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IMBEDDING PUNCTURED LENS SPACES AND
CONNECTED SUMS

DANIEL RUBERMAN

We investigate codimension-one imbeddings of punctured lens spaces
and connected sums of lens spaces. For |iT\(L) | a prime power we show
that L — B2k~] imbeds in S2k if and only if L is of a certain special
form. If L # L' imbeds in S2k, then L ^ L' and L is homology cobor-
dant to ZΛ For |τΓ](L)| a prime power, this implies (via Smith-theory)
that L = ZΛ

Introduction. When does a manifold imbed with codimension one in
Euclidean space? We investigate this question for lens spaces and mani-
folds made from lens spaces. It is not hard to show that L2k~λ never
imbeds in S2k — see the remark after Theorem 6. However, the following
two questions are more subtle and are the focus of this paper.

Problem A. Which punctured lens spaces LQ(= L — B2k~λ) imbed in
S2kΊ

Problem B. If Lo and L'o both imbed in S2k, does L # L'Ί

Problem A is settled in the classical three-dimensional case: by
Zeeman's twist-spinning construction and the work of Epstein [5] a
punctured lens space L0(m; q, 1) imbeds in S4 if and only if m is odd.
Problem B was treated in the classical case by Livingston and Gilmer [8]
so the discussion below is limited to k > 2.

The first obstruction to codimension-one imbedding that one might
look for is the tangent bundle. For if Lo imbeds in S2k, r(L) is stably
trivial. Ewing et al. [6] examine the question of when a lens space with
I TΓ^L) I a prime is stably parallelizable and give one simple class of lens
spaces that are (Proposition 2.1 of [6]). These all actually imbed punc-
tured; in fact a considerably larger class (which we refer to as the class 3)
of lens spaces all imbed — see Theorem 5. For ITΓ^L) | = a prime power,
we show in Theorem 9 that Lo imbeds in S2k if and only if L E ί, and
conjecture that this holds in general, i.e.:

Conjecture A. Lo imbeds in S2k if and only if L E 1
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As for problem B, note the following elementary fact. If Lo imbeds in
S2k, then it has trivial normal bundle so L # — L = d(L0X I) imbeds in
S2k. We will see that if L # - U imbeds in S2k, then L^U (preserving
orientation). The most optimistic guess as to the answer to problem B is:

Conjecture BΛiL# - L' imbeds in S2k then L = ZΛ

Again this conjecture holds if | π, | is a prime power. When it is not a
prime power, life becomes more interesting. We do not show that L^U
but find a relationship between various α-invariants of the lens spaces.
This relationship is most conveniently stated in terms of the invariants
defined by Casson and Gordon [2] to study knot concordance. We will use
the invariants σ(M, ψ) as defined in §1 of [7] and refer the reader to that
paper for notation and definitions.

The material in this paper is part of my thesis. I would like to thank
my advisor, Rob Kirby, for his help and direction. Conversations with Pat
Gilmer and David Schorow were very helpful; I would like to thank them
for their encouragement.

Lens spaces. Let m be an integer and qx qk integers with (m, qt) =
1. The cyclic group Z m acts on Ck: if TEZm is the generator and
ω = e2wi/m

9 then T(zx zk) = (ωq*zu.. .,ωqkzk). This restricts to a free

action on S2k~~λ; the quotient is denoted L(m; qx qk). There is a
preferred orientation of L (coming from S2k~ι) which we fix, and a
preferred generator, denoted g, of 7r 1 (L)=Z w corresponding to the
covering translation T. For each qJ9 choose an integer η with ηqj = 1
(mod m).

As is well known the classifying space BZm ^ K(Zm91) can be
considered as an infinite lens space L(m; 1,1,1,...) and we will always
think of it this way. As such, it too has a canonical generator g for πx. The
following is known [4] and summarizes the homology and cohomology
structure of the lens spaces. For/? an integer, let

be the Bockstein coboundary corresponding to the coefficient sequence

o->τp^zpl^zp-* o.
P R O P O S I T I O N 1. Let L = L(m; qλ qk). Then

z y = o , 2 * - i ,

m jodd<2k-\,

0 j even.
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Ifp is a prime dividing m, then HJ(L; Zp) s Zp (allj <2k — 1). Further,
any generator a of H\L; Zp) has the property that {va)j generates
H2J(L; Zp\ and a {va)j generates H2j+\L\ Zp). The corresponding
statements are true for BZmif k = oo.

