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ON THE LIFTING THEORY OF FINITE GROUPS
OF LIE TYPE

K. MCGOVERN

Let G be a connected reductive algebraic group defined over a finite
field F, of characteristic p >0, g = p“ Let F be a corresponding
Frobenius endomorphism such that G™ = (g € G: F"(g) =g} is a
finite group of Lie type for a positive integer m. In this paper we discuss
various aspects of the lifting theory of these finite groups.

0. Introduction. The paper is divided into four sections. In §1. N.
Kawanaka’s norm map is defined and admissible integers are discussed.
In §2 the lifting theory of G,(q) is described. §3 is devoted to liftings of
certain principal series representations of groups of adjoint type. Finally,
we prove (in §4) that the duality operation defined by C. W. Curtis [7]
commutes with lifting.

We use the notation G*” = G(¢™), Irr H = set of irreducible char-
acters of a finite group H, F‘q = algebraic closure of F,, and 4 = { Flg(,m)-
A acts on G(g™), and is a cyclic group of order m. Embed 4 and G(g™)
into the semidirect product 4 - G(g™). If x € Irr G(¢™) is F-invariant, it
extends to x’ € Irr 4 - G(q¢™). There is a norm map 9U which yields a
bijection {4 - G(g™)-conjugacy classes in F - G(q™)} < {conjugacy
classes of G(gq)} (see §1).

DEFINITION. Let 6 € Itr G(g). Then ¢ € (Irr G(¢™))* is the lift of 6 if
Y extends to ¢’ € Irr 4 - G(q™) and satisfies ¢'(Fy) = CO(9(y)) for
some constant C and for ally € G(gq™).

In 1976 a paper of T. Shintani [16] was published which described the
lifting theory of the finite groups GL(n, q). This marked the beginning of
the lifting theory of finite groups of Lie type. Kawanaka subsequently
developed much of the theory in his papers on U(n, q) [11] and on
Sp(2n, q), SO(2n + 1, q), and SO~ (2n, q) [12]. We will consider the
finite exceptional groups other than G,(¢q) in future papers (work is in
progress).

We wish to thank Professor N. Kawanaka for his constant encourage-
ment and help. We also thank Professors S. Rallis and R. Solomon for
many helpful conversations.
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1. The norm map and admissible integers. The material in this
section can be found in [12]. Let G and F be as above. For a finite group
H and an element & € H, let h* denote the conjugacy class of 4 in H.

(1.1) LANG’s THEOREM. The mapping f: g > F(g~')g of G into G is
surjective.

For x € G(q), let A, = Zg(x)/Zg(x)°. A, is a finite group. For
a € A_, choose y € f!(r,), where r, is a representative of a in Zg(x).
Then yxy~' € G(q), and its G(gq)-conjugacy class depends only on x and
a.

(1.2) DerINITION. Denote the G(g)-conjugacy class of yxy ™' by ,(x)
or z,(x). .

For y € G(g™), put N(y) = y™™" y™" .- yTy (where y™' = Fi(y)),
and choose a, € f (»). Then ayN(y)ay“ € Cm?(q), and its G(gq)-con-
jugacy class depends only on the class (Fy)4 ¢™,

(1.3) DEFINITION. Let ng: {(Fy)* °™: y € G(¢™)} - {(x°?: x €
G(q)} be defined by

-G(g™ _1\G(q)
ne((Fy)" ") = (a,N(y)e; ") ™
for y € G(q™). Then ng is bijective.

(1.4) DeFINITION. For x € G(q), let x = image of x in A4,. Then a
positive integer / is admissible for G and F if (ord(x),/) =1 for all
x € G(q), where ord(x) = order of X in A4,. (It is known (see [18]) that
the splitting of the class of x € G N G(g™) into classes in G(g™) is in 1-1
correspondence with the elements of H'(F™, Z(x)/Zg(x)°) for any m.
Thus the consideration of admissible integers is a natural one for our
purposes.)

