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ON THE LIFTING THEORY OF FINITE GROUPS
OF LIE TYPE

K. MCGOVERN

Let G be a connected reductive algebraic group defined over a finite
field F̂  of characteristic p > 0, q — pa* Let F be a corresponding
Frobenius endomorphism such that G F m = (g e G: Fm(g) = g} is a
finite group of Lie type for a positive integer m. In this paper we discuss
various aspects of the lifting theory of these finite groups.

0. Introduction. The paper is divided into four sections. In §1. N.
Kawanaka's norm map is defined and admissible integers are discussed.
In §2 the lifting theory of G2(q) is described. §3 is devoted to liftings of
certain principal series representations of groups of adjoint type. Finally,
we prove (in §4) that the duality operation defined by C. W. Curtis [7]
commutes with lifting.

We use the notation Gfm — G{qm), irτH — set of irreducible char-
acters of a finite group H, Ψq = algebraic closure of F ,̂ and A — { F\G{qm^).
A acts on G(qm), and is a cyclic group of order m. Embed A and G(qm)
into the semidirect product A G(qm). If χ E Irr G(qm) is F-invariant, it
extends to χ' E Irr^ί G(qm). There is a norm map 91 which yields a
bijection {A G(#m)-conjugacy classes in F G{qm)} +* (conjugacy
classes of G(q)} (see §1).

DEFINITION. Let θ E Irr G(q). Then ψ E (Irr G(qm))F is the lift of θ if
ψ extends to ψr E Irr,4 G{qm) and satisfies ψ'(Fy) = Cθ(%(y)) for
some constant C and for ally E G(qm).

In 1976 a paper of T. Shintani [16] was published which described the
lifting theory of the finite groups GL(«, q). This marked the beginning of
the lifting theory of finite groups of Lie type. Kawanaka subsequently
developed much of the theory in his papers on U(n,q) [11] and on
Sp(2/i,tf), SO(2n + l9q), and SO±(2n,q) [12]. We will consider the
finite exceptional groups other than G2(q) in future papers (work is in
progress).

We wish to thank Professor N. Kawanaka for his constant encourage-
ment and help. We also thank Professors S. Rallis and R. Solomon for
many helpful conversations.
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1. The norm map and admissible integers. The material in this
section can be found in [12]. Let G and F be as above. For a finite group
H and an element h E H, let hH denote the conjugacy class of h in H.

(1.1) LANG'S THEOREM. The mapping f: g -> F{g~λ)g of G into G is
surjective.

For x E G{q\ let Ax = ZG(x)/ZG(x)°. Ax is a finite group. For
a E Aχ9 choose y Ef\ra)9 where ra is a representative of a in ZG(x).
Then^jcy"1 E G(#), and its G(#)-conjugacy class depends only on x and
a.

(1.2) DEFINITION. Denote the G(<?)-conjugacy class of yxy'x by ta(x)

For y E G(^ w ), put N(y) = j F m j F m ' ' ' ^ ^ (where yF' =
and choose c^ &f^\y). Then α^iV(^)α~ι E (/(#), and its
jugacy class depends only on the class (Fy)AG{qm\

(1.3) DEFINITION. Let nG: {{Fy)AG^m\ y E G(qm)} -> [xG{q): x E
G(q)} be defined by

for y E G(qm). Then «G is bijective.

(1.4) DEFINITION. For x E G{q\ let 3c = image of x in A,. Then a
positive integer / is admissible for G and F if (ord(x), /) = 1 for all
x E (?(#), where ord(x) = order of x in Ax. (It is known (see [18]) that
the splitting of the class o f * E G n G ( # m ) into classes in G(qm) is in 1-1
correspondence with the elements of Hι(Fm, ZG(x)/ZG(x)°) for any m.
Thus the consideration of admissible integers is a natural one for our
purposes.)

(*) Unless stated otherwise, we assume m is admissible. Thus, there is
a unique element x(m) of (x) such that x(m)m = 3c.

(1.5) DEFINITION. The map ίG: G(q) -> {xG{q): x E G(q)} is given by

forjc E
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(1.6) REMARKS.

(i) tG induces a permutation of the set of conjugacy classes of G(q).
(ii) tG is the identity map in case ZG(x) = ZG(x)° for all x E G(q).

(in) tG{x) = x in case x E ZG(x)°.

(1.7) DEFINITION. Let 9 l G = tG

λ ° nG and 91tG = 9 1 ^ .

(1.8) THEOREM.

