COMPLEXES ARE SPACES WITH A σ-ALMOST LOCALLY FINITE BASE

TAKUO MIWA

In this paper, we introduce the notion of D-complexes which are defined by replacing metric spaces with Nagami's D-spaces in the definition of Hyman's M-spaces, and prove a main theorem that every D-complex is a space with a σ -almost locally finite base (this notion was introduced by Itō and Tamano). This theorem sharpens a theorem of Nagata. Furthermore, we deal with the adjunction spaces of two spaces with a σ -almost locally finite base.

1. Introduction. In [8], M. Itō and K. Tamano introduced the notion of almost local finiteness and the class of all spaces with a σ -almost locally finite base. This class is countably productive, hereditary and the closed image of a space in the class is M_1 (see [8]). Furthermore, this class is an intermediate class between that of free L-spaces and that of M_1 -spaces. Indeed, there exists a space with a σ -almost locally finite base which is not a free L-space (see [8]). But it is not known whether there exists an M_1 -spaces which is not a space with a σ -almost locally finite base. If M_1 -spaces are spaces with a σ -almost locally finite base, Ceder's long-standing unsolved question will be affirmatively answered; that is, every stratifiable space is M_1 .

In §2, we introduce the notion of D-complexes which generalizes that of Hyman's M-spaces ([6]). Note that, in [1], C. J. R. Borges used the words paracomplex or n-paracomplex instead of Hyman's M-space or his M_n -space, respectively. Furthermore, we give some results for D-complexes which obtained in [10]. In §3, we give some preliminary lemmas. In §4, we prove main results.

Throughout this paper, all spaces are assumed to be regular T_1 and all maps to be continuous. N denotes the set of all natural numbers. For the definitions of uniformly approaching anti-cover and D-space, see K. Nagami [12]. For M_1 -spaces and free L-space, see J. G. Ceder [2] and K. Nagami [13], respectively. In each monotonically normal space X, we assume that X has a monotone normality operator G satisfying the properties [5, Lemma 2.2].

2. *D*-complexes and some results. In this section, we define *D*-complexes, and study some properties of *D*-complexes.

DEFINITION 2.1. A D(0)-complex is a D-space. Assume that D(n-1)-complexes have been defined for an $n \in N$. Then a space Z is a D(n)-complex if it is homeomorphic to the adjunction space $X \cup_f Y$, where X is a D-space, A a closed set of X, Y a D(n-1)-complex and f a map from A into Y. Let $X = \bigcup \{X_i : i \in N\}$, where $\{X_i : i \in N\}$ is a closed cover of the space X such that $X_i \subset X_{i+1}$ and each X_i is a $D(n_i)$ -complex for some $n_i \in N \cup \{0\}$. If X is dominated by $\{X_i : i \in N\}$ (namely, $F \subset X$ is closed in X if and only if $F \cap X_i$ is closed in X_i for every $i \in N$), then X is said to be a D-complex.

REMARK 2.2. Since a metric space is a *D*-space and the closed image of a *D*-space is a *D*-space by [12, Remark 4.5], each Lašnev space is a *D*-space. Furthermore there exist a *D*-space which is not a Lašnev space (see [12, Example 2.1]), and a Lašnev space which is not a paracomplex (see [3, Example 2]). Therefore the class of all *D*-complexes properly contains those of all Lašnev spaces and all paracomplexes.

The following two theorems was established in [10] and those are generalizations of Theorems 1 and 2 in [16].

THEOREM 2.3. Every D-complex is an M_1 -space.

THEOREM 2.4. Let X be a D-complex. Then dim $X \le n$ if and only if X has a σ -closure preserving base $\mathfrak A$ such that dim $B(U) \le n-1$ for every $U \in \mathfrak A$, where dim X is the covering dimension of X and B(U) is the boundary of U.

