group R ® Ao ® ®Ak is equipped
with a multiplication making it a ring Rk\ this is done in such a way that
R_ j = R as a ring and i?^ is a subring of i?^+ j . Further, for each k > — 1
we define a morphism £^ of the additive group of Rk into the group of
units of Rk+\\ again Ek+λ will extend £ Λ . Then the underlying ring of
R[XΪ9...,Xm]E will be taken as lim Rk — U Rk, and its exponential map
will be given by E(x) = £Λ( x) if ? E Λ*.

The construction of the Ak9 Rk, and Ek is done by recursion: Put
R_x = R, Ro = R[Xλ9. . . 9Xm] and Ao = the ideal (*,,. . . ,XJ

Λ[A\, »-̂ m]ϊ * ^ s § i y e s RQ = ^ ® ̂ o ( a s additive groups); further 2?_! is

the compositioni?_! = i? -^i? =» i?[^i,.. .,^m] = i?0

Suppose fc >: 0 and Λ^-^ i?^, Ak and J5'Λ:_ x have been defined in
accordance with the description above: Rk = Rk-\ ® Ak, and £^_! is a
morphism Rk_x ^> group of units of Rk. Then we form a multiplicative
copy exp(v4£) of the additive group Ak9 i.e., exp(Ak) is a multiplicative
group and an isomorphism exp: Ak — exp(^l^) is given. We put Rk+X =
i?^[exρ(^l^)] (group ring of exp(^) over Rk), and Ak+ι — i?rsubmodule
of Rk+λ (freely) generated by the exp(α) with a E Ak, aΦO. Obviously
Rk+ι — Rk ® Ak+ι as additive groups. Write r E Rk as r — r' + a
with rr E Rk-γ, a E Ak, and define .E :̂ Rk -» 2?^+! by ^ ( r ) =

V i ( O p ( )
This completes the definition of R[Xl9.. .,Xm]E. Note that exp:

Ak -> exρ(^4^) is a restriction of the exponential map £Όf i? [^ , . . . ,Xm]E\
therefore we will write from now on E(Ak)9 E(p) instead of exρ(^),
exp(/?). R[Xl9...,Xm]E is obviously an .E-ring extension of R.

(1.2) PROPOSITION. Given an E-ring S andsu...9sm E S, each E-ring

morphism <j>: R -» S has a unique extension to an E-ring morphism ψ:

Proof. Use the corresponding universal property of R[Xλ9... ,Xm] =
Ro and extend stepwise to each Rk, k>0. D

(1.3) We call the members of R[XX9... ,Xm]E exponential polynomi-
als, or ^-polynomials for short, in the variables Xl9...9Xm over R.
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Note that R[Xl9...,Xm]E is generated as an £-ring by Xλ9...,Xm over

R. More generally if S is an jE-ring extension of R and x , , . . . , x w 6 S ,

then we write R[xl9... ,xm]E for the j?-subring of S generated by xl9...9xm

over R.

(1.4) If φ: 2? -* S is an Zί-ring morphism, then, according to (1.2), φ

has a unique extension to an is-ring morphism R[Xl9...9Xm]E -*

S[Xλ9...9Xm]E sending Xt to X{9 this morphism we will indicate by

P I-+P*. (For ordinary polynomials it replaces the coefficients of/? by their

φ-images.)

If S is an is-ring extension of R and φ is the inclusion R-* S9 then

p H>/?Φ is 1-1, and we will identify p and /?ψ, as is common for ordinary

polynomials. So R[Xl9...,XJ* C S[Xl9... 9Xm]E.

(1.5) A set / gives rise to the iϊ-ring Rr of functions I -> R where the

operations are defined pointwise. For / ^ 0 we identify the constant

functions with their values in R, so R C Rτ. If / = Rm, then the coordi-

nate functions are denoted by xl9...9xm where Xi(rl9...9rm) — η. The

i?-ring morphism R[Xl9... ,Xm]E -^ i? ( Λ W ) fixing i? and sending each Jζ to

Λ:,- will be indicated by p \-*β. Them's are called ^-polynomial functions

(in m variables).

In §4 we will give conditions under which p \->p is a 1-1 correspon-

dence.

