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PRIME DIVISORS, ANALYTIC SPREAD
AND FILTRATIONS

J. S. OKON

We show that a Noetherian ring R is locally quasi-unmixed if and
only if for every prime ideal P € A*(I), ht(P) = /(IR ). The analytic
spread of an e.pf., /(f) is also defined and many of the known results
for the integral closures of powers of an ideal are proven for the weak
integral closures of the ideals in a strong e.p.f. Several characterizations
are given of when a Noetherian ring R is locally quasi-unmixed in terms
of analytic spreads and integral closure of ideals. Several applications of
these equivalences are given by showing when certain prime ideals are in

A*(f).

1. Introduction. Throughout this paper all rings will be assumed to
be commutative with 1.

We will show some relationships between the analytic spread of an
ideal and its prime divisors. The influence of these relationships on the
behavior of A*(I) (see (2.2.3) for the definition) is also studied. In (2.6) it
is shown that if f= {I,} is an essentially powers filtration (e.p.f., see
(2.1.2)), in a Noetherian ring, then for a fixed m’, I(1,,) = I( f) (for all
n = 1). (See (2.1.6) for the definition of /.) Our main Theorem (2.8), shows
that a Noetherian ring R is locally quasi-unmixed if and only if for each
ideal I in R, P € A*(I) implies ht(P) = I(IR p)- This is extended in (2.9)
to e.p.f.’s. In (2.10)—(2.15), several equivalences are given to a Noetherian
ring being locally quasi-unmixed; these are in terms of analytic spreads
and integral closures of ideals. Several applications of these equivalences
are given in (2.16)—(2.20) by showing certain prime ideals are in A*( f).

2. Analytic spreads. We now give the definitions of the basic terms
used in this paper.

(2.1) DErFINITION. Let R be a ring.

(2.1.1) A decreasing sequence of ideals f = {I,},-, 1s said to be a
filtrationin case I, = R and forallmandn, LI, C 1, .

(2.1.2) (cf.) [1, Definition 2.14]. A filtration f = {I,} is said to be an
essentially powers of an ideal filtration (e.p.f.) in case there exists k > 0
such that I, = 3¢ 1 _,I,, foralln =1, where I, = Rif i < 0.
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(2.1.3) Let I be an ideal in R. Then the Rees ring of R with respect to
I, R(R, I), is the ring R (R, I') = R[u, tI] where ¢ is an indeterminant
and u = 1/t. If f = {1} is a filtration, then the generalized Rees ring of R
with respect to f, R(R, f), is the ring R(R, f) = Rlu, tI,, *1,,...] (¢, u,
as above).

(2.1.4) The integral closure of an ideal I in R is {x € R|x" + b;x" !
+ - +bx""'+ ---+b, =0, where b, € I'}. This set will be denoted
by I,.

(2.1.5) The weak integral closure of an ideal I, in a filtration f = {1, }
is {x ER|x"+bx""'+---+bx""'+---+b, =0, where b, € [, }.
This set will be denoted by (1,),.

(2.1.6) Let I be an ideal in R. Then the analytic spread of I, denoted
I(1), is defined as follows:

(1) = max{alt(R (R, I)/ (u, M)R (R, I));

M is a maximal ideal in R}.

(2.1.7) Let F = {I,,} be an e.p.f. in R. Then the analytic spread of f,
denoted /( f), is defined to be:

I(f) = max{alt(R (R, f)/ (u, M)R(R, f));

where M is a maximal ideal in R}.

(2.1.8) If I is an ideal in R, then V() denotes the smallest number of
elements that generate /.

(2.1.9) A local ring R is said to be quasi-unmixed in case, for every
minimal prime ideal z in the completion R* of R, depth(z) = alt(R). A
Notherian ring R is said to be locally quasi-unmixed in case, for each prime
ideal P in R, R, is quasi-unmixed.

(2.1.10) An ideal I in R is said to be of the principal class in case
V(I)=ht(I).