Outline of proofs of Theorems 2.3 and 2.4. The property ECP was defined in [16]. We consider ECP in monotonically normal spaces. Then, first, we prove that every D-space X has ECP. Outline of this proof is the following: Let X' be a monotonically normal space and $X' = F \cup X$, where F and X are closed in X', and G a monotone normality operator in X'. Suppose $\mathfrak{A} = \{U_{\alpha}: \alpha \in A\}$ is a closure preserving open family in F, and $\mathfrak{A} = \{V_{\lambda}: \lambda \in \Lambda\}$ a uniformly approaching anti-cover of $X \cap F$ in X such that $\mathfrak{A} = \{V_{\lambda}: \lambda \in \Lambda\}$ a uniformly approaching anti-cover of $X \cap F$ in X such that $\mathfrak{A} = \{V_{\alpha}: X \in U_{\alpha}\}$. Then U'_{α} is open in X'. For the fixed element $\alpha \in A$, let $B_{\alpha} = \{\gamma(\alpha) \subset \Lambda: U'_{\gamma(\alpha)}$ is open in U'_{α} , where $U'_{\gamma(\alpha)} = U_{\alpha} \cup \{U_{\lambda}: \lambda \in \gamma(\alpha)\}$. Let $B = \bigcup \{B_{\alpha}: \alpha \in A\}$, $\mathfrak{A}' = \{U'_{\beta}: \beta \in B\}$. Then \mathfrak{A}' satisfies the conditions (1), (2), (3) of Definition 2 in [16]. Next, by the methods of the above proof and [16, Lemma 2] we can prove that every D(n)-complex has ECP. Last, Theorem 2.3 is proved by the same way as proof of [16, Theorem 1]. If we use the results of K. Nagami [12], [13], [14]

and the method of the above proof, Theorem 2.4 can be shown by the same way as proof of [16, Theorem 2].

For adjunction spaces, we proved the following theorem in [10]. Since a *D*-space is a free *L*-space, the subsequent corollary is a direct consequence.

THEOREM 2.5. Let X and Y be free L-spaces, A a closed set of X which has a uniformly approaching anti-cover, and f a map from A into Y. Then the adjunction space $X \cup_f Y$ is a free L-space.

Proof. In [7], M. Itō proved that weak L-spaces are free L-spaces. Therefore this theorem can be proved by some slight modifications of the proof in [9, Theorem 3.1].

COROLLARY 2.6 (cf. Theorem 2.3). Every D(n)-complex is a free L-space.

3. Preliminary lemmas. In this section, we define a property EP-ALF — this is an abbreviation of "extension property of an almost locally finite family" —, and give some preliminary lemmas. We begin with the definition of almost local finiteness.

DEFINITION 3.1 ([8]). Let X be a space, x a point of X and \mathcal{U} a family of subsets of X. \mathcal{U} is said to be almost locally finite at x if there exists a neighborhood Y of x and a finite subset $\{K_1, \ldots, K_n\}$ of X such that

$$\mathfrak{A}|V = \{U \cap V \colon U \in \mathfrak{A}\}$$

$$\subset \{K_i \cap W \colon i = 1, \dots, n \text{ and } W \text{ is a neighborhood of } x\}.$$

 $\mathfrak A$ is said to be almost locally finite in X if $\mathfrak A$ is almost locally finite at every point of X.

DEFINITION 3.2. By EP-ALF we mean the following property of a monotonically normal space X: If X is a closed set of a monotonically normal space X' such that $X' = F \cup X$, F and X closed in X', and if $\mathfrak{A} = \{U_{\alpha}: \alpha \in A\}$ is an almost locally finite open family in F, then for each $\alpha \in A$ there is a family $\{U'_{\beta}: \beta \in B_{\alpha}\}$ of open sets in X' satisfying

- (C1) $\mathfrak{A}' = \{U'_{\beta}: \beta \in B_{\alpha}, \alpha \in A\}$ is almost locally finite in X',
- (C2) for each $\beta \in B_{\alpha}$, $U'_{\beta} \cap F = U_{\alpha}$, and for every open set V in X' with $V \cap F = U_{\alpha}$ there is $\beta \in B_{\alpha}$ such that $U_{\alpha} \subset U'_{\beta} \subset V$, and
- (C3) for every open set W in F, there is an open set W' of X' such that $W' \cap F = W$ and such that $W' \cap U'_{\beta} = \emptyset$ whenever $\beta \in B_{\alpha}$ and $W \cap U_{\alpha} = \emptyset$.