(1.6) PROPOSITION. If R is an integral domain of characteristic 0 then

R[Xλ,...,Xm]E is an integral domain whose units are of the form uE(p), u a

unitofR9p(ΞR[Xu...,Xm]E.

Proof. By induction on k > 0 we show that Rk is an integral domain

whose units are of the form u E(p),u a unit of R,p E Rk_λ. This is well

known for k = 0. If we assume the result for k9 then ^ is a torsion free

abelian group, so the group e x p ( ^ ) has a linear order, from which it is

routine to derive that the group ring 2 ? J e x p ( ^ ) ] = Rk+λ is an integral

domain whose units are of the form a - E(β) with a a unit of Rk and

β e Ak. Applying the induction hypothesis to a gives the desired result. D

The following lemma is sometimes useful, but not needed in this

paper.

(1.7) LEMMA. Let R be an integral domain of characteristic 0.
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(a) If p λ 9 . . . 9pm EAk,k> 0, then E{pλ)9... 9E{pm) are algebraically

independent over Rk if and only if p x , . . . ,pm are Z-linearly independent.

( b ) Each finite subset of Rk+\ ( fc>0) is included in a subring

Rk[E(±pλ)9... 9E(±pm)] of Rk+ι where/?,,... ,/?m are in Ak and Z-linearly

independent.

Proof, (a) is straightforward, and for (b) one uses the fact, implied by

(1.6), that Ak is torsion free, and that therefore every finitely generated

subgroup of Ak is free as an abelian group. D

(1.8) Suppose we have m + n indeterminates Xl9. . . 9Xm9

Xm+λ,. ..,Xm+n. The universal property (1.2) implies that there is a unique

R U {Xl9... ,Xm+n) -fixing E-ήn% isomorphism

R[Xl9...,Xm+n\ — [R[Xl9...,Xm\ )[Xm+\9' >Xm+n\

As in the case of ordinary polynomials we usually identify the two

J^-rings via this isomorphism. In particular an .E-polynomial in m + 1

indeterminates Xl9...9Xm+ι will be considered as an i?-polynomial in

Xm + 1, over the £-ring R[Xl9... 9Xm]E.

(1.9) We callp(X) (Ξ R[X]E

Γof height k9 iίp ER,\Rk_l9k>0

[of height 0, iΐp E Ro = R[X].

Intuitively the height is the maximum number of embedded expo-

nentiations if we express p(X) in terms of the elements of i?, the variable

X and the symbols +, , and E.

If p = p( X) E A k 9 k > 0, w e w r i t e r = Σ f = 1 rιE(aι)9 w h e r e al9... 9ah

are distinct members of ̂ 4^_1\{0}, and rλ9... j h are non-zero elements of

Rk-x\ we put A = t(p).

Also, for^ E Ro = R[X] we put t(p) = 0 iίp = 0, and t{p) = d+ 1

if degx p = d>0.

Now we can define an ordinal ord(p) < ωω forp E R[X]E. Note that

Rk = 7?0 θ 4̂, θ θ ^ ^ (k > 0). So any j^(X) of height < A: can be

written uniquely as

P =Po +P\ + ••* +/>*> Λ E i { 0 ' Λ Ey4 / for/>0.

We put

ord(/?) = cô  /(/ J + +ω

Note that ord(^) = 0 <̂  p = 0.
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We callp0 as above the polynomial part of p.

The ordinal ord(/?) serves similar purposes as the degree for ordinary

polynomials. It will enable us to give proofs by induction on ord(/?), see

(4.1). But note that ord(p) does not put a bound on the "complexity" oίp

(as deg(/?) does for ordinary polynomials), unless ord(/?) < ω.

(1.10) LEMMA. If a nonzero p E R[X]E has zero polynomial part, then

there is q E R[X]E such that oτd(E(q) p) < oτά{p).

Proof. Write p — p0 + +pk as above and assume that the minimal

/ such that p{ φ 0 is positive. Write

Pι = r\ ' E(a\) + *•• +rh ' E(ah)>

Then it is easy to check that oτd(E( — ax) p) < ord(/?). D

REMARK. A crucial but obvious point is that to any ordinary poly-

nomial p over a ring R is associated a finite set C, its set of coefficients,

which has the property that, for any ring morphism φ: R -* S, one has

pφ = 0 if and only if φ(C) C {0}. ̂ -polynomials do not in general have a

finite set of coefficients characterized by this property, but in the next

section we will develop a suitable substitute.