(*) Unless stated otherwise, we assume m is admissible. Thus, there is
a unique element x(m) of (X) such that x(m)™ = x.

(1.5) DerFINITION. The map tg: G(q) — {x°?: x € G(q))} is given by
16(x) = t(my(x)

for x € G(q).
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(1.6) REMARKS.

(i) ¢ induces a permutation of the set of conjugacy classes of G(q).
(ii) t is the identity map in case Zg(x) = Zg(x)° for all x € G(q).
(iii) z5(x) = x in case x € Zg(x)".

(1.7) DEFINITION. Let 9N = 7' o ng and Mg = Ng'.
(1.8) THEOREM.
@)

(x99: x € 6(g)) = ((B)" sy € 6(4)

G

are bijections.
(i1) For any y € G(gq™),

(Fy)* 16 (g™ =[0e((F)* )| 16(g)] .
(iii) For y € G(g™), if Zg(N(»))° 2 N(y) (= (Fy)™), then
%G((Fy)A'G(q'")) — nG((Fy)A'G(q”'))‘

In particular, this is the case if N( y) is semisimple or G = GL(n, F‘q).
(iv) Let T be an F-stable torus in G, and let T = T*". For t € T we
have

%G((Ft)A‘G“’m)) = N(t)G(").
(v) Let a € G(q) such that (ord(a), m) = 1. Then
%G((Fa)A'G(q’")) — (am)G(‘l)‘

(1.9) Let H be an F-stable connected algebraic subgroup of G for
which m is admissible. Put H(¢™) = H”". Then M i (A#D) C M (h%?D)
for any h € H(q).

We will abbreviate 9 as 9, and M as .

Definitions (1.2)—(1.5) and (1.7) are due to Kawanaka.

2. The lifting theory of G,(gq). The following theorem holds for
G,(q), g = p°, for sufficiently large p, depending on the rank of G, (see
[9], [13]), and for p = 2, 3.
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(2.1) THEOREM. Let m be a positive integer which satisfies (m,2) =
(m, 3) = 1. Let 9U be the norm map defined in (1.7). Then

() For any irreducible character x of Gy(q), there is a unique ¢, €
(Irr G,(q™))¥ such that

x(N(y)) = edyy(Fy)

for all y € G,(q™), where ¢ = =1, § is an mth root of 1 (both independent
of y), and y, is an extension of Y, to A - G,(q™).
() The map x — ¢, gives a bijection between lIir G,(q) and

(Irr Gy(q™)".

Proof. Notation will be as in [S], [6], [12]. We first identify the
admussible integers for G,(q).

(2.2) LEMMA. The admissible integers for G,(q) are those integers m
satisfying (m,2) = (m,3) = 1.

Proof of Lemma (2.2). Assume m is admissible. We consider the cases
p #2,3,p=2,and p = 3 separately.

(1) p # 2, 3. If g = 1 (mod 3), consider the element x = A(w, w, w)y,
where y is a regular unipotent element of SL(3, ¢). Then x has order 3p,
and 4, = Zg(x) /ZGz(x)O is isomorphic to Z;, a cyclic group of order 3.
Furthermore x has order 3 in A4,. A similar analysis for ¢ = —1 (mod 3),
together with the information above, yields (m,3) = 1. To see that we
must have (m,2) =1, consider x = h(—1, =1, Dx,()x (1) if g=1
(mod 3) (or x = h(—1, —1, D)x,(1)x(A) if g = —1 (mod 3)). Then 4, is
isomorphic to a cyclic group of order 2, and x has order 2in 4.

(i) p = 2. As above we must have (m, 3) = 1. Since 2 is a bad prime
for Gy, Zg(x)/Zg(x)? =(x)=1Z,, a cyclic group of order 2, for a
regular unipotent element x. This yields (m,2) = 1.