(i)

{ x ^ . x e ( ? ( < ? ) } J A G ^

are bijections.
(ii)Foranyj> E G(qm),

(iii) F o r j £ G(qm), if ^ ( ^ ( j ) ) 0 3 iV(y) ( = (Fy)"1), then

In particular, this is the case if N(y) is semisimple or G = GL(«, F^).
(iv) Let T be an F-stable torus in G, and let T = Ίpm. For t E T we

have

<%G{{Ft)AG{qm)) = N(t)G(q\

(v) Let a E G(^) such that (ord(α), m) = 1. Then

(1.9) Let H be an jp-stable connected algebraic subgroup of G for
which m is admissible. Put H{qm) = H F m . Then 91LH(ΛW(^) C 9llG(A6(^>)
for any Λ E /f(?).

We will abbreviate %G as 91, and 9HG as 9H.
Definitions (1.2)—(1.5) and (1.7) are due to Kawanaka.

2. The lifting theory of G2(q). The following theorem holds for
^2(9)* 9 ~ Pa> f°Γ sufficiently large /?, depending on the rank of G2 (see
[9], [13]), and for p = 2, 3.
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(2.1) THEOREM. Let m be a positive integer which satisfies (ra,2) =

(m, 3) = 1. Let 91 be the norm map defined in (1.7). Then

(i) For any irreducible character χ of G2(q), there is a unique ψχ E

(Irr G2{qm))Fsuch that

for ally E G2(qm), where ε = ± 1, δ is an m\h root of 1 {both independent

ofy), andψ^ is an extension ofψχ to A G2(qm).

(ii) The map χ -> ψχ g/ϋ&s1 α bijection between In G2(q) and

(IrrG2(<Γ))F.

Notation will be as in [5], [6], [12]. We first identify the

admissible integers for G2(q).

(2.2) LEMMA. The admissible integers for G2(q) are those integers m

satisfying (m, 2) = (ra, 3) = 1.

Proof of Lemma (2.2). Assume m is admissible. We consider the cases

p φ 2, 3, p — 2, and /? = 3 separately.

(i) p φ 2, 3. If q = 1 (mod 3), consider the element x = Λ(ω, ω, ω)j%

where ^ is a regular unipotent element of SL(3, q). Then x has order 3/?,

and v4x = ZG2(x)/ZGi(x)° is isomorphic to Z 3 , a cyclic group of order 3.

Furthermore 3c has order 3 in Ax. A similar analysis for q = — 1 (mod 3),

together with the information above, yields (ra, 3) = 1. To see that we

must have (m,2) = 1, consider x — h(— 1, — 1, l)x^(l)xc(l) if q = 1

(mod 3) (or x = A ( - l , -1,1)x 6 ( l)x c (λ) if # Ξ - 1 (mod 3)). Then Ax is

isomorphic to a cyclic group of order 2, and x has order 2inAx.

(ii) /? = 2. As above we must have (m, 3) = 1. Since 2 is a bad prime

for G 2, ZG2(x)/ZG2(x)0 = (x) = Z 2 , a cyclic group of order 2, for a

regular unipotent element x. This yields (m, 2) = 1.

(in) p — 3. Arguments are the same as in (ii), with the roles of 2 and 3

interchanged.

(2.2) REMARKS.

(i) Since G 2 is simply connected (as an algebraic group), the central-

izers of semisimple elements are connected. These elements, then, will not

impose restrictions on m.

(ii) For p φ 2, 3 all unipotent elements u are contained in ZG2(w)°.

Hence these too impose no restrictions on m. In any case, | Z G (u)/ZG i(u)° \

is divisible only by the primes 2 and 3.
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(iii) Examination of the conjugacy classes of G2(q) ([5], [6]) shows
that it is sufficient that (m,2) = (m,3) = 1 for an integer m to be
admissible. With this observation, the proof of Lemma (2.2) is complete.

Now the remainder of the proof proceeds much as that in [12]. We
use a version of Brauer's characterization of characters (see Lemma (1.5)
of [11]). After invoking (1.8) (i) and (ii), we see that it is sufficient to prove
the following lemma:

(2.3) LEMMA. Let E = (g) X S be an elementary subgroup of G2(q).
(So g E G2(q) and S is an s-group for some prime number s satisfying
(ord(g), s) — 1.) Then there exists an F-stable subgroup H c G 2 with
H(qm) contained in G2(qm) and a bijection

such that
(i)

(ii) VtH{qm)(xH{q)) C <Ul(xG*rt) for any x E H(q\
(iii) For any irreducible character φ of A H(qm), φ ° ^ ^ ^ is either

zero or an irreducible character of H(q) up to a constant multiple in
Z(e27Ti/m). (Note that for any class function η on A G2(qm\ η o <$l is the
class function on G(q) defined by η ° 91L(x) = η(mx) for x E G(q) and
mx E (