2. Free £-rings.
(2.1) is-rings form an equational class relative to the language

(0,1, + , , —, £ } , so there are free brings.

Let Xl9...9Xm be (distinct) indeterminates as before, but we allow

m = 0.

The free E-ring on Xl9...9Xm9 denoted [Xλ>... ,Xm]E, is an E-ring

containing Xλ9...9Xm as elements such that there is for each E-ring R and

any rl9... 9rm E R exactly one E-ring morphism [X]9... >Xm]E -» R sending

Xttorι9i = l , . . . ,m.

This universal property obviously determines [XX9...9Xm]E up to

(unique) {Xλ9... ,Xm) -fixing isomorphism. In view of §1 it will not surprise

the reader how [Xl9...9Xm]E looks like: its additive group is a direct sum

00

Bo @ Bx θ B2 © * * — φ ^ 5

for each k > 0 we equip Bo® - - ®Bk with a multiplication making it a

ring, denoted [Xl9... ,Xm]k, in such a way that [Xl9... 9Xm]0 =

Z[Xl9. . . 9Xm] (the underlying additive group is called 2?0), and
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[Xl9..\9Xm]k is a subring of [Xλ9...9Xm]k+λ; moreover there is for each
k >: 0 a morphism Ek from the additive group of [Xl9...9Xm]k into the
multiplicative group of[Xl9...9Xm]k+ι.

The precise construction of [Xl9. . . 9Xm]k+l9 BkJrλ, Ek from
[ V . Λ I ^ I V . Λ I H ® ^ and Ek_x (where we put
[Xl9...,XJ.i - {0} and £_,(0) = 1) (fc > 0) is as follows:

[Xl9... ,-XjΛ+1 = [^i,. . ,Xm]k[exp(Bk)] (group ring construction),

where exp is an isomorphism from the additive group Bk onto the
multiplicative group exp(i^). Further, Ek(x) = Ek_x(r) exp(δ) if x =
r + ί , r E [ i 1 , . . . Λ _ 1 μ e ^

Now [^,. . . ,Xm]£ has underlying ring limf^,. . . 9Xm]k =

U ^ J J Γ , , . . . , ^ ] ^ and exponential map £ given by £(.*) = /^(x) if

x E [-ϊj,.. ,9Xm]k.

(2.2) NOTATIONS.

We will write * for (Xλ9... ,Xm), Ffor (Yί9..., 7J, and the Yl9...9Yn

will denote n distinct indeterminates (also distinct from the X's).
Given p = p(X) in [X]E, an £-ring R and r E i?m we write /?(r) for

the image ofp under the Zs-morphism [X]E -* R sending X to r.
A special case deals with the situation that R is an is-ring, r E Rm and

one considers the i?-ringmorphism [X, Y]E -> R[Y]E sending X to r and
fixing Y. In accordance with the notational convention just established we
write p(r9 Ϋ) for the image of p(X, Ϋ) E [X9 Ϋ]E in R[Ϋ]E. The impor-
tance of these morphisms comes from the following lemma and subse-
quent theorem (2.4) with its corollary (2.5).

(2.3) LEMMA. Let R be an E-ring and q(Ϋ) E R[Ϋ]E. Then there is
m7>_OandX=(Xl9...9Xm)9 such that q(Ϋ) = p(r9 Ϋ) for somep(X9 Ϋ)
E[X,Y]E andr<ΞRm.

Proof. If q(Y) E R[Y] = Ro, then this is obvious: f can be taken as
the vector of non-zero coefficients of q, in any order. If q(Y) = p(r9 Y)9

then E(q(Ϋ)) = P(r9Ϋ) where P = E(p(X9Ϋ)). If qx(Ϋ) = ^ ( r , Ϋ\
q2(Y) = P2(s>γ)_wteτe r = ( r 1 , . . . , r m ) , s=_(sl9...9st)9 then q}(Y)jj-
q2(Y) = P(r9s,Y) mih P = px(Xu...9Xm9Y) + p2(Xm+l9...9Xm+t9Y).
Similarly for products. D

(2.4) THEOREM. Let p{X, Ϋ) E[X9 f]
E. There is a positive quantifier

free formula Zp(X) in the language { + , * , — ,0, \9 E) such that for each
E-ringRandr E Rm wehaυe:p(r, Ϋ) = 0 in R[Y] if and only ifR N Zp{r).
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Before we prove this, let us note the following useful consequence:

(2.5) COROLLARY. Given an E-ring R and q E R[Y]E there is a finite

set {cl9...9ct} CR such that for each E-morphism φ from R into an

E-domain D we have: qφ — 0 in D[Y] if and only ifφ(cx) = = φ{ct) =

0.