(2.1.11) An ideal 7 is said to be integrally dependent on an ideal B in
case, B C I C B,. An ideal [ is said to be weakly integrally dependent on
an ideal B, in a filtration f = {B,} in case, B, C I C (B,),

(2.2) ReMARK. We will now state a few results on filtrations.
Throughout, R is a ring and f = {1} is a filtration in R. The proofs are
given in the cited references.

(2.2.1) [1, Proposition 2.18 and Theorem 2.20] and [10, (2.4.3)]. If R is
Noetherian, then f is an e.p.f. if and only if there exist an integer m > 0

such that forallj =m, 1, = I1I,.



ANALYTIC SPREAD AND FILTRATIONS 453

(2.2.2) [6, Corollary (2.8)]. Let R be Noetherian. Fix k> 0. If f
satisfies the condition:

(*) For all integers m=m’ and j >m’, I, ;= I,1;, then the sets
B,(n) = Ass(1,/1,. ) are equal for all large n.

(2.2.3) [6, Corollary (2.8), Proposition (2.14) and Proposition (3.7)]
and [2, Corollary 5]. If f is a strong e.p.f. (in particular if f is powers of an
ideal) in a Noetherian ring R, then the sets A(n) = (Ass(R/1L,),) (=
Ass(R/(1,),) for powers of an ideal) and A(n) = Ass(R/I,) are constant
for all large n. We denote the constant values by A*(f) and A*(f)
respectively. If f = {I"} then we will denote the sets by A*(I) and A*(I)
respectively.

(2.2.4) [, Corollary (3.9)]. Let R be a Noetherian ring and let f = {1,,}
be a strong e.p.f. Then for all n = 1, /i*(Inm,) = A*(f).

(2.3) REMARK. Let R be a Noetherian ring and let f = {I,,} be an e.p.f.
in R. The smallest integer m satisfying I, ; = 1,,1; (see (2.2.1)) will be of
particular importance throughout the paper. This integer will be denoted
by m’. A filtration satisfying condition () in (2.2.2) will be denoted as a
strong e.p.f. The powers of an ideal f = {I"} is a strong e.p.f. with m’ = 1.

Our first lemma proves a useful inequality relating the analytic spread
of an ideal 7 to the minimal number of generators of /. This inequality
will be used throughout the chapter.

(2.4) LEMMA. Let R be a Noetherian ring, let I, P be ideals in R such
that P is prime, and let R = R.(Rp, IRp). Then, I(IRp) < V(IR,) < V(1)
(see (2.1.6) and (2.1.8)).

Proof. Since R is local, I(IRp) = al(R/(u, PR,)R ). However,
R/ (u, PRP)@/;(RP/PRP)[I(IRP + (u, PRp)/ (u, PRP))]’

SO
alt(R/ (u, PR,)R) < V(IR,).

Finally, it is clear that V(IR,) < V(I),so I[(IRp) = V(IRp) = V(I). 0O

The next lemma shows that the Rees ring is integral over a certain
subring. This will be used in the proof of (2.6).

(2.5) LEMMA. Let R be a Noetherian ring and let f = {I,} be an e.p.f.
in R. Let m be large enough so that R.(R, ) = R{u, tI,,...,t"],] and
let n be an arbitrary positive integer. Then R.(R, f) is integral over
R{u"™, "1 .1
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Proof. 1t is sufficient to show that the elements of 7'/, are integral over
R[u"™, t"1,,.), for 1 <i=<m. For this, let at’ € ¢'I,. Then (at)"™ =
a™ v with @™ € (L™ C I, . =(I,,). Thus (at')"™ € ("1,
This shows that at' is integral overR[u"™, t"™I  .]. Therefore, ¢'I is
integral over R[u™", "™ ] for 1 <i<m, and so R(R, f) is integral

over R[u"™", t""1,,.]. O

We now show that for a local ring, the analytic spread of an ideal of
the form 1,,,. in an e.p.f. f = {I,} is equal to the analytic spread of f.