LEMMA 3.3. Every D-space has EP-ALF.

Proof. Let X be a D-space, X' a monotonically normal space and $X' = F \cup X$, where F and X are closed in X'. Furthermore let G be a monotone normality operator of X'. Suppose $\mathfrak{A} = \{U_{\alpha}: \alpha \in A\}$ is an almost locally finite open family of F. Let $\mathfrak{A} = \{V_{\lambda}: \lambda \in \Lambda\}$ be a uniformly approaching anti-cover of $X \cap F$ in X. In particular, since X is hereditarily paracompact, we may assume that \mathbb{A} is locally finite in X - F. For each $U_{\alpha} \in \mathbb{A}$, let $U'_{\alpha} = \bigcup \{G(x, F - U_{\alpha}): x \in U_{\alpha}\}$. Then U'_{α} is obviously open in X'. For the fixed element $\alpha \in A$, let $B_{\alpha} = \{\gamma(\alpha) \subset \Lambda: U'_{\gamma(\alpha)} \text{ is open in } U'_{\alpha}\}$, where $U'_{\gamma(\alpha)} = U_{\alpha} \cup \bigcup \{V_{\lambda}: \lambda \in \gamma(\alpha)\}$. Let $B = \bigcup \{B_{\alpha}: \alpha \in A\}$, $\mathbb{A} = \{U'_{\beta}: \beta \in B\}$. Then condition (C2) of Definition 3.2 is obviously satisfied by $\mathbb{A} = \{U'_{\beta}: \beta \in B\}$. Then condition (C2) of Definition 3.2 is obviously satisfied by $\mathbb{A} = \{U'_{\beta}: \beta \in B\}$. Then condition $\{U'_{\alpha}\}$ for some $\{U'_{\beta}: \beta \in B\}$ such that $\{U'_{\alpha} \subset U'_{\beta} \subset V\}$. To prove (C3), let $\{U'_{\alpha}: \beta \in B\}$ is an open set in $\{U'_{\alpha}: \beta \in B\}$ satisfying (C3).

Finally to prove (C1), first we consider the case $x \in F$. There exist an open neighborhood V of x in F and open finite subsets $\{H_1, \ldots, H_n\}$ of F such that

$$\mathfrak{A}|V \subset \{H_i \cap W: i = 1, ..., n \text{ and } W \text{ is a neighborhood of } x \text{ in } F\}.$$

Without loss of generality, we assume that

$$H_i \supset \bigcup \{U_a \in \mathfrak{A}: U_a \cap V = H_i \cap W \text{ for some neighborhood } W \text{ of } x\}.$$

Let
$$V' = \bigcup \{G(y, F - V): y \in V\}$$
 and $H'_i = \bigcup \{G(y, F - H_i): y \in H_i\}$ for each $i \in \{1, ..., n\}$. Then it is easy to see that

$$\mathfrak{A}'|V' \subset \{H'_i \cap W: i = 1, ..., n \text{ and } W \text{ is a neighborhood of } x \text{ in } X\},$$

and V' is a neighborhood of x in X'. Thus \mathfrak{A}' is almost locally finite at x. Next, we consider the case $x \in X - F$. Since \mathbb{V} is locally finite in X - F, there is a neighborhood V of x such that

$$\{\lambda \in \Lambda \colon V \cap V_{\lambda} \neq \emptyset, x \in V_{\lambda}, V_{\lambda} \in \mathcal{V}\} = \{\lambda_1, \dots, \lambda_n\}.$$

Let

$$\left\{ \bigcup \left\{ V_{\lambda_i} \colon \lambda_i \in \gamma \right\} \colon \gamma \text{ is a non-empty subset of } \left\{ \lambda_1, \dots, \lambda_n \right\} \right\}$$

$$= \left\{ K_1, \dots, K_m \right\}.$$

Then it is clear that

$$\mathfrak{A}'|V \subset \{K_i \cap W: i=1,\ldots,m \text{ and } W \text{ is a neighborhood of } x \text{ in } X'\}.$$

Thus \mathfrak{A}' is almost locally finite at x. This completes the proof.