Proof. Use (2.3) to write q = p(r9 Ϋ) p E [X9 Ϋ]E, f E Rm. Take a

positive quantifier free formula Zp(X) with the property stated in (2.4).

Relative to the theory of E-domains (that is: E-rings with 0 ^ 1 and

without zero divisors) this formula is equivalent to a formula px(X) —

• = pt(X) = 0, where Pi(X) E [X]E, i = 1,... 9t. Take c1 - Pι(r)9...,

ct = pt(r). As qφ = /Kφ(r)> Γ), we have:

)) (by (2.4))

D

(2.6) Proof of {2 A). Let i? denote an £-ring and f an m-tuple in Rm.

We identify the free E-ring [X9Y]E with the ^-polynomial ring

([X]E)[Ϋ]E over [X]^. Let us write Ak(X9 Ϋ)9 R^X, Ϋ) for HhsAk and i?^

arising in the construction of ([X]E)[Y]E from [X]E and 7. (See (1.1).)

Similarly we let Ak(Y)9 R/£Y) stand for the Ak9 Rk arising in the

construction of R[Y]E from i?. A trivial induction gives that for all k:

p(X9 Ϋ) E Rk{X, Ϋ) =*p(r9 Ϋ) E Rk(Ϋ).

Unfortunately we cannot replace Rk by Ak in this implication.

Let E-rings be the theory of U-rings. We shall prove by induction on

Λ: > 0:

(*) Let p E Rk(X, Y). There is a positive open formula Zp(X) with

the property stated in the theorem. Moreover, there are formulas φx —

φx{X\.^.9φt = φt{X)9 and for each j = I9...9t there are pj09 pJX E

Rk(Xy Y) such thatp = pj0 + pjλ, and E-rings V V t

j=ιφ.\ and, whenever

R 1= φj{r\ 1 < j_< t9 R any E-ring, f E Rm, then pJ0(r9 Ϋ) E Rk-x(Ϋ),

pJX(r,Ϋ)EAk(Ϋ).

k^=0: write p_= qQ(X) + qx(X)Ya*_+ +qs(X)Ya'9 where qt(X)

E [X]E and the Ya> are monomials in Y different from 1. Then we can

take for Zp(X) the formula qQ(X) = qλ(X)= = qs(X) = 0. More-

over, one can take t = 1 and for φx{X) the formula 0 = 0, andp l Q = q09

Pw = 9\ * Ϋaχ + * +4s' Ϋad- τ h i s Proves (*) for k = 0.
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Suppose (*) holds for k. (Induction hypothesis.) Let/? E Rk+ι(X9 7),
so/? = qx - E{_P\) + +qsE(ps) where the q's are in Rk(X, Y) and the
Pi's in Ak(X9 Y). We apply the induction hypothesis to each/?z and obtain
open formulas φ.,,... ,φ.,(/), and />l70, /?/yl, in ΛΛ( J , Ϋ) for7 = 1,.. .,*(/)
with the implied property. Take any 2s-ring R and f E i?m. For each
1 = I,...,*? there is y, 1 <j<t{i) such that i? 1= Φ/y(r); whence also
piJ0(r9 Y) E / ^ ^ ( Γ ) , piβ(r9 Ϋ) E ^ ( F ) . For simplicity let us write φ.
for this φI7 and /7/0, pil9 for the corresponding /ιl70, pijλ. So we have
i? 1= φj(r) Λ Λφ^(r). (But note that this is only one of t} - t2 -t
alternative conjunctions.)