(2.6) LEMMA. Let (R, M) be a local ring and let f = {I,} be an e.p.f.
in R. Then for all positive integers n, I(1,,,) = I(f).

Proof. Let R = R(R, f) and let O = R[u"", "™ ,.], so R is in-
tegral over 0, by (2.5). By definition, /( f) = depth(M, u)®R and

I(I,,) = depth(M, u)R[u, tI,,] = depth(M, u"™)0.
Let P be a minimum prime divisor of (u, M )R such that depth(P) = I( f).

Then /(f) = alt(R/P) = alt(O/(P N O)), since AR is integral over O. But
(M, u")OCPNO,so

alt(0/ (P N O)) = depth(P N O) < depth(M, u"™)0" = I(K,,,)-
Thus /(f) < I(I,,,). Now pick a minimal prime divisor Q of (M, u"™)0

such that depth(Q) = I(1,,,). Let Q' be a prime ideal in % such that
Q' NO=Q.Then Q' D (M, u)®R, and so

I(1,,) =alt(0/Q) = alt(R/Q’) = depth(Q’)
< depth(M, u)R = I( f).

Thus I(1,,,) =I(f),andso I(1,,) =I(f). O

(2.7) REMARK. With the notation of (2.6), it would be interesting to
knowif /(1)) = I(f), foralln = 1.

The main theorem in this section shows that, for an ideal / in a locally
quasi-unmixed Noetherian ring R, if P € A*(I), then ht(P) = I(IR,).
This is a generalization of a result proved by Ratliff, for integral domains
satisfying the altitude formula.

(2.8) THEOREM. (Cf. [12, Theorem 1].) Let R be a Noetherian ring. R is
locally quasf—unmixed if and only if for every ideal I in R and for every prime
ideal P € A*(I), ht(P) = I(IR}).
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Proof. Assume that for every ideal I in R, if P € A*(I), then
ht(P) = I(IRp). Then to show that R is locally quasi-unmixed it is
sufficient to show that for each ideal I of the principal class, (I"), is
height unmixed for every integer » = 1, by [8, (2.29)]. For this, let 7 be an
ideal of the principal class and let P be a prime divisor of (1), for some
n = 1. This implies P € A*(I), by [6, (3.6.1)] and (2.2.3), so by the
hypothesis and (2.4),

ht(P) = I(IR,) < V(IR,) < V(I) = ht(I) < ht(P).
This proves the implication.

For the reverse implication, assume R is locally quasi-unmixed. Let /
be an ideal in R and assume P € A*(I). Then, with ® = R.(R, I), there
exists a prime divisor Q” of u%’ such that Q’ N R = P, by [11, Corollary
3). Since Q’ contains the regular element u, ht(Q’) = 1. Let z’ be a
minimal prime divisor in &’ such that z’ C Q’, let @ = @’ N AR, and let
z=2z"N%R. Also, let z, = z N R. We now show that ht(Q/z) = 1.

For this, since z = z,R[t, u] N R, we have

Rz =R/ (zoR[t,u] N R) =R(R/zy,(I + z¢)/2,),

by [13, Lemma 1.1). Therefore %,/z satisfies the altitude formula, since
R/z, does (since R is locally quasi-unmixed). Thus, since (Q'/z’) N

(R/z) = Q/z,ht(Q’/z') = ht(Q/z), by [7, Theorem 3.8], so ht(Q/z) = 1.

Now, since R/z, satisfies the altitude formula,
ht(Q/z) + wd((R/2)/(Q/2))/ ((R/z20)/ (P/2,)))
=ht(P/z,) + tfd((@v/z)/(R/Zo))-
Now
h(Q/z) =1 and td((R/z)/ (R/z)) = 1,
since R/z = R(R/zy, (I + 24)/2y), SO
ht(P/z,) = ud((R/Q)/(R/P)).