LEMMA 3.4. Every D(n)-complex has EP-ALF.

Proof. We use induction on n. Since by Lemma 3.3 the present assertion is true for n=0, we assume that every D(n-1)-complex has EP-ALF. Let X_0 be a *D*-space, Y_0 a D(n-1)-complex and f a map from a closed set E of X_0 into Y_0 . Then it suffices to prove that the adjunction space $Z = X_0 \cup_f Y_0$ has EP-ALF. Let p be the projection from the free union $X_0 \cup Y_0$ onto Z. Note that p is a topological map from Y_0 onto a closed subset Y of Z. Now, let $Z' = F \cup Z$, where Z' is monotonically normal and F and Z are closed in Z'. Suppose $\mathfrak{A} = \{U_{\alpha}: \alpha \in A\}$ is an almost locally finite open family in F. Let $Y' = Y \cup F$. Then F and Y are obviously closed in the monotonically normal space Y'. Since by the induction hypothesis Y has EP-ALF, each U_{α} can be extended to open sets $\{U'_{\beta}: \beta \in B_{\alpha}\}\$ in Y' satisfying (C1), (C2), (C3). Let us denote by q the restriction of p to X_0 . Define a closed set K of X_0 by $K = q^{-1}(Y')$. Since X_0 is a *D*-space, X_0 has a monotone normality operator G. Let $\mathcal{V} = \{V_{\lambda} : A \in \mathcal{V} \}$ $\lambda \in \Lambda$ be a uniformly approaching anti-cover of K in X_0 and locally finite in $X_0 - K$. For each $\beta \in B_{\alpha}$ ($\alpha \in A$) and each $\gamma \subset \Lambda$, let

$$V_{\beta} = \bigcup \left\{ G(x, K - q^{-1}(U_{\beta}')) \colon x \in q^{-1}(U_{\beta}') \right\},$$

$$V_{\beta\gamma}' = q^{-1}(U_{\beta}') \bigcup \left(\bigcup \left\{ V_{\lambda} \in \mathcal{V} \colon \lambda \in \gamma \right\} \right).$$

For the fixed element $\alpha \in A$ and $\beta \in B_{\alpha}$, let

$$C_{\alpha}(\beta) = \{ \gamma \subset \Lambda \colon V_{\beta\gamma}' \text{ is open in } V_{\beta} \}, C_{\alpha} = \bigcup \{ C_{\alpha}(\beta) \colon \beta \in B_{\alpha} \}.$$

Let $U''_{\gamma} = p(V'_{\beta\gamma}) \cup U'_{\beta}$ and $\mathfrak{A}''_{\alpha} = \{U''_{\gamma}: \gamma \in C_{\alpha}\}$. Then \mathfrak{A}''_{α} are extensions of U_{α} into Z' satisfying (C1), (C2), (C3).

First, we can easily show that each $U''_{\gamma} \in \mathfrak{A}''_{\alpha}$ is open in Z'. (C2) is obviously satisfied by \mathfrak{A}''_{α} ($\alpha \in A$), because $\{U'_{\beta} : \beta \in B_{\alpha}\}$ satisfies (C2). Next, to prove (C3), let W be an open set in F. Since $\{U'_{\beta} : \beta \in B_{\alpha}, \alpha \in A\}$ satisfies (C3), there exists an open set W' in Y' such that $W' \cap F = W$ and such that $U_{\alpha} \cap W = \emptyset$ implies $W' \cap U'_{\beta} = \emptyset$ for all $\beta \in B_{\alpha}$. Since $q^{-1}(W')$ is open in K, let

$$W'' = W' \cup p(\bigcup \{G(x, K - q^{-1}(W')) : x \in q^{-1}(W')\}).$$

Then W'' is obviously open in Z'. Furthermore, $W \cap U_{\alpha} = \emptyset$ implies that $W' \cap U''_{\beta} = \emptyset$ for every $\beta \in B_{\alpha}$, so that $W'' \cap U''_{\gamma} = \emptyset$ for every $\gamma \in C_{\alpha}(\beta)$. This proves (C3).