Proof of Lemma (2.3). First assume p φ 2, 3. Let £ = ( g ) X 5 ' b e a n
elementary subgroup of G2(q). Let g — gsgu be the Jordan decomposition
of g, where gs is semisimple and gu is unipotent. Since the center of G2 is
trivial, we have ZGi(x)^G2 for all x E G2. In many cases, then, we appeal
to the lifting theory of ZG^x). The following cases will be considered:

(2) g = gu,s = 2,
(3) g = gu,s = 3,

(4)g = g l l,J=/>,
(5) g = gu, sφ 2, 3, p.

Case 1. If gs φ 1, then 1 φ ZGi(gs) = ZGi(gs)°. In view of the results
in [3] J5], [6], [10]_it suffices to prove (ii) and (iii) above for H = SL(2, F^),
SL(3,F,), GU29¥q)9 and F-stable maximal tori T < G2. (Then HF =
SL(2, q)9 SL(3, q\ SU(3, q\ GL(2, #),_U(2, q).) It is easy to see that all
odd integers are admissible for SL(2,F^) and that all integers relatively
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prime to 3 are admissible for SL(3,F^). It is also straightforward that
irreducible characters of SL(2, q) (respectively SL(3, q)) always lift to
jp-invariant irreducibles of SL(2, qm) (respectively SL(3, qm)) if and only
if m is admissible, for q odd. (If q — 2a

9 irreducibles of SL(2, q) always
lift.) All integers are admissible for GL(2, F )̂ and Testable maximal tori T,
and the lifting theory for these groups is known. If oτά{gs)^2, 3,
H = ZGi(gs)°, H(qm) = HF™, and 9 H H ( O = 9ltH satisfy conditions (i)-
(iii) above. In case ord(gs) = 2, we may use H = SL(2,F^) o SL(2,F^)
(central product) instead of the full centralizer of gs, and (i)-(iii) are
satisfied with H{qm) = SL(2, qm) o SL(2, qm) and ^lHiqm) = 9HH. In case
gs is an element of order 3 whose centralizer has order q{q ± \){q + I)2,
an appropriate subgroup of ZG^gs) may be used for H in a similar
manner.

In the remaining cases, g — gu and, since gu E ZG2(gM)°, the mapping
tGi is trivial on gM.

Case 2. S nontrivial =» there is an element l ^ x G Z ( S ) (the center
of S). Then (gM) X S < ZG(x) and this is considered in case 1.

Case 3 and Case 5 are proved similarly.

Case 4. This can only occur if E — (gu) or E — S, where S is a
/7-group, since (ord gu9 s) — 1. If E — (gu)9 we invoke Gyoja's result on
the lifting theory of exponential unipotent subgroups, and the case E = S
follows similarly. (This is where the constraint on p is needed.)

This completes the proof of Lemma 2.3, and thus completes the proof
of Theorem (2.1) in case/? Φ 2, 3.

If p — 2 or 3, the lemma, hence the theorem, is proved essentially as
above, except that now regular unipotent elements u (£ ZG2(w)°. It is
necessary then to reconsider the case g = gM, s — 2 (if p — 3), and g — gu,
s = 3 (if p = 2) in this context. Letting H = (gu) X S and ^Ήl^iFxy)
— (xmym)H{q) for x €Ξ (gM) andy E S proves the lemma in case/7 = 2 or
3, and the theorem is established.

Theorem (2.1) holds for all/7, in case we require that (m, p) — 1. One
would use Theorem (1.8)(v) instead of [9, Prop. 4.4] in the proof above.

3. Principal series representations. Let G be a simple adjoint alge-
braic group, and let F be a Frobenius endomorphism such that GF" =
G(qn) is a finite untwisted group of adjoint type. Let (W9 R) be the
Coxeter system of G, and for / C /?, denote by Wj the parabolic subgroup
of W corresponding to /. Fix a positive integer m and assume lifting from
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IττG(q) to lττG(qm) occurs for all φ E Ivr G(q)9 and similarly for all
parabolicsof G(q).

Let T(q) be the standards torus of G{q). For any λ ElπT(q),
W{λ) = {w E W: λw = λ} is a reflection group with fundamental system
S, and (W(λ), S) is a Coxeter system. See [14] for details. For each
/ C R, W(λ) Π Wj is a parabolic subgroup of W(λ). (See [15].) Fix
λ E In T(q) so W(λ) satisfies the following: as / ranges over all subsets
of R, J Π S ranges over all subsets of S. Then {W(λ) Π Wy J C R)
consists of all parabolic subgroups of W(λ). (This occurs, for example,
when W(λ) is a parabolic subgroup of W.)