Put
s

Q\ =

Px =pn> ->Ps=Ps\

Then, as/?; = /?/0 + /?zl, we have

p = ρ^CΛ) + - +ρ s£(P s), (in

It follows that/?(/\ F) = 0 in R[Y]E if and only if there is a partition
of {1,... ,*?} into subsets / l 5 . . . 9Iμ such that for each λ — 1,... ,μ: /^(r, Γ)
= P/2(r, F) for all il9 i2 E 7λ and Σ / e / λ β^r, F) = 0.

By the induction hypothesis this equivalence can be reformulated as:

p(r9Ϋ) = 0 i n Λ [ f ] ^ Λ N Z ^ . . A ( r ) ,

where ZpΦu Φs is a positive open formula depending only on p and the
alternative φ, Λ φ2 Λ Λφs satisfied by (R, r). A subtle but crucial
point is that the <= direction holds also for those (R, r) which do not
satisfy the conjunction φ, Λ Λφs.

Notice that we obtain in this way tx — ts formulas ZPtφ φ. Now we
let Zp be the disjunction of these tx - — ts formulas Z^ φ] ψ ? and it is easy
to see that

for any £"-ring R and r E Rm.
To prove the second part of (*) for k : = k + 1, we let i?, r be as

before, in particular R 1= φj(r) Λ Λφs(r). Given any subset / of
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{l,...,^} there are, by the induction hypothesis, formulas Φr(X) and
ψF(X) such that

R 1= φr(r) « Pt(r9 Ϋ) = 0 for all ί E /,

ij N ψ7(r) « p.(r, Ϋ)ΦO for all i £ /.

Now it is clear that the disjunction of the tx ts 25 formulas
φj Λ Λφ5 Λ φ7 Λ ψ7 is true in all £-rings, that

where

/̂,o = Σ e, £(^)> Λ,I = Σ a

and that, if (Λ, r) N φ, Λ Λφs Λ φ7 Λ ψ7, then PI0(r, Ϋ) E Rk(Ϋ)9

PiΛ(r,Ϋ)EAk+λ(Ϋ). ' D

Note. The formulas φz are not necessarily positive open, though they
can be taken to be open, and therefore should not be part of the Zp

9s. This
causes some of the complications in the proof.

3. Derivations on /̂ -polynomial rings.
(3.1) Let R again be an i?-ring, X an indeterminate.
We know that the polynomial ring R[X] has a standard derivation:

(ΣQ riXi)r — Σy/ΓyJf1""1. We can extend this derivation uniquely to one on
R[X]E in such a way that E(q)' = q'E(q) (for all q), a reasonable
formula if one thinks of E(q) as eq. In fact, the following lemma is more
general, and takes also into account an interpretation of E(q) as aq with
derivative (log a) qf aq.

(3.2) LEMMA. Given r E R there is exactly one derivation on R[X]E

which is trivial on R and satisfies X' — 1, E(q)' = r qr £"(#) /or α//
ήr E R[X]E. This derivation maps Rk into itself, k>\.

Proof. Suppose we have a derivation ' on Rk satisfying the above, with
q restricted to Rk-X, k>0. (Induction hypothesis, obviously holding for
k — 0.) To extend to a derivation ' on Rk+X satisfying the above for q in
Rk, we have to put

) = Σ(p-+rPiq;)E(qi)9

i = l

where pt E Rk, qtE:Ak, q%φ q} for / φj. Now it is straightforward to
check that this formula does indeed define a derivation o n Λ ^ j .
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As R[X]E = URk, we obtain in this way a derivation on R[X]E,
with the required properties. The uniqueness of ' is clear by a very similar
argument. •

Now we can extend (1.10) as follows.

(3.3) LEMMA. Let r E R and let' be the derivation on R[X]E defined in
the previous lemma. If p E R[X]E is nonzero, then either oτά(E(q) p) <
ord(p) for some q E R[X]E, or ord(/?') < ord(p).

Proof. Let/?0 be the polynomial part of p. The case/?0 = 0 leads to the
first alternative, by (1.10), so suppose/?0 Φ 0. Then t(p'o) < t(p0). More-
over, it is clear from the proof of (3.2) that' maps At into At for / > 0 and
that t(q') < t(q) for q E At. So it follows from the definition of ord that
ord(/?')<ord(/?). D

The following result is crucial in §4. Its proof is based on a suggestion
by Ken Manders and replaces an earlier more complicated proof based on
differential algebra.