Since R is locally quasi-unmixed, ht(P) = ht(P/z,). Let S =R — P, so
R =R(Rp, IRp). Then

alt(R ) — 1 = alt(R,) = ht(P) = trd((R/Q)/ (R/P))
= td((Rs/Q%s)/ (Rp/PR;)).
However, Rp/PRp = (R/P)p,p and
Rs/QRs = R (r-p)/ QR r-p) =(R/Q)(r/P)—(P /Py
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SO

ht(P) = tTd((%s/QQR's)/ (RP/PRP)) = alt(%s/Qqﬁ's),
by [4, (14.6)],

= depth QR ¢
< depth(P, u)R ¢
= I(IR,) < alt R, = ht(P).

Therefore ht( P) = I(IR ). O
The next corollary extends (2.8) to the case of an arbitrary e.p.f.

(2.9) COROLLARY. Let R be a Noetherian ring. Then R is locally
quasi-unmixed if and only if for every strong e.p.f. f = {1,} in R and for
every prime ideal P € A*(f), ht(P) = I( fRp).

Proof. Let R be locally quasi-unmixed and let f = {I,} be a strong
e.p.f. in P. Assume P € A*(f). By (2.2.4) A*(f) = ff*(I,,m,) for every
integer n > 0. From (2.8), ht(P) = I(1,,,,, Rp). However, (2.6) shows that
I(1,, Rp) = I(fRp). Thus ht(P) = I( fR ).

For the converse, let I be an ideal in R and let f= {I"}. Assume
P € A*(f), so ht(P) = I( fR}). By (2.6), I( fR) = I(IR ). Thus ht(P) =
I(IR,), so, by (2.8), R is locally quasi-unmixed. a

Our next result, (2.10), together with (2.12) extends a theorem of
Ratliff, (cf. [12, Theorem 1]) from the case of an integral domain satisfy-
ing the altitude formula, to that of a locally quasi-unmixed Noetherian
ring. In (2.11) and (2.13), this is further extended by consideration of
arbitrary e.p.f.’s

(2.10) PrROPOSITION. The following statements are equivalent for a
Noetherian ring R:

(2.10.1) R is locally quasi-unmixed.

(2.10.2) If I C P are ideals in R such that P € A*(I), then hi(P) =
I(IRp).

(2.10.3) If I is an ideal in R and P is a prime divisor of (I"), for some
n =1, then ht(P) = I(IRp).

(2.10.4) If I is an ideal in R such that ht(I) = V(I), then (I"), is
height unmixed for every integer n = 1.
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Proof. (2.10.1) is equivalent to (2.10.2) by (2.8). (2.10.2) and (2.10.3)
are equivalent, by [9, (2.5)]. Finally, (2.10.1) and (2.10.4) are equivalent by
[8, (2.29)], O

(2.11) COROLLARY. The following statements are equivalent for a
Noetherian ring R;

(2.11.1) R is locally quasi-unmixed.

(2.11.2) For every strong e.p.f. f = {1,} in R, if P is a prime divisor of
(1,), for somen =1, then ht(P) = I( fRp).

(2.11.3) For every strong e.p.f. f = {1,} in R and for each fixedn = 1,
ifht(1,,,) = V(I,,), then (1,,), is height unmixed.

Proof. By [6, (3.6.1)] if f is an e.p.f. in R and if P € A(k) for some
k >0, then P € A(n) for all large n. Thus if P € A(n) for some n > 1,
then P € A*(f). Therefore, by (2.9), (2.11.1) and (2.11.2) are equivalent.

Next we show (2.11.2) implies (2.11.3). So assume (2.11.2) holds, let f
be a strong e.p.f. in R, fix n =1, let ht(/,, ) = v(1,, ), and let P €
Ass((1,,,/),)- Then, by (2.11.2), ht(P) = I(fR,), and (2.6) implies that
I(fRp) = I(1,, Rp). Now we have

ht(P) = I(1,,Rp) < 0(L,,) = ht(I,,) <ht(P),

since /(1,, Rp) =0v(I,, ), by (2.4). Therefore ht(P) = ht(Z,,.) and so
(1) o 15 height unmixed. This shows (2.11.2) implies (2.11.1).