Composing λ with Nm (the usual map on tori), it is evident that
λ o Nm E Irr T(qm\ and W(λ) = W(λ o Nm). The constituents of
(λ © Nm)%[^Z] are parametrized by the irreducible characters of W(λ)9 as
are the constituents of λ*^. We denote by fψ m (respectively ζφ) the
unique constituent of (λ ° Nm)%ffi] (respectively λ * ^ ) corresponding to
ψ E Irr W(λ). If MK(λ) is of type <72, £ 7 , or 2?8, we consider only those
irreducible characters ψ of W1(λ) which are uniquely determined by the
multiplicities {(ψ, l^nV(λ)): •/" C JR}. This occurs for almost all the irre-
ducibles (see [4]).

Let ^4(λ) be the generic algebra associated with (W(λ), S). Then
^4(λ) is an associative C[/]-algebra with generators [aw\ w E W(λ)} and
satisfies:

(i) awaw. = Λ W W | , l(wwt) = /(w) + 1,

( i i ) α w Λ W | = taWWι + ( t - l ) a w 9 l ( w w t ) = l ( w ) - 1,

forn> E W(λ), wt E 5.
For a subset / c i?, ^ ( λ ) is a subalgebra of ^4(λ) with generators

{«„,: w E Wj Π W(λ)} since Ŵ  Π W(λ) is a parabolic subgroup of
W(λ). Let 5C(G(^m), 5(^ m ), λo7Vm) be the Hecke algebra of G(qm)
corresponding to λ © Λ̂ w. There are isomoφhisms/m: t -* qm and/0: / -> 1
with extensions f* and /0* such that the specialized algebra ^(λ^* s
%{G(qm), B{qm\ λ o Nm) = %(λ o ΛΓJ and ^ ( λ ) ^ « W(λ). Then
{awj*} forms a basis for %(λ o Nm)\ {α^*} = W(λ). For any irreducible
character χ of ^ ( λ ) ^ ( ^ = splitting field for Λ(λ)), χ/o* E Irr W (̂λ) and
Xβ E In %(λ ° Nm). We sometimes say f̂ m = χ^, though actually

f ψ , m b c ( λ β Λ r w ) . = X /
Since i 7 acts trivially on FT, each fψ m may be regarded as an

irreducible character of A G(qm). Call the extended character fψ w . From
Shintani's work [16] and Lemma 1.1.9 in [2] we see that (λ o Nm)%[f](Fy)

λ^9 for all y E G{qm) and some constant c, where
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(λ © N„)%[*!] is regarded as a character of A G(qm) and 91 is the norm
map in [2]. In [2, §2], T. Asai characterized the lifting theory of
constituents of 1$$, where G(q) is GL(n,q), U(n,q), Sp(2n,q),
SO(2« + \,q\ or SO±(n,q). Because of the nature of the decom-
position of (λ o NJ^f] and λ ^ , the general ideas in [2, §2] also
apply to our setting. In particular, for χ' E ln(W(λ) Π W5\ let χ'w{X)

= Σψw ψφ, as φ varies over IrrW(λ), for nonnegative integers nχ,φ.
Then $ f > = Σφπχ, f φίφ f m a n d / £ ^ > - Σφ*v,φfφ,m, where ξ χ , ^
= χ Λ , for χ e Irr ̂ ( λ ) ^ and fχ,>m is the extension of ζχ,m to

ξχ,m

(3.1) THEOREM. Notation as above. For fψ e λ ^ and ψ E Irr
has

We use induction on the rank of (W(λ), S). For rank
(W(λ\ S) = 1, λ ^ - S t σ ( Λ λ + f(λ), where StG(<7)λ is the generalized
Steinberg character and f(λ) is the generalized identity in IrrG(g) corre-
sponding to λ. Then Gyoja's work implies that StG U ) λ lifts to StG{qm)λ o ^
and f(λ) lifts to ξ(λ o 7VW) (see §6 of [9], and [14]).

Now assume rank(fF(λ), S) > 2, and the theorem holds for all proper
parabolics Pj(q) of G(q). Since (λ o NJG

B{f](Fy) = cXG

B\%(?fi(y)), it
follows that lift(ίψ) = fφ for some φ E Irr ίF(λ), by Lemma 1.1.8 of [2].
Restricting ξφ and ξφ to the appropriate parabolic subgroups gives
Ψ\\VjC\w{\) = Φl>f,rw(λ) ( a s ^ ranges over all subsets of /?), using the
induction hypothesis.