Finally, we shall prove that $\mathfrak{A}'' = \bigcup \{\mathfrak{A}''_{\alpha} : \alpha \in A\}$ is almost locally finite in Z'. Let $x \in Y'$. Since $\mathfrak{A}' = \{U'_{\beta} : \beta \in B_{\alpha}, \alpha \in A\}$ is almost locally finite in Y', there exist an open neighborhood V of X in Y' and open finite subsets $\{H_1, \ldots, H_m\}$ of Y' such that

$$\mathfrak{A}'|V \subset \{H_i \cap W: i = 1, ..., n \text{ and } W \text{ is a neighborhood of } x \text{ in } Y'\}.$$

Without loss of generality, we assume that for each i

$$H_{\iota}\supset\bigcup \{U'_{\beta}\in \mathfrak{A}'\colon U'_{\beta}\cap V=H_{\iota}\cap W \text{ for some neighborhood } W \text{ of } x \text{ in } Y'\}.$$

Let
$$V' = V \cup p(\bigcup \{G(y, K - q^{-1}(V)): y \in q^{-1}(V)\})$$
 and for each i

$$H'_i = H_i \cup p(\bigcup \{G(y, K - q^{-1}(H_i)): y \in q^{-1}(H_i)\}).$$

Then it is easy to see that

completes the proof.

$$\mathfrak{A}''|V' \subset \{H'_i \cap W: i=1,\ldots,m \text{ and } W \text{ is a neighborhood of } x \text{ in } Z'\},$$
 and V' is a neighborhood of x in Z' . Thus \mathfrak{A}'' is almost locally finite at x . Let $x \in Z' - Y'$. Then by the same method as last part in the proof of Lemma 3.3, it is easily seen that \mathfrak{A}'' is almost locally finite at x . This

4. Main theorems. We begin with the proof of the following main theorem which sharpens Theorem 2.3 in this paper (therefore Nagata's Theorem [16, Theorem 1]).

Theorem 4.1. Every D-complex is a space with a σ -almost locally finite base.

Proof. Suppose that $X = \bigcup \{X_i : i \in N\}, X_i \subset X_{i+1}$, where each X_i is a $D(n_i)$ -complex and closed in X, and X is dominated by $\{X_i : i \in N\}$. By Corollary 2.6 and [8, Theorem 3.3], each X_i has a σ -almost locally finite base $\{\mathfrak{A}_{ij} : j \in N\}$. For each $j \in N$, let $\mathfrak{A}_{1j} = \{U(\alpha_1) : \alpha_1 \in A\}$. Since X_2 is a $D(n_2)$ -complex, $X_1 \subset X_2$ and X_1 is closed in X (therefore in X_2), by Lemma 3.4 X_2 has EP-ALF. Therefore every $U(\alpha_1)$ can be extended to open sets $\{U(\alpha_1, \alpha_2) : \alpha_2 \in A(\alpha_1)\}$ in X_2 in such a way that the family $\{U(\alpha_1, \alpha_2) : \alpha_1 \in A, \alpha_2 \in A(\alpha_1)\}$ satisfies (C1), (C2), (C3). (In particular, we assume that the method of extensions is the same one of Lemma 3.4.)