(3.4) PROPOSITION. Let R be a domain of characteristic 0, r E i?\{0},
and let' denote the derivation on R[X]E introduced in (3.2). Then the ring of
constants of R[X]E is i?, that is:

pr = 0 **p E ί .

Proof. We first show by induction on k > 0: if p E /?^\{0} and
q E Rj\Rk_x, then pr + rpqr φ 0. For k = 0 one just notices that, as
rqr φ 0, rpq' has higher degree in X than/?', so/?' + rpq' φ 0. Suppose the
statement holds for some k and let/? E 7?£+1\{0}, q E Rk+ι\Rk. We fix
a linear order on the abelian (torsion free) group Ak and write p =
ΣΓ=i */£(&,), ? = Σ; = 1 c y £ ( ^ ) with all fl/, c7 E ΛΛ\{0} and 6f, Jy E Ak

with 6j < < bm9 dλ < - <dn. There are two cases:

(l)dn>0.
(2) dx < 0.
Consider first case (1). Now q'= Σ»=ι(q + rcjd}) E(dj) and

c'n + rcnd
f

n Φ 0 by induction assumption. So rpq' contains a 'highest'
term ram. (c'n + rcnd'n)E(bm + dn) Φ 0 and /?r contains only 'lower'
terms (a[ + rafiDEζb,). Hence p'+ rpq'φ 0. Case (2) is treated in
the same way, looking instead at the lowest term in rpq'. This proves our
assertion.
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Now let/? E R[X]E\R. Sop E Rk+ι\Rk, some fc > - 1 . We have to
show that /?' ^ 0. For k — — 1 this is obvious, and for k > 0, write
/? = Σ ^ , ̂ z E(bi) as before. So either bxφθ oτ bmφ 0. Again, if /?1

φ 0, then αj + raλb\ Φ 0 by the assertion proved above, so p'
— Σ(α + raιb')E(bι) contains a lowest non-zero term (a[ + raλb\)
E(bx), hence/'' φ 0. The case δm φ 0 is treated similarly. D

4. Exponential functions. Recall from (1.5) that R[xl9.. -,xm]E

consists of the ^-polynomial functions Rm -» i?, and that /? =
p{Xλ,... ? ^ m ) H^ j5 = p(X], .. ,xm) assigns to each ^-polynomial its corre-
sponding function.

(4.1) PROPOSITION. Suppose the E-ring R is an integral domain of
characteristic 0, that there is a nonzero r in i?, and that there are derivations
d{9... ,dm on a ring extension of R[xv... ,xm]E which are trivial on R and
satisfy dXXj) - διj9 1 < ij < m9 andd^EU)) = r dt{f) E(f)for allf
in R[x{9... ,xm] andi — 1,... ,m.

Then the map p H»J5: R[Xl9...9Xm]E -» /?[%!,... , x m ] ^ w Λ« isomor-
phism.

Proof. By induction on w. The case m == 0 is trivial. Suppose m > 0
and the statement is true upon replacing mby m — 1. Note that then the
morphism Λ above maps the E-subήngR[XU... 9Xm_ι]

E ofR[Xl9... ,Xm]E

isomoφhically onto theί'-subring.Rtx!,... ,xm~λ]
L oiR[xλ9... 9xm]E

Now use (1.6) and (3.2) to equip R[Xl9...9Xm]E with the derivation D
which is trivial on R[Xl9...,Xm_]]

E and satisfies D(Xm) — 1 and
D(E(p)) = r - D(p) E(p) for all/7 E R[Xl9... 9Xm]E.

A trivial induction on height (p) gives:

Now we prove by induction on oτd(p)9 defined relative to
R[Xl9... ,Xm-λ]

E as ground ί'-ring (see (1.9)), that/? φ 0 =>β φ 0.
Suppose p Φ 0 but p = 0. According to (3.3) either ord(£I(^) p) <

ord(/?), some ^, or ord(Z>(^)) < ord(/?).
In the first case E{q)^p — 1ϊ{q) p — 0 implies by the inductive

assumption that E(q) - p — 0, sop = 0, contradiction.
In the case that ord D(p) < oτd(p) we use (*) and get D(p) =

dm(p) = dm(0) — 0, and again the inductive assumption implies that
D(p) = 0. Now (3.4) implies that this can only happen if p is in the
ground ring, i.e. p E R[Xl9. .9Xm-λ\

E. But thenp = 0, p φ 0 contradicts
the induction assumption on m. D



EXPONENTIAL RINGS 63

(4.2) COROLLARY. The maps p H> p from R[XV... ,Xm]E into
R[xx,...,xm]E and from C[XX,.. .,Xm]E into C[xv.. .,xm]E are isomor-
phisms. Here exponentiation on R can be taken as ax, where a is a fixed
positive real φ 1, and exponentiation on C as erx, r a fixed complex number
ΦO.