(iii) p = 3. Arguments are the same as in (ii), with the roles of 2 and 3
interchanged.

(2.2) REMARKS.

(i) Since G, is simply connected (as an algebraic group), the central-
izers of semisimple elements are connected. These elements, then, will not
impose restrictions on m.

(i1) For p # 2, 3 all unipotent elements u are contained in ZGZ(u)O.
Hence these too impose no restrictions on m. In any case, | Zg (u)/Z¢( u)°|
is divisible only by the primes 2 and 3.
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(iii)) Examination of the conjugacy classes of G,(q) ([5], [6]) shows
that it is sufficient that (m,2) = (m,3) =1 for an integer m to be
admissible. With this observation, the proof of Lemma (2.2) is complete.

Now the remainder of the proof proceeds much as that in [12]. We
use a version of Brauer’s characterization of characters (see Lemma (1.5)
of [11]). After invoking (1.8) (i) and (ii), we see that it is sufficient to prove
the following lemma:

(2.3) LeMMA. Let E = (g)X S be an elementary subgroup of G,(q).
(So g € Gy(q) and S is an s-group for some prime number s satisfying
(ord(g),s) = 1.) Then there exists an F-stable subgroup H C G, with
H(q™) contained in G,(q™) and a bijection

Mgregm = {x7@: x € H(q)} - {(Fy)*™": y € H(q™)}

such that
() E C H(q™),

(i) DMy my(x7P) T M(x D) for any x € H(q),

(iii) For any irreducible character ¢ of A - H(q"™), ¢ © My m is either
zero or an irreducible character of H(q) up to a constant multiple in
Z(e*™'/™). (Note that for any class function n on A - G,(q™), 1 © M is the
class function on G(q) defined by n o M(x) = n(m,) for x € G(q) and
m, € (sz(q)).)

Proof of Lemma (2.3). First assume p 2, 3. Let E = (g) X S be an
elementary subgroup of G,(q). Let g = g, g, be the Jordan decomposition
of g, where g, is semisimple and g, is unipotent. Since the center of G, is
trivial, we have Z (x) £ G, for all x € G,. In many cases, then, we appeal
to the lifting theory of Zg(x). The following cases will be considered:

(Mg *1,

Qg=g8,5=2,
3 g=28,5=3
Dg=g,5=p,

S)g=g,s%23,p.

Case 1. If g, # 1, then 1 # Z5(g,) = Zg( g,)°. In view of the results
in [3], [S], [6], [10] it suffices to prove (ii) and (iii) above for H = SL(2, Fq),
SL(3,F,), GL(2,F,), and F-stable maximal tori T <G,. (Then H” =
SL(2, q), SL(3, q), SU(3 q), GL(2, q), U(2, q).) It is easy to see that all
odd integers are admissible for SL(2, i'q) and that all integers relatively
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prime to 3 are admissible for SL(3, l_*"q). It is also straightforward that
irreducible characters of SL(2, gq) (respectively SL(3, g)) always lift to
F-invariant irreducibles of SL(2, ¢™) (respectively SL(3, ¢™)) if and only
if m is admissible, for ¢ odd. (If g = 2¢, irreducibles of SL(2, q) always
lift.) All integers are admissible for GL(2, F’q) and F-stable maximal tori T,
and the lifting theory for these groups is known. If ord(g,) # 2, 3,
H = Zg(g,)° H(g™) = H"", and My ,» = My satisfy conditions (i)-
(iii) above. In case ord(g,) = 2, we may use H= SL(2,F,) o SL(2,F))
(central product) instead of the full centralizer of g, and (i)—(iii) are
satisfied with H(¢™) = SL(2, ¢™) o SL(2, ¢™) and ")ILH(qm) = M . In case
g, is an element of order 3 whose centralizer has order q(q = 1)(qg * 1),
an appropriate subgroup of Z;(g,) may be used for H in a similar
manner.