Repeating this process we get for each k an almost locally finite open family

$$\{U(\alpha_1,\ldots,\alpha_k): \alpha_1 \in A, \alpha_2 \in A(\alpha_1),\ldots,\alpha_k \in A(\alpha_1,\ldots,\alpha_{k-1})\}$$

in X_k . Let

$$\Sigma = \{(\alpha_1, \alpha_2, \alpha_3, \ldots) \colon \alpha_1 \in A, \alpha_2 \in A(\alpha_1), \alpha_3 \in A(\alpha_1, \alpha_2), \ldots\}.$$

For each $(\alpha_1, \alpha_2, ...) \in \Sigma$, let

$$U(\alpha_1,\alpha_2,\ldots) = \bigcup \{U(\alpha_1,\ldots,\alpha_k): k \in N\}.$$

Then $U(\alpha_1, \alpha_2,...)$ is an open set of X, because for each $k \in N$, $U(\alpha_1, \alpha_2,...) \cap X_k = U(\alpha_1,...,\alpha_k)$ is open in X_k . Let

$$\mathfrak{A}'_{1j} = \{U(\alpha_1, \alpha_2, \ldots) \colon (\alpha_1, \alpha_2, \ldots) \in \Sigma\}.$$

Now we claim that $\{\mathfrak{A}'_{1j}: j \in N\}$ is a σ -almost locally finite local base at each point $x \in X_1$. First, it is easily seen by (C2) that $\{\mathfrak{A}'_{1j}: j \in N\}$ is a local base at x. Next, to prove that each \mathfrak{A}'_{1j} is almost locally finite, let $y \in X_1$. Since \mathfrak{A}_{1j} is almost locally finite at y in X_1 , there exist an open neighborhood V(1) of y in X_1 and finite open subsets $\{H_1(1), \ldots, H_n(1)\}$ of X_1 such that

$$\mathfrak{A}_{1j}|V(1)\subset\{H_i(1)\cap W:i=1,\ldots,n\text{ and }W\text{ is a neighborhood}$$
 of y in $X_1\}$.

Since the extension $\{U(\alpha_1, \alpha_2): \alpha_1 \in A, \alpha_2 \in A(\alpha_1)\}$ of \mathfrak{A}_{1j} is the same one of Lemma 3.4, there exist an open neighborhood V(1,2) of y in X_2 and finite open subsets $\{H_1(1,2),\ldots,H_n(1,2)\}$ of X_2 such that

$$\{U(\alpha_1, \alpha_2) : \alpha_1 \in A, \alpha_2 \in A(\alpha_1)\} | V(1, 2)$$

$$\subset \{H_i(1, 2) \cap W : i = 1, \dots, n \text{ and } W \text{ is a neighborhood of } y \text{ in } X_2\},$$

and $V(1,2) \cap X_1 = V(1)$, $H_i(1,2) \cap X_1 = H_i(1)$ for each i. Repeating this process we get for each $k \in N$ an open neighborhood $V(1,\ldots,k)$ of y in X_k and finite open subsets $\{H_1(1,\ldots,k),\ldots,H_n(1,\ldots,k)\}$ of X_k such that

$$\{U(\alpha_1,\ldots,\alpha_k): \alpha_1 \in A,\ldots,\alpha_k \in A(\alpha_1,\ldots,\alpha_{k-1})\}|V(1,\ldots,k)$$

$$\subset \{H_i(1,\ldots,k) \cap W: i=1,\ldots,n \text{ and } W \text{ is a neighborhood of } y \text{ in } X_k\},\$$

and $V(1,\ldots,k)\cap X_{k-1}=V(1,\ldots,k-1)$, for each $i,H_i(1,\ldots,k)\cap X_{k-1}=H_i(1,\ldots,k-1)$. Let $V=\bigcup\{V(1,\ldots,k)\colon k\in N\}$ and $H_i=\bigcup\{H_i(1,\ldots,k)\colon k\in N\}$ for each i. Then it is easily verified that V is an

open neighborhood of y in X and, for each i, H_i is open in X such that

 $\mathfrak{A}'_{1i}|V\subset\{H_i\cap W:i=1,\ldots,n\text{ and }W\text{ is a neighborhood of }y\text{ in }X\}.$

Thus \mathfrak{A}'_{1j} is almost locally finite at y in X. Furthermore, we can prove the same results even if $y \in X_k$ for $k \neq 1$. Therefore \mathfrak{A}'_{1j} is almost locally finite in X.