Proof. The hypothesis of the proposition is obviously satisfied by
taking dl9...9dmas the partial derivatives d/dxl9..., d/dxm (and r — log α
for R).

(4.3) Dahn and Wolter drew my attention to the fact that it is a
formal consequence of the axioms for ordered fields and the inequality
ex > 1 + x that the exponential map ex on R satisfies the differential
equation y' — y. Elaborating this a bit we get a real-algebraic version of
the first part of (4.2):

(4.4) PROPOSITION. Suppose R is an ordered E-field and its exponential
map E satisfies E(x) > 1 + rx for a fixed nonzero r E R and all x E R.
Then the map p H>p from R[XX9... ,Xm]E into R[xl9... 9xm]E is an isomor-
phism.

(4.5) Before proving this, let us state some general facts on functions
defined on ordered fields. Given an ordered field F and a function /:
F -» i 7 we call/differentiate at a E F with derivative b E F'ύ

holds in F. In that case b is unique and we write f\a) = b. We have the
usual rules: if/, g are differentiable at α, so are / + g, cf (c E F), and
fg9 with (f+gY(a)=f'(a) + g'(a)9 (cf)'(a) = c fϊa), (fg)'(a) =
f'(a)'g(a)+f(a)'g'(a). If / is differentiable at a and g is differen-
tiable at/(#), then g ° /is differentiable at a and

(g°f)'(a) = g'(f(a)) f'(a).

Of course we can now also define partial differentiability w.r.t. xi at a
point a E Fm for functions /: Fm -> i% and we write df(a)/dxi for this
partial derivative.

Suppose now that E is an exponential operation on F satisfying
E(x) > 1 + rx ΐor a fixed r E F and all x E F. Then it is easy to derive
that E is differentiable at 0 and E\Q) = r. (Use £(-/*) = E(h)~l > 1 -
r/z to get 1 +rh<E(h) <(1 - rΛ)'1 for small |Λ|.) The morphism
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property of E then gives that E is differentiable everywhere and Er — rE.

It follows that F[xl9... 9xm]E is closed under 9/3x l 9 . . . ,d/dxm and that

the hypothesis of (4.1) holds for R — (F, E) and dι — 3/3xz, / = 1,... ,m.

(4.4) follows.

(4.6) REMARK. From a logician's point of view the theorems above

have the following interpretation (for R satisfying the hypothesis of (4.1)):

each identity in the language of E-rings augmented by constants from R

which holds in R is derivable from the theory of E-rings augmented by

Diagram+(Λ).

(4.7) In the remainder of this section F is an ordered E-field whose

exponential map satisfies

£ ( * ) > 1 +x, allx EF{e.g.{R,ex)).

We are interested in the roots of JS'-polynomials p{ X) in one variable

X over F. By (4.4) it is harmless to identify such a p(X) with the function

p it defines, and we shall do so. Let us call a in F a root of multiplicity n

{n>Q)oίp{X)iί

We shall prove that each root of a nonzero ^-polynomial/?(X) has a

multiplicity. This may seem somewhat surprising as the usual proof for

(R, ex) does not work for general F: for the reals one notes thatp ( ι \a) = 0

for all i means that the Taylor series for p at a has all coefficients 0,

whence, by analytic continuation, p vanishes on R, i.e. p — 0.

The following lemma leads to another proof.