Then since {Wj Π W^λ): / C R] is the set of all parabolic subgroups
of W(λ), the proof of the theorem is completed by using a theorem of
Benson and Curtis [4]:

Let (W9 S) be an irreducible Coxeter system of rank >: 2. Let χl9

X2EL\TΪW (with exceptions in types G2, EΊ, and E% as noted above).
Then χ, \Wj = χ2 \Wj for all / C 5 implies χ, = χ 2 .

4. Duality and lifting. Let G be a finite group of Lie type, and
(W, R) the Coxeter system of G. C. W. Curtis has defined two operations
in charz((j), the ring of complex valued characters of G [7].

(1.4) DEFINITION. Let ζ be a character of G and let M be the module
affording ξ. For any subset / C R, let ζ(Pj) be the character of Pj afforded
by invKj(Af) = {m E M: vm = mVv E Vj).
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(4.2) DEFINITION. Let G, (W, R\ ζ be as above. The dual f* of ζ is
defined to be

Γ= Σ (-1)%,.

Extending the definition of ζ{Pj) by additivity, there are well-defined maps
charz(G) -> char^P,) via f -* f(/)j) and charz(G) -» charz(G) via ξ -» f*.
The duality operation is a generalization of the construction of the
Steinberg character StG. In fact, 1£ = StG. D. Alvis has proved that
±ξ* e Irr G if f E Irr G, and that Γ * = ? [1].

(4.3) THEOREM. Suppose ζElnG(q) lifts to ψGlrrG(#m). Then
εζζ* E IrrG(ήf) also lifts, and lift(εf?*) = εψψ* E Irr G(^w), /or constants

converse is also true, since * w α« involution.

Proof. For a character β of G, θ* = ΣJQR(-\f]θ(

G

Pj), where 0(/>y) =
Σatφι9 summed over all φz E IrrL / 9 and φf is the extension of φi to Pj
obtained by putting Vs in its kernel.

Assume ξ lifts to ψf. We must show (i) εψψ* is /'-invariant and (ii)
(e^*)\Fy) = eζξ*(%(y)) for all ̂  E G(^w) (where (εψψ*)' is an exten-
sion of ε^ψ* to A - G{qm)). That ε^ψ* if /"-invariant follows from the
F-invariance of ψ and from the properties of ψ*.

The original proof of (ii) is given now, and holds only in case F is of
untwisted type. We first show that ζ(pj(q))(?fi(lv)) — ̂ A.Pj{qm))(Flv) for
/ E Lj(qm) and v E Vj(qm). By definition of the norm map 91 we have
%(lv) = %(l)v' for some v' E Vs{q) since Vs{qm) is normalized by
Lj(qm).Thus

Now we may assume

Since lift f = ψ, it follows that

and hence
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Now we use Lemma 1.1.9 in [2] to finish the proof. Combining it with the
above, we have

Thus

JQR

(-1) ^ μ ; ( θ

JCR

and the proof is complete.
We wish to heartily thank Professor Kawanaka for providing us with

the following explicit proof. In (II), below, he generalizes the theorem to
include the case of F acting nontrivially on Pj{qm).

(l)lίFiixesPj{qm), then

where χ y is a character of A Pj(qm) afforded by inwVjiqm)(M^) (and

affords ψ') τ h e n

= Σ (-ifχ^G(

(by using Lemma 1.1.9 on [2]).
But this is an extension of ψ* to A - G{qm), and we may conclude

(II) If F acts nontrivially on Pj(qm), let {Pj(qm) = Pjo(qm),
PJχ{qm\... ,Pj[qm)} be the F-orbit of Pj{qm). Let χs be the character of
A1- G(qm) satisfying

Y I = V
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and F permutes the (n + 1) characters which are summands of Xj\G(q

my
Then Xj(Fx) = 0 for all x E G{qm), and the result follows by summing
over all / C R as above.

(4.4) COROLLARY. Let λ e Irr T(q) and ξφ E λ ^ (notation as in §3).
Then ξφ lifts to ζ^m E (λ o Nm)G

B[f] if and only ifξ^χyφ lifts to S4myφ,m.

Proof. In [15] it is proved that f* = ^ λ ) . φ .

(4.5) COROLLARY. Γλe Steinberg character StG always lifts.

Proof. 1J = StG.

Corollary (4.5) has been proved independently by Gyoja [9, Lemma
6.2(3)], in case the algebraic group giving rise to G(q), G{qm) has a
connected center.
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