Cohen [3] constructs an explicit cell decomposition for any L(m;
qx q2) which works for BZm as well. Call the generator of H2j_x(L)
arising from this cell-decomposition e2j-\\ likewise e2j-\ *s ^ e generator
of H2j_λ (BZm). Note that with these conventions g = qλeλ and g = ex

where g and g are the generators mentioned above. Since Hom(Hx(L);
Zd) = [L9 BZdl φ*: H*(L) -> H*(BZd) depends only on φ: HX(L) ->
Hx(BZd) = Zd. Cohen ([3] §29) constructs explicit maps realising any
homomorphism φ: HX(L) -> Z w ; a similar construction works for any a
dividing m. It is an easy matter to calculate φ*: H*(L) -> H*(BZd) using
these representatives. (Compare [3] theorem 29.4.)

PROPOSITION 2. Suppose the character φ: H*{L) -> Zd (m = d - n) is

given by φ(g) = r. Then Φ*(e2;_i) = {nr)jrx r / 2 y - i

Similarly, one can calculate the effect on homology of a map /:
L-»L.

PROPOSITION 3. ///: L-* L is a map with /*(g) = rg, then f*{e2j-x)
= rJe2j_x, and the degree of f is rk (mod m).

Some of the examples presented below involve (4 k — 1) dimensional
lens spaces L(m; qx, ..,q2kY> f°Γ Λ e s e w e n e e ^ to compute the linking
form λ: H2k_x(L) X H2k_x(L) -> Q/Z. This computation dates back to
deRham [10]. In terms of the generator e, the answer is given by:

PROPOSITION 4. λ(e9 e) = qx - ^ r Λ + 1 rlk/m (q^ = 1 (m)). Λ w
convenient to set / = ^ + 1 # 2 A^ Λe/i λ(/, /) = qx #2A:/m ~ ί/m

(q — qx '' q2k)>> which is what one might expect by analogy with classical
lens spaces.

Imbedding punctured lens spaces. We now present the class 5 of lens
spaces which imbed punctured with codimension one in the sphere.

Let ( * k) be the condition: ck = 1 (m) but cj — 1 is a unit mod m for
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THEOREM 5. (a) Suppose c satisfies the condition ( * k). Then
L{m\ 1, c,... ,c*~1) imbeds punctured in S2k (k >: 2). (b) // b is any unit
mod m, and c satisfies ( * lk) then L0(m; 1, c,... ,c*"~\ 6, 6c,... ,bck~ι)
imbeds in S4k(k> 1).

/. (a) Cohen ([3], §31) constructs a diffeomorphism/: L -> L with
/•(&) = <£. ( τ h e P ° i n t i s t h a t c - ί U ^ . / ' ^ E f l ^ , . . . / - 1 } . )
Consider the mapping torus Sι XfL0; by construction / has degree 1 we
can assume it to be the identity on the top cell, so d(Sι X,L0) = Sx X
S2k~2.

Claim. Sι XfL0 UdD
2 X S2k~2 ^ S2k.

Proof of Claim. irx(Sι XfL0) is a standard HNN construction and is
given by (t9 g\tgt~ι = gc, gm = 1). Adding on the Z>2 kills t, so π,
becomes (gig0""1 = 1, gm = 1). Since c — 1 is a unit mod m, TΓ, is trivial.
The Wang sequence for 5 1 X/ Lo is

Hj^{Sι XfL0) - Hj(L0)
f^1 Hj(L0) - JS^S1 X,L0) - .

but /„,: HjL0 -» iϊy I/o ̂ s multiplication by cy so the assumption on c says
that/* — 1 is an isomorphism. This together with the computation that πx

is trivial proves the claim.
Now Lo is imbedded in a smooth homotopy sphere which is therefore

homeomorphic to S2k. Connect summing with another (possibly fake)
homotopy sphere away from a copy of Lo gives an imbedding of Lo in the
real S2k.