Finally, let I be an ideal in R such that ht(1) = v(I) and let f = {I"}.
Then m’ = 1, so (2.11.3) says that (I"), = (I"), is height unmixed. Thus,
by (2.10.4) = (2.10.1), R is locally quasi-unmixed, and so (2.11.3) =
(2.11.1). O

It will now be shown that the equivalent conditions in (2.10) imply
the converse of (2.10.2). As already noted, this generalizes [13, Theo-
rem 1].

(2.12) PROPOSITION. Let R be a locally quasi-unmixed Noetherian ring
and let I C P be ideals in R with P prime. If ht(P) =I(IR;), then
P € A*(I).

Proof. The proof is the same as the proof for the corresponding result
in [13, Theorem 1], except for the last sentence: Then Q is a prime divisor
of (u®),, so the proof of (2.8.1) shows Q is a prime divisor of (1,,), = (I"),
for all large n, and so P € A*(I), by (2.2.3). O



458 J. S. OKON

We now extend (2.12) to the case of an arbitrary e.p.f.

(2.13) COROLLARY. Let R be a locally quasi-unmixed Noetherian ring,
let f = {I,} beastronge.p.f.in R, and let P be a prime ideal in R such that
fC P Ifht(P) = I(fRp), then P € A*(f).

Proof. Let ht(P) = I( fRp). Then, by (2.6), ht(P) = I(1,,,, RP) for all
ilgtegers n = 1. Therefore, by (2.12), P € A*(1,,,) forall n =1, so P €
A*(f) by (2.2.4). O

(2.14) gives three more conditions which are equivalent to a Notherian
ring R being locally quasi-unmixed. (2.14) generalizes [12, Theorem 2]
from the case of a Noetherian domain to that of a locally quasi-unmixed
Noetherian ring.

(2.14) PRrOPOSITION. The following statements are equivalent for a
Noetherian ring R.

(2.14.1) R is locally quasi-unmixed.

(2.14.2) If I C M are ideals in R such that M is maximal, ht(1) = V(I)
and ht((M /I) = 1, then, for every n = 1, M is not a prime divisor of (1"),.

(2.14.3) If I C M are ideals in R with M maximal such that ht(M /I)
= 1 and if 1 is integrally dependent on an ideal B of the principal class, then,
for every integer n = 1, M is not a prime divisor of (I"),.

(2.14.4) If I is an ideal in R which can be generated by h elements, then,
for every integer n = 1, (I"),, has no prime divisors of height strictly greater
than h.

Proof. (2.14.1) and (2.14.2) are equivalent by [8, (2.29)]. It is clear that
(2.14.3) implies (2.14.2). We now show that (2.14.2) implies (2.14.3). For
this, let I C M be ideals in R such that ht( M /1) = 1 and assume B is an
ideal of the principal class such that [ is integrally dependent on B. It
suffices to show that M is not a prime divisor of (B"), for n = 1, since
B CIC B,implies(B"), = (I"),foralln = 1. Toinsurethat BC I C M
satisfies the hypothesis of (2.14.2), we need only show that ht(M/B) = 1.
But this holds, since B C I C (B), C rad(B). Thus (2.14.2) implies
(2.14.3).

Next it will be shown that (2.14.1) and (2.14.4) are equivalent. To see
that (2.14.4) implies (2.14.1), it suffices, by [8, (2.29)], to show that for
every ideal I of the principal class, (1"), is height unmixed for n = 1. Let
I be an ideal in R such that ht(/) = V(I) and let P be a prime divisor of
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(I™), for some n = 1. Then, by (2.14.4), h = V(I) = ht(I) = ht(I"), =
ht(P) = h, so ht(P) = V(I) and (I"), is height unmixed. Thus R is
locally quasi-unmixed, so (2.14.4) implies (2.14.1).

Finally, assume R is locally quasi-unmixed and let I be an ideal in R
such that 7 is generated by 4 elements. Let P be a prime divisor of (I"),
for some integer n = 1. Then by (2.10.1) & (2.10.3), ht(P) = I(IR,) =
V(IR,p) = V(I) < h. Thus (2.14.1) implies (2.14.4). O

(2.15) generalizes (2.14) to the case of an arbitrary e.p.f..