In the remaining cases, g = g, and, since g, € Zg( g,)°, the mapping
tg, is trivial on g,.

Case 2. S nontrivial = there is an element 1 # x € Z(S) (the center
of §). Then (g,) X § = Z(x) and this is considered in case 1.

Case 3 and Case 5 are proved similarly.

Case 4. This can only occur if E = (g,) or E=S, where S is a
p-group, since (ord g,, s) = 1. If E = (g,), we invoke Gyoja’s result on
the lifting theory of exponential unipotent subgroups, and the case £ = §
follows similarly. (This is where the constraint on p is needed.)

This completes the proof of Lemma 2.3, and thus completes the proof
of Theorem (2.1) in case p # 2, 3.

If p = 2 or 3, the lemma, hence the theorem, is proved essentially as
above, except that now regular unipotent elements u & ZGz(u)O. It is
necessary then to reconsider the case g = g,, s =2 (if p = 3),and g = g,,
s = 3 (if p = 2) in this context. Letting H = (g,) X S and ‘?JIL;,(‘ o Fxp)
= (x"y™)#(@ for x € (g,) and y € S proves the lemma in case p = 2 or
3, and the theorem is established.

Theorem (2.1) holds for all p, in case we require that (m, p) = 1. One
would use Theorem (1.8)(v) instead of [9, Prop. 4.4] in the proof above.

3. Principal series representations. Let G be a simple adjoint alge-
braic group, and let F be a Frobenius endomorphism such that G =
G(q") is a finite untwisted group of adjoint type. Let (W, R) be the
Coxeter system of G, and for J C R, denote by W, the parabolic subgroup
of W corresponding to J. Fix a positive integer m and assume lifting from
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Irr G(q) to Irr G(g@™) occurs for all ¢ € Irr G(g), and similarly for all
parabolics of G(q).

Let T(q) be the standards torus of G(gq). For any A € Irr T(q),
W(A) = {w € W: X = A} is a reflection group with fundamental system
S, and (W(A), S) is a Coxeter system. See [14] for details. For each
J C R, W(A) N W, is a parabolic subgroup of W(A). (See [15].) Fix
A € Irr T(q) so W(A) satisfies the following: as J ranges over all subsets
of R, J N S ranges over all subsets of S. Then {W(A) N W;: J C R}
consists of all parabolic subgroups of W(A). (This occurs, for example,
when W(A) is a parabolic subgroup of W.)

Composing A with N, (the usual map on tori), it is evident that
Ao N, €IrrT(q"), and W(A) = W(A° N,). The constituents of
(A o N,)5%,) are parametrized by the irreducible characters of W(A), as
are the constituents of A%?). We denote by ¢, ,, (respectively §,) the
unique constituent of (A ° N,,)5{4.) (respectively A%?)) corresponding to
Y € Irt W(A). If W(A) is of type G,, E,, or Eg, we consider only those
irreducible characters ¥ of W(A) which are uniquely determined by the
multiplicities {(¢, 1}{Ax)): J € R}. This occurs for almost all the irre-
ducibles (see [4]).

Let A(A) be the generic algebra associated with (W(A), S). Then
A(A) is an associative C[¢]-algebra with generators {a,: w € W(A)} and
satisfies:

(@ a,a, = a,,, (ww,) =l(w) + 1,

(1) a,a, = 1ta,, t(— Da,, (ww,) =1Iw)—1,
forw € W(A),w, € S.