Finally, we can prove the same results even if $i \neq 1$, namely for \mathfrak{A}_{ij} ($i \neq 1$) we can construct \mathfrak{A}'_{ij} such that $\bigcup \{\mathfrak{A}'_{ij}: j \in N\}$ is a σ -almost locally finite local base at each point $x \in X_i$. Thus $\bigcup \{\mathfrak{A}'_{ij}: i, j \in N\}$ is a σ -almost locally finite base of X. This completes the proof.

EXAMPLE 4.2. By this theorem, we can give a space with a σ -almost locally finite base which is not a free L-space. In [15], K. Nagami and K. Tsuda proved that an infinite dimensional full complex with weak topology of Whitehead is not free L. This example is a different one from [8, Example 3.9].

COROLLARY 4.3. Every paracomplex has a σ -almost locally finite base.

COROLLARY 4.4. Every CW-complex has a σ -almost locally finite base.

In [16, Problem 1], J. Nagata proposed whether every closed image of a paracomplex is an M_1 -space or not. This problem was affirmatively solved by G. Gruenhage [4] and T. Mizokami [11], independently. Now we can this problem as a corollary of Theorem 4.1 in a slightly generalized form.

COROLLARY 4.5. Every closed image of a D-complex is M_1 .

Proof. This follows immediately by Theorem 4.1 and [8, Theorem 3.6].

Finally, we consider the adjunction space of two spaces with a σ -almost locally finite base. We begin with the following theorem.

THEOREM 4.6. Every D-complex has EP-ALF.

Proof. Let X be a D-complex. Suppose that $X = \bigcup \{X_i : i \in N\}$, $X_i \subset X_{i+1}$, where each X_i is a $D(n_i)$ -complex and closed in X, and X is dominated by $\{X_i : i \in N\}$. Let $X' = F \cup X$ be a monotonically normal space, where F and X are closed sets of X'. Suppose $\mathfrak{A} = \{U(\alpha_0) : \alpha_0 \in A\}$ is an almost locally finite open family in F. Let $X'_1 = F \cup X_1$.

Since X_1' is monotonically normal, F and X_1 closed in X_1' and X_1 a $D(n_1)$ -complex, by Lemma 3.4 every $U(\alpha_0)$ can be extend to open sets $\{U(\alpha_0, \alpha_1): \alpha_1 \in A(\alpha_0)\}$ in $F \cup X_1$ satisfying (C1), (C2), (C3). (In particular, we assume that the method of extensions is the same one of Lemma 3.4.) Repeating this process we get for each k an almost locally finite open family

$$\{U(\alpha_0, \alpha_1, \dots, \alpha_k) \colon \alpha_0 \in A, \alpha_1 \in A(\alpha_0), \dots, \alpha_k \in A(\alpha_0, \alpha_1, \dots, \alpha_{k-1})\}$$
 in $F \cup X_k$. Let

$$\Sigma = \{(\alpha_0, \alpha_1, \alpha_2, \ldots) : \alpha_0 \in A, \alpha_1 \in A(\alpha_0), \alpha_2 \in A(\alpha_0, \alpha_1), \ldots\}.$$

For each $(\alpha_0, \alpha_1, \alpha_2, ...) \in \Sigma$, let

$$U(\alpha_0, \alpha_1, \alpha_2, \ldots) = \bigcup \{U(\alpha_0, \alpha_1, \ldots, \alpha_k) : k \in N\}.$$

Then it is easily verified by the same method of Theorem 4.1 that

$$\mathfrak{A}' = \{ U(\alpha_0, \alpha_1, \alpha_2, \ldots) \colon (\alpha_0, \alpha_1, \alpha_2, \ldots) \in \Sigma \}$$

is an almost locally finite open family satisfying (C1), (C2), (C3). Thus X has EP-ALF.