(2.15) COROLLARY. The following statements are equivalent for a
Noetherian ring R:

(2.15.1) R is locally quasi-unmixed.

(2152) If f={1,} isan e.p.f. in R and M is a maximal ideal in R
such that f C M, ht(1,,) = v(l,,), and if ht(M/I,.) = 1, then, for all large
n, M is not a prime divisor of (1,),.

(2.153) If f = {1,} is a strong e.p.f. in R and M is a maximal ideal in
R such that f C M, h(M/1,.) = 1, and 1, is weakly integrally dependent
on an ideal B of the principal class, then, for all large n, M is not a prime
divisor of (1,),.

(2.15.4) If f = {1} is a strong e.p.f. in R such that I, is generated by
h elements, then, for all large n, (1), has no prime divisors of height strictly
greater than h.

Proof. Assume R is locally quasi-unmixed, and let f and M satisfy the
hypothesis of (2.15.2). Then, by (2.14.1) = (2.14.2), M is not a prime
divisor of (I,,,). = ((I,)%),- But, for large k and n, Ass((I,,),) =
Ass((1,),) = A*, by (2.2.4). Thus (2.15.1) implies (2.15.2).

(2.15.2) implies (2.15.1), by (2.14.2) implies (2.14.1). It is clear that
(2.15.3) implies (2.15.2). For the converse, let M, f, and B be as in (2.15.3).
Then, by (2.14.3), M is not a prime divisor ((Z,,)*), = (I;,,),, for k = 1.
Since, by (2.2.3) and (2.2.4), Ass((1;,,),) = Ass((1,),) = A*, for large n
and k, M is not a prime divisor of (1), for all large n. Therefore (2.15.2)
implies (2.15.3).

(2.15.4) implies (2.15.1), by, (2.11.3) = (2.11.1). To show (4.13.1)
implies (2.15.4), assume that R is locally quasi-unmixed and let f = {1}
be an e.p.f. in R such that I, is generated by A elements. Then ((1,,)*), =
(1,1), has no prime divisor of height > A, by (2.14.1) = (2.14.4). There-
fore, since (1,), and (I,,,), have the same prime divisors for large n and
k, by (3.9), (2.15.1) = (2.15.4). O
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(2.16.1) is a corollary to (2.8) and (2.12). (2.16.2) gives a condition for
the analytic spread of an ideal to be equal to its height. (2.16) is extended
to the case of an e.p.f. in (2.17).

(2.16) ProrosiTION. (C.f. [12, Corollary 4].) Let R be a locally
quasi-unmixed Noetherian ring and let I C P be ideals in R such that P is a
prime ideal. Then the following statements are true:

(2.16.1) P € A*(I) if and only if ht(P) = I(IR )

(2.16.2) Assume R is local with maximal ideal P. If ht(P/I) = 1, then
ht(1) = I(I) = alt(R) — 1 if and only if P & A*(I).

Proof. For (2.16.1), if P € A*(I), then ht(P) = I(IR}), by (2.8), and
if ht(P) = I(IR,) then (2.12) implies P € A*([).

To prove (2.16.2), assume ht(P/I) = 1. Let ht(1) = I(I) = alt(R) —
1 and suppose P € A*(I). Then, by (2.16.1), ht(P) = I(I). But ht(P) >
ht(I) = I(I), so this contradiction shows P & A*(I). For the converse,
assume p & A*(I). Suppose depth(I) =1, ht(I) = alt(R) — 1, by [4,
(34.5)]. Also, ht(P) > I(I), by hypothesis and (2.12), so P is the maximal
ideal in R. Thus /(I) <= ht(P) — 1 = ht(I). But, there exists a prime
divisor Q of I such that ht(Q) = ht(I). Then Q € A*(J), and so ht(]) =
ht(Q) = I(IR,) = I(I) by ([12, comments preceding Corollary 9]) =<
ht(I). Therefore ht(I) = I(I). Therefore ht(I) = I(I) = alt(R) — 1, so
(2.16.2) holds. O

(2.17) COROLLARY. Let R be a locally quasi-unmixed Noetherian ring,
let f = {I,} be a strong e.p.f. in R and let P be a prime ideal in R such that
I, C P. Then the following statements are true:

(2.17.1) P € A*(f) if and only if ht(P) = I( fR}).