(4.8) LEMMA. Given a nonzerop(X) in F[X]E there is a finite sequence

P = Λ)> P\> ->PMin F[X]Esuch that:

(a) pM — cE(q) for some nonzero c E F and some q in F[ X]E,

(b) for each i < M we have pi+ι = (E(qi) - pty for some qt in F[X]E,

and ord(/?/+1) < ord(/?z). Moreover, given such a sequence we have for each

i < M:

(c) pi — aiOp + α, xp
(l) + •••+<*, z /? ( z ) for certain ai j in F[X]E and

% E

Proof. There certainly is a sequence p — p0, pλ,... ,pN with pN = 0

and property (b) for / < TV: just apply (3.3) and the fact that ωω is well

ordered. Now 0 — pN = (E(q) •/?ΛΓ_1)' for some q, so E(q) - pN-λ is a

nonzero constant c E F. (It can't be 0, as ord(^Λ^_1) > oτd(pN) = 0.)

HencepN_ λ — c E( — q). Now take M — N — 1 to realize (a).
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(c) is proved by induction on /. The case / = 0 being trivial we assume

that / < M and (c) holds. Then pi+λ is the derivative of E(qt) (otl0p +
ai \P{X) + *••+«/ iP(ι)) which is a linear combination α m Qp + α l + 1 {p

(l)

+ ••• + α ; + 1 , / + 1 / ' + 1 ) where o / + 1 , / + 1 - E{q,) • au = E(q,'+ #,,). ' D

(4.9) COROLLARY. Each root in F of a nonzero E-polynomial p(X) over

F has a multiplicity < M, where M is as in (4.8).

Proof. (4.8) part (c) applied to / = M gives: if p(a) = p(l\a) = =

p(M\a) = 0, thenpM(a) = 0; butpM has no zeros, by (a). D

(4.10) REMARK. A similar argument, involving also part (c) of (4.8),

gives in fact that a root a of p( X) has multiplicity n < M if and only if

Pi(a) = 0 for i < n, pn(a) ¥= 0. (Here p(X) and the sequence p09... 9pM

are as described in (4.8).) So the/?/s serve as a kind of derivatives of p.

(4.11) COROLLARY. Suppose F has the extra property that each E-poly-

nomial over F has a maximum value on each segment [a, b]. Then each

nonzero E-polynomial p(X) over F has at most M roots in F, counted with

their multiplicity, where M is as in (4.8).

Proof. The hypothesis implies that Rolle's theorem holds for £'-poly-

nomials over F. That is, wheneverp(a) = p(b) = 0, a < b, there is c with

a < c < b and p\c) = 0: just take c where p is maximal or minimal on

{a, b).
Now let p{X) be nonzero and take a sequence p0, pl9... ,pM as in

(4.8). We assume as an inductive hypothesis that the result is true for all

q(X) with ord(#) < ord(/?). This means that pλ = (E(q0) p)' has at

most M — 1 zeros (assuming M > 0; the case M — 0 is trivial). Hence

by Rolle's theorem and a simple counting argument the ^-polynomial

E(q0) p, and therefore/? itself, has at most M zeros. D

(4.12) Let us mention another result in this area which can be proved

by the same induction method.

(*) For each nonzero E-polynomialp(X) over (R, ex), all α , J E R with

a < b and each ordered E-extension field F of (R, ex) we have: all roots of

p(X) in F between a and b are in R.

Another version of this is:

(**) Let ExpR be the theory Diag(R, ex) U theory of ordered E-fields

U{VxE(x) >: 1 + x). Then ExpR proves every true statement of the form:

"p(X) has exactly k roots in [a, bf (p(X) E R[X]E, a, b E R).
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(*) follows easily by induction on ord(/?). An analysis of the proof

shows that (*), and therefore (**), remain true if the ordered E-field

(R, ex) is replaced by any ordered £-field with E(x) > 1 + x for all x9

and satisfying Rolle's theorem and the intermediate value theorem for

^-polynomials.

(4.13) An important problem seems to me whether in statement (*)

above the restriction to roots between given reals α, b can be omitted,

while at the same time restricting the extensions F to those which satisfy a

decent set of 1st order axioms.

This problem is related to, what Macintyre calls, the 'last root5

problem for real is-polynomials: consider non-zero real E-polynomials of

"bounded complexity" (so in particular the number of real roots is bounded,

by (4.11)). Is there an intelligible function of the (finitely many) real

parameters on which the E-polynomial depends, which bounds the absolute

value of its real roots!

A positive answer to this question should remove one of the main

obstacles in obtaining a satisfactory analysis of the elementary theory of

(R, ex).
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