For a subset / C R, 4,(A) is a subalgebra of A(A) with generators
{a,: w& W, N W(A)} since W, N W(A) is a parabolic subgroup of
W(A). Let 3(G(q™), B(q™), Ao N,) be the Hecke algebra of G(q™)
corresponding to A o N,,. There are isomorphisms f,,: ¢ = g™ and f;: t > 1
with extensions f; and f§* such that the specialized algebra A(A), =
H(G(g™), B(¢™), A°N,)=I(A°N,) and A(A), = W(A). Then
{a,, s} forms a basis for J(A ° N,,); {a,, z} = W(A). For any irreducible
character x of A(A)x (K = splitting field for 4(A)), x, € Irr W(A) and
X € Ir (A o N,). We sometimes say §, , = X s> though actually
$om I‘JC“ ony - Xrpe

Since F acts trivially on W, each {,, may be regarded as an
irreducible character of 4 - G(gq™). Call the extended character §,, .. From
Shintani’s work [16] and Lemma 1.1.9 in [2] we see that (A o N,,,)ggg;,";( Fy)

= cAF(I(y)) for all y € G(¢™) and some constant c¢, where
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(A o N,)5¢4.) is regarded as a character of 4 - G(¢”) and 9 is the norm
map in [2]. In [2, §2], T. Asai characterized the lifting theory of
constituents of 15(3, where G(q) is GL(n,q), U(n,q), Sp(2n,q),
SOQ2n + 1, q), or SO (n, q). Because of the nature of the decom-
position of (A N,)5{e.) and AG?), the general ideas in [2, §2] also
apply to our setting. In particular, for x' € Irrf(W(A) N W), let x"*™
=3,n, 40, as ¢ varies over Irr W(A), for nonnegative integers n,. .
Then é’fgxm) =24y 6So.m andf;‘,",ﬁ“’"') = 2y My o8o.m Where o lg
= Xz, for x € Irr 4,(A)g and &, ,, is the extension of {,, , to 4 - P,(¢™).

(3.1) THEOREM. Notation as above. For §, € N§?) and ¢ € Irr W(A),
one has 1ify(§,) = $oome

Proof. We use induction on the rank of (W(A),S). For rank
(W(A), S) = 1, A5 = Stya T $(A), where St is the generalized
Steinberg character and {(A) is the generalized identity in Irr G(g) corre-
sponding to A. Then Gyoja’s work implies that St » lifts to Stgm o x
and {(A) lifts to {(A o N,,) (see §6 of [9], and [14]).

Now assume rank(W(A), S) = 2, and the theorem holds for all proper
parabolics P,(q) of G(gq). Since (Ao N,)HZ)(Fy) = cAG(I(y)), it
follows that lift(§,) = §, for some ¢ € Irr W(A), by Lemma 1.1.8 of [2].
Restricting {, and {, to the appropriate parabolic subgroups gives
Ylw,oway = lw,owny (as J ranges over all subsets of R), using the
induction hypothesis.

Then since {W; N W(A): J C R} is the set of all parabolic subgroups
of W(A), the proof of the theorem is completed by using a theorem of
Benson and Curtis [4]:

Let (W, S) be an irreducible Coxeter system of rank = 2. Let x|,
X, € Irr W (with exceptions in types G,, E,;, and Eg as noted above).
Then x, |y, = X2 lw, for all J C S implies x; = x,.

4. Duality and lifting. Let G be a finite group of Lie type, and
(W, R) the Coxeter system of G. C. W. Curtis has defined two operations
in chary(G), the ring of complex valued characters of G [7].

(1.4) DEFINITION. Let { be a character of G and let M be the module
affording . For any subset J C R, let § ) be the character of P, afforded
by inv, (M) ={m € M: vm=mVv € V}}.
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(4.2) DErFINITION. Let G, (W, R), { be as above. The dual {* of { is
defined to be
= 2 (_l)mgg’ﬂ'
JCR
Extending the definition of § » ) by additivity, there are well-defined maps
char,(G) — charg(P;) via § - { ) and char,(G) — char,(G) via { - {*.
The duality operation is a generalization of the construction of the

Steinberg character St;. In fact, 1% = St;. D. Alvis has proved that
={* € Irr G if ¢ € Irr G, and that {** = {[1].