The proof of (b) is the same once one notes that c satisfies ( * lk) => ck

ΞΞ - 1 (mod m). For (ck + l)(ck - 1) = c2k - 1 = O(m) and ck - 1 is a
unit by assumption. Thus

c {l,c c M , i , f c ίc*"1}

Since there are an even number of minus signs, there is indeed an
orientation preserving diffeomorphism of L inducing g -» eg on TΓ,.

In either case (a) or (b), we say that L 6 i As we remarked earlier,
the theorem is true for classical lens spaces as well. In fact, the imbedding
provided by part (b) (choose c = — 1) which a priori lies in a homotopy
4-sphere is the same as the imbedding in the real sphere given by
twist-spinning a rational knot. Note that — 1 satisfies ( * 4 ) if and only if
m is odd.
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There are many stably parallelizable lens spaces other than those in ί
see [6]. It is tempting to believe that none of these others imbed, i.e. that
conjecture A holds. This conjecture is true whenever m is a prime power as
will be shown below in Theorem 9.

Obstructions to imbedding. The same theorem underlies our attack on
both problems A and B. Let M — L(m; qx>... 9qk) # — L\m'\ q{,... ,q'k).

For p a prime write Hj(X)(p) for those elements of Hj(X) annihilated by
a power of p (i.e. the /?-torsion of Hj( X)).

THEOREM 6. Suppose M imbeds in S2k with S2k - M = W U W.
Then W (and W) is a homology cobordism between Lo and L'o.

Proof. We establish a series of assertions. Note first that H*(W) and
) are both torsion as are H*(W) and H*(W).

Claim 1. For all primes/? dividing m,

Hι(W;Zp)φ0 and HX{W\ Zp) Φ 0.

Proof. It, say, # ! ( Ϊ F ; Z,) = 0, then Hx{W'\p) = 0. But then /*:
Hx(M)(p)^Hx(W){p) by the Mayer-Vietoris sequence. So any character
on M of order a power oίp is nuU-bordant, since such a character extends
over W. Write m—pns where (5, /?) = 1, and consider the character on M
given by ψ(g) = 1, ψ(g') = 0 where g, g' generate HX(LO) and HX{L'Q).

Now (Λf, ψ) = (L, ψ) — (Z/, ψ') in the bordism group Ω2A:_1(Z/?n).
By assumption L' — int B2k~x is imbedded in S2k; its boundary is a slice
knot, so Z/ imbeds in B2k+X and hence in S2k+ι. By a standard transver-
sality argument, U bounds some oriented 2fc-manifold V. Since the map
ψ' is trivial it extends over Fand so (Z/, ψ') = 0 in Ω2A:_1(Z/7«). It follows
that (L, ψ) = 0 as well and hence that ψ*(e2A:_1) = 0 in H2k_x(BZpn).
But by Proposition 2, ψ*(e2£_j) = ̂ ΛΓj rke2k-x which is non-trivial
since (s, p) — (ri9 p) = 1.

2. If/? divides m or m\ then Zί^ϊF; Z.) = Z_, and

is an injection. The same is true for W.
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Proof. Suppose p divides m. HX{M) is a direct sum of two cyclic
ίp or Zp + Zp. The Zpgroups, so H\M; Z ) = Z or Z + Z . The Z Mayer-Vietoris sequence

reads:

H\W\Zp) w
0-> + -> HX{M; Zp)^0

H\W\ Zp)

so that i* and /'* are both injections. Since neither Hλ(W\ Zp) nor
H\W'\ Zp) is zero, they must both be Zp.

Claim 3. At least one of the maps H\W\ Zp) -+H\L0; Zp) or
-» Hλ(L'0\ Zp) is an isomoφhism, and likewise for W.