THEOREM 4.7. Let X be a D-complex, Y a space with a σ -almost locally finite base, F a closed set of X and f a map from F into Y. Then the adjunction space $X \cup_f Y$ has a σ -almost locally finite base.

Proof. Let $Z = X \cup_f Y$, p the projection from the free union $X \cup Y$ onto Z and q the restriction of p to X. Suppose $\{\mathfrak{A}_i : i \in N\}$ is a σ -almost locally finite base of p(Y). Now, for the fixed element $i \in N$, let $\mathfrak{A}_i = \{U_\alpha : \alpha \in A\}$. Since $q^{-1}(\mathfrak{A}_i) = \{q^{-1}(U): U \in \mathfrak{A}_i\}$ is obviously an almost locally finite open family in F, by Theorem 4.6 there exists an almost locally finite open family $\mathfrak{A}_i = \{V_\beta : \beta \in B = \bigcup \{B_\alpha : \alpha \in A\}\}$ in X satisfying (C1), (C2), (C3). For $\beta \in B_\alpha$, let $U'_\beta = U_\alpha \cup p(V_\beta)$ and $\mathfrak{A}'_i = \{U'_\beta : \beta \in B\}$. Then it can be easily verified that U'_i is an almost locally finite open family in Z and $\bigcup \{\mathfrak{A}'_i : i \in N\}$ is a σ -almost locally finite local base at each point $z \in p(Y)$. Let $\{\mathfrak{A}_i : i \in N\}$ be a σ -almost locally finite base in X - F and $\mathfrak{A}''_i = \{p(W): W \in \mathfrak{A}_i\}$. Then $\{\mathfrak{A}'_i, \mathfrak{A}''_i : i \in N\}$ is obviously a σ -almost locally finite base of Z. This completes the proof.

COROLLARY 4.8. The adjunction space of two D-complexes has a σ -almost locally finite base.

TAKUO MIWA

REFERENCES

- [1] C. J. R. Borges, Metrizability of adjunction spaces, Proc. Amer. Math. Soc., 24 (1970), 446-451.
- [2] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105-126.
- [3] B. Fitzpatrick Jr., Some topologically complete spaces, General Topology Appl., 1 (1971), 101-103.
- [4] G. Gruenhage, On the $M_3 \Rightarrow M_1$ question, Topology Proc., 5 (1980), 77–104.
- [5] R. W. Heath, D. J. Lutzer and P. L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc., 178 (1973), 481-493.
- [6] D. M. Hyman, A category slightly larger than the metric and CW-categories, Michigan Math. J., 15 (1968), 193-214.
- [7] M. Itō, Weak L-spaces are free L-spaces, J. Math. Soc. Japan, 34 (1982), 507-514.
- [8] M. Itō and K. Tamano, Spaces whose closed images are M₁, Proc. Amer. Math. Soc., 87 (1983), 159-163.
- [9] T. Miwa, Adjunction spaces of weak L-spaces, Math. Japonica, 25 (1980), 661-664.
- [10] _____, Extension properties for D-spaces and adjunction spaces, preprint.
- [11] T. Mizokami, On the closed image of paracomplexes, Pacific J. Math., 97 (1981), 183-195.
- [12] K. Nagami, The equality of dimensions, Fund. Math., 106 (1980), 239-246.
- [13] _____, Dimension of free L-spaces, Fund. Math., 108 (1980), 211-224.
- [14] _____, Weak L-structures and dimension, Fund. Math., 112 (1981), 231-240.
- [15] K. Nagami and K. Tsuda, Complexes and L-structures, J. Math. Soc. Japan, 33 (1981), 639-648.
- [16] J. Nagata, On Hyman's M-spaces, Topology Conference (Virginia Polytechnic Institute and State Univ., 1973); Lecture Notes in Mathematics, No. 375, Springer-Verlag, Berlin, (1974), 198-208.

Received December 14, 1982.

SHIMANE UNIVERSITY MATSUE, SHIMANE, JAPAN