(4.3) THEOREM. Suppose { € Irt G(q) lifts to ¢ € Irr G(q™). Then
&$* € Irr G(q) also lifts, and lift(e,{*) = e > € Irr G(q™), for constants
&, €, The converse is also true, since * is an involution.

Proof. For a character 6 of G, 6* = 2, _p(—1)10%,, where §,, =
2 a,¢,, summed over all ¢, € Irr L,, and ¢, is the extension of ¢, to P,
obtained by putting V; in its kernel.

Assume ¢{ lifts to ¥;. We must show (i) e,¢* is F-invariant and (ii)
(e 0¥ (Fy) = &8*(N(y)) for all y € G(g™) (where (e,y*)" is an exten-
sion of e, ¢* t0 A - G(q™)). That e,¢* if F-invariant follows from the
F-invariance of ¢ and from the properties of y*.

The original proof of (ii) is given now, and holds only in case F is of
untwisted type. We first show that §p ,(9U(I0)) = ¢/4.p,m)(Flv) for
I € L,(q™) and v € V;(g™). By definition of the norm map 9 we have
N(l) =N (I)v" for some v’ € V,(q) since V,(g™) is normalized by
L,(q™). Thus

S (A1) =S p g (T(1)v') = g‘w)(%(l))‘
Now we may assume

‘P(,A-P,(q'"))(Fl) =y’ (F1).

A-L;(q™)

Since lift { = ¥, it follows that

e‘p\l’,lA.LJ(q'")(Fl) :§|L1(q)(%(l))’

and hence

g‘(1"1(11))(91’(10)) = 8¢‘I’(/A.pj(q'"))(Flv).
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Now we use Lemma 1.1.9 in [2] to finish the proof. Combining it with the
above, we have

'A-G(q™) m
ey (4. P,(zq'"))(Fy) = f((;éc(lc),))(%()’)) forally € G(q™).

Thus
(e8*)(9(y)) = JZR(— D7e GO ()
c
B JE:R(_ 1 g \b‘l’ :AG;J‘:qL))(Fy)’

and the proof is complete.

We wish to heartily thank Professor Kawanaka for providing us with
the following explicit proof. In (II), below, he generalizes the theorem to
include the case of F acting nontrivially on P,(g¢™).

() If F fixes P,(q™), then

§(P,(q))(% lv)) lV q)| 2§(9L(lv)v') (U, € VJ(‘I))

V(@) Sy (o1)v)
v D s qoon] (o€ vigm)
V(g™ %

Z%‘I’,(FIU) = x,(Fl),

v

1

V(™)

where x ; is a character of 4 - P;(q™) afforded by invy, (M, ) (and M,,
affords ¢"). Then

L) = 3 (L) = 3 (=1 ()
JCR JCR

(by using Lemma 1.1.9 on [2]).

But this is an extension of y* to 4 - G(¢™), and we may conclude
that (e,*)(N(y)) = e Y*(Fy).

(II) If F acts nontrivially on P,(¢™), let {P)(q™) = P;(q™),
P;(q™),...,P;(q™)} be the F-orbit of P;(q™). Let x; be the character of
A - G(q™) satisfying

n

i G(qg™)
XJ|G(q"') = .20((3' ° F')(I’,,(q"‘))) !
l=
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and F permutes the (n + 1) characters which are summands of x ;|G ,m)-
Then x ,(Fx) = 0 for all x € G(¢™), and the result follows by summing
over all / C R as above.

(4.4) COROLLARY. Let A € Irr T(q) and §, € NG, (notation as in §3).
Then §, lifts t0 §, ,, € (A o N,)5% if and only if §, ., lifts t0 $y, g m-

Proof. In [15] it is proved that {3 ={, .
(4.5) COROLLARY. The Steinberg character St always lifts.
Proof. 1% = Stg.

Corollary (4.5) has been proved independently by Gyoja [9, Lemma
6.2(3)], in case the algebraic group giving rise to G(g), G(¢™) has a
connected center.
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