Proof. All of the groups in question are Zp9 and a homomor-
phism Zp -> Zp is either zero or an isomorphism. If both are zero then
/*: H\W\ Zp) -» H\M\ Zp) is zero, contradicting claim 2.

C/α/m 4. If /*: /^(W; Zp) -> ̂ ! ( L 0 ; Z^) is an isomoφhism, then /*:
; Z^) -> ̂ ( L o ; Z^) is onto for ally.

Choose α E #'(W; Z ) such that i*(a) generates H\L0\ Zp).
Then i*((va)J) generates H2J(L0; Zp) and i*(a(va)J) generates
H2J+ι(L0; Zp) by Proposition 1 and the naturality of the cup-product
and Bockstein.

Claim 4 finishes the theorem, for it shows that \HJ(W; Zp)\>p and
similarly that | HJ( W'\ Zp)\>:p. Now the Mayer-Vietoris sequence

nJ(W; Zp)
0 - + ->

Hj(W';Zp)

shows that E\W\ Zp) = Zp. Therefore i*: H\W\ Zp) -> HJ(L0; Zp) is
an isomoφhism for all j \ and so H*(W, Lo: Zp) = 0, or equivalently,
^ ( J F , L 0 ) ( p ) = 0. By duality (see [9]) W(W, L'0)ip) = H2k_j(W, L0)(p)

= 0 and hence H*(W, L'0){p) = 0. Repeating this argument for each p
dividing m, and possibly interchanging the roles of Lo and L'Q shows that
for all primes, H*{W, L0\p) = 0. Since HJ,W, Lo) is torsion, H*(W9 Lo)
is zero. Hence (W, Lo, L'o) is a homology bordism; the same argument
shows that (W\ Lo, L'o) is also a homology bordism.

REMARK. One can "cap off W (or W) by adding a (2A: - l)-handle
to W along the separating (2 k — 2)-sphere in L # — L' to obtain homol-
ogy bordisms between L and ZΛ This justifies the statement made in the
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introduction that L never imbeds in S2k. For L = L # S2k~ι; if L C S2k,
we have the absurdity that L is homology bordant to S2k~\ This can also
be shown directly using the method of Theorem 6.

COROLLARY 7. If L# — U imbeds in Slk then L — U (preserving
orientation).

Proof. We have a homology bordism (F, L, U) by the preceding
remark. By obstruction theory there is a retraction r: V -+ Z/, set / = r \ L.
Then / is orientation preserving and is an isomoφhism on homology and
hence is a homotopy equivalence.

LEMMA 8. A ZpΓ-cover of a homology bordism (F, N, N') is a rational
homology bordism.

Proof. If X -> X is a Z r̂-cover of the finite complex X, then Gilmer
proves (1.3 of [7]) that βj(X) - β^X) < (pr - l)βj(X; Zp) using Smith
theory. The entire discussion goes through for pairs (X, Y) such that the
induced cover of the subcomplex Y is connected, and one obtains
βj(X, Ϋ) - βj(X, Y) < (pr - l)βj(X9 Y; Zp). In our case, j8,(K, N) =
βj{V, N; Zp) = 0, so we obtain βj(V, N) = 0. In other words, (F, N9 N')
is a β-homology bordism.

Lemma 8 implies that for characters of prime-power order extending
over a homology bordism the Casson-Gordon invariants of the ends are
equal. Equivalently, the corresponding α-invariants of the covers are
equal. This principle is the key to our best result on problem A.

THEOREM 9. Suppose L0(pr; q{ qk) imbeds in S2k.
(a) //k is odd then for some c satisfying ( * k) L s L(pr; 1, c,..., c*~ !).
(b) If k is even, say k — In, then for some unit b and some c satisfying

( * k), L ss L(pr; 1, c9.. .,c"-\ b9 be,... ,bcn~λ).

Proof. It is not hard to see that the theorem will follow in both cases
if we find c such that c [qλ - qk) = { ±qλ ±qk], and (cJ — 1, p) =
l(j<k).