(2.17.2) Assume R is local with maximal ideal P. If ht(P/I,.) = 1, then
ht( f) = I(f) = alt(R) — 1 if and only if P & A*(f).

Proof. (2.17.1) is immediate from (2.9) and (2.13).

For (2.17.2), assume ht(P/1I,,) = 1 and let ht(f) = I(f) = alt(R)
1. Then, since ht(f) = ht(I ) and I(f) = I(1,,) (by (2.6)), P GEA*(I s
by (2. 8), and so P & A*(f). For the converse, assume P & A*(f), so
P GEA*(I,,, ), by (2.2.3). By (2.16.2), ht(Z,,) = I(I,,) = alt(R) — 1, and
(2.17.2) readily follows from this. a

We conclude this section with three interesting applications of (2.8)
and (2.14).
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(2.18) CoRrOLLARY. (Cf. [12, Corollary 6].) Let R be a Noetherian ring
and let M be a maximal ideal in R. Then R,, is quasi-unmixed if and only if
there does not exist a system of parameters b,,...,b, in R,, such that MR,
is a prime divisor of ((b,,...,b;_,)"), for some integer n > 0.

Proof. Assume R,, is quasi-unmixed (hence locally quasi-unmixed),
and let b,,...,b, be a system of parameters in R,,. Then ht(b,,...,b,_,)
=d — 1, by [3, (12.K)] and [4, (34.5)]. Therefore, for each n = 1, MR, is
not a prime divisor of ((b,,...,b,_,)")a by (2.14.1) = (2.14.2).

For the reverse implication assume there does not exist a system of
parameters b,,...,b;, in R,, such that MR, is a prime divisor of
(by,...,0,_)"), for some n > 0. Then it readily follows from (2.14.2) =
(2.14.1) that R, is quasi-unmixed. d

(2.19) is essentially a restatement of (2.18).

(2.19) COROLLARY. Let R be a Noetherian ring and let M be a maximal
ideal in R. Then R,, is quasi-unmixed if and only if there does not exist a
system of parameters b,,...,b, in R, such that MR,, € A*(b,,...,b,_,).

Proof. This follows immediately form (2.18) and [9, (2.5)]. ]
This chapter will be closed with the following corollary.

(2.20) COROLLARY. Let (R, M) be a quasi-unmixed local ring, let
alt(R) =d =1, and let I be an ideal in R such that ht(I) < d. Then the
following statements are true:

(2.20.1) M & A*(I) if and only if I(I) < d.

(2.20.2) If there exists a prime ideal P € A*(I) such that ht(I) = ht(P)
and I(I) = I(IRp), then ht(I) = I(I).

(2.20.3) If ht(I) = I(I), then, for each n = 1, all prime divisors of (1),
have the same height.

Proof. We first prove (2.20.1). From (2.16.1), M & ff*( I) if and only
if ht(M) # I(IR,,). However, it is clear that ht(M) 5 I(IR,,) if and only
if I(I) <d, s0(2.20.1) holds.

For (2.20.2), let P E/f*(]) such that ht(/) = ht(P) and /() =
I(IRp). Then, by (4.6), h(P) = I(IR,), so ht(I) = ht(P) = I(IRp) =
/(I), proving (2.10.2).

To see (2.20.3), assume ht(/) =/(I). Let n=1 and let P €
Ass((I™),). Then ht(I) =< ht(P) = I(IRp) = I(1) = ht([). Thus, for every
integer n = 1, (I"),, is height unmixed. O
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