Set W = S2k - Lo X (0,1) = one component of S2k - (L # - L).
By Theorem 6 WΊs a homology bordism between Lo and Lo; "cap it off
as in Corollary 7 to obtain a bordism V between L and L. As noted in
Corollary 7, there is a homotopy equivalence /: L -> L obtained by
retracting Fonto one end. Determine c by/*(g) = c g.
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Now 9L0 is a knot in S2k and its exterior is a homology circle which is
made up of W and Lo X /.

The Mayer-Vietoris sequence for the complement as the union of these
two pieces reduces totwo pieces reduces to

0 -> Hj(L0)
fΰlHj(L0) -» 0 for/>0,

exactly as in the Wang sequence for a fibered knot. Since /* is multiplica-
tion by cj in dimensions 2j— 1, we obtain (cJ: — 1, p) — 1.

By Lemma 8, the Z r̂-cover of V is a rational homology bordism from
Slk~λ to itself. Hence Vί e Z y the /-signatures of S2k, given by the
restriction of the action of Zpr on V to either end must agree. In other
words sign(ί, S2*"1) = sign(/c, S2k~λ) V/ e Zpr. The argument of Atiyah
and Bott ([1] Theorem 7.27) now shows that {cqx cqk] — {±qλ

REMARKS. (1) The same argument will apply even if m is not a prime
power if Lo is assumed to be the fiber of a fibered knot. For then V is
actually an Λ-cobordism and one obtains the equality between the α-in-
variants without the Smith-Theory argument.

(2) An example of a stably-parallelizable lens space that does not
imbed punctured is L(p\ 1,..., 1) (p Γs) ΐorp prime.

If k is even then L0(m; qx qk) C S2k implies that the linking form
on L # — L is hyperbolic (see Theorem 10) and so by the argument in [8],
p. 8 m must be odd. A nice corollary of the method in Theorem 9 is that
m must be odd, even when k is odd. For in the proof of Theorem 9 we
noted that there is an integer c with (cJ — 1, m) = 1 for 0 <j < k — 1.
Suppose m is even; then since/is invertible c must be odd. But then c — \
is even so (c — 1, m) φ 1.

Imbedding connected sums. Theorem 6 and Lemma 8 combine in a
similar way to solve Problem B in the case that m is a prime power. For if
L # — L' imbeds in S2k, then we have a homology bordism between L
and U and so all the α-invariants associated to prime-power covers are the
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same. If m = p\ these are all the α-invariants, and so the Atiyah-Bott
result shows that L s ZΛ If m is not a prime-power, then we cannot
conclude that L = Z/ because the prime-power α-invariants alone do not
determine L — compare [8].

In general there is an ambiguity in exactly which α-invariants are
equal. However for 4k — 1 dimensional lens spaces there is an interaction
with the linking form that narrows the possibilities considerably. As usual

we write M — L(m; #i,...,<72*)# ~ L(m\ qr\,*..,qik)- I* ^s m o r e c o n ~
venient to state the result in terms of the Casson-Gordon invariants of L
rather than the /-signatures of L; it can be translated if one desires. If d\ m
let \p be the homomorphism from HX(L) to TLd that gives 1 on g and define
ψ' similarly on Hλ(U).

THEOREM 10. Suppose M imbeds in S4k. Let p be a prime such that
pr\m, pr+1 {m. Then for all s, there exist numbers a and t such that:

(i) a2q = q' (mod pr)
(ii) askq[ q'kqk+λ '• q2k

 + *% ''' <lk<lk+\ '"^ik^0 ( m ° d Pr)

Proof. Let W and W be the components of S4k — M, and set
G = ker/^: Hlk_x{M) -» H2k_λ{W) and define G' likewise. Since W^and
W are homology bordisms, G = G' = Z m , and we can write H2k_ι(M) =
G + <?'. Further, the linking form λ must vanish on G and G\ by a
standard argument. With respect to the basis /, / ' for H2k_x(M), λ is
given by the matrix

q/p 0
0 -q'/p

Let x and y generate the summands G and G\ and write x = α/ + β/'
and j — yf+ δf with aδ — βγ = unit (mod m).

We have 0 = λ(x, JC) = (l/m)(qa2 - q'β2) (modZ) and 0 =
(l/m)(qy2 - q'δ2\ or ήτα2 = q'β2 (mod m) and ήrγ2 = qfδ2 (mod m).
Since aδ — βy is a unit mod m,a, β, γ, and δ can be assumed to be units
as well. For qa2 = ςr'β2 +ym so if, say, β and m have a common factor, α
and m have the same common factor. But this would contradict (aδ —
βγ, m) — 1. So we may as well assume β — δ — 1; then x — af + f and
y — yf + / ' where a and γ are roots of qz2 — qr = 0 (mod m).

Because JF is a homology cobordism, for each s there is a ί such that
the homomorphism Ψ: //,(M) -> Z r̂ given by Ψ = 5ψ + ίψ' extends over
//^(fF). For such a homomorphism, the induced map Ψ#: H*(M) ->
H*(BZpr) has ^^(G) = 0. Moreover, one can use Wto calculate σ(Λf, Ψ)
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and it follows from Lemma 8 that σ( Af, Ψ) = 0. Proposition 2 calculates
Ψ* = (sψ)* + (ίψ')*; evaluating on x — af + f gives (ii) after simplifi-
cation. Finally, σ(M, Ψ) = σ(L, s\p) - σ(L', tψ') so σ(L, ψ) = σ(L', ίψ')

The conclusion of Theorem 10 looks pretty messy but it simplifies
somewhat for the class ί of lens spaces which we know imbed punctured.
For these, Theorem 10 yields:

COROLLARY 11. Suppose a and c satisfy ( * 2k). If

L(m;l9a9...9a
k'\b9ba9...9bak'ι)#

-L{m; \,c,...,ck-\d,dc,...,dck~x)

imbeds in S4k, then for a prime p with pr \ m but pr+ ] \m,we have: For all s,
there exist numbers a and t such that

(i) a2bk ΞΞ dk (mod pr)
(ή)sk + atk=0(modpr)

Proof. Just write everything in terms of a, b, c and d: The condition
on s, t9 and a is a2ak(^k'l) bk = ck{2k'λ)dk

9 and

0 = askck{k-\)/2fokak{k-\)/2 _|_ tkak(k-\)/2 . ^kck(k

Since α and c both satisfy ( * 2*)> 0 = α2/c — 1 = (α^ — l)(α^ + 1) implies
that ak = — 1 and likewise that ck = —1. Substituting this into the first
equality gives (i). The second simplifies as well once we note that a and c
are both units, and so the result follows.

To see how this works in a particular case, here is an example,
calculated by computer.

EXAMPLE. Let m = 222 = 13 17, d = 13 and k = 2. Then

L(221; 1,21,1,21) # -L(221; 1,47,1,47)

does not imbed in S% although each summand imbeds punctured.

Proof. a = 2\ and c = 47 clearly satisfy the condition ( * 4 ) , so both
summand imbed punctured. The solutions of z2 = 1 (mod 13) are α = ± 1,
and the solutions of z2 = — 1 (mod 13) are / = ±5, so the corollary says
(for s= 1) that σ(L, ψ) = σ(L', ±ψ') or σ(Z/, ±5ψO But by computer
calculation, σ(L, ψ) = 212,245/221 whereas σ(L', ±5ψO = σ(L, ±ψ') =
63,733/221. Hence M does not imbed in S*.
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The original motivation for this investigation was its relation to
double null-concordance of even-dimensional knots. There are two knots
K and Kf arising from 3L0 and dL'o as sitting in Ss. The methods of [11]
can be used to show that K # — Kf is a knot which is algebraically but
not geometrically doubly slice.

Note added in proof. The author and S. Cappell (to appear) have
investigated the questions raised in this paper more fully for \πλL\
divisible by more than one prime. We have necessary and sufficient
conditions for punctured imbeddings and imbeddings of connected sums.
Our results extend as well to non-linear lens spaces.
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