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ATRIODIC HOMOGENEOUS CONTINUA
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Dedicated to Professor F. Burton Jones

In answer to a question of T. Mackowiak and E. D. Tymchatyn [20]
we prove that every atriodic homogeneous continuum is 1-dimensional.
This is accomplished by showing that every atriodic homogeneous con-
tinuum that is not a solenoid and has a decomposable subcontinuum
admits a continuous decomposition to a solenoid and that all elements of
this decomposition are homeomorphic tree-like hereditarily indecom-
posable homogeneous continua. It follows from this decomposition theo-
rem that every tree-like atriodic homogeneous continuum is hereditarily
indecomposable. This decomposition theorem also provides another proof
of the author's theorem [11] that every indecomposable homogeneous
plane continuum is hereditarily indecomposable.

1. Introduction. A space is homogeneous if for each pair p, q of its
points there is a homeomorphism of the space onto itself that takes p to q.
A continuum is a compact connected nondegenerate metric space. A
continuum M is a triod if M has a subcontinuum H such that M\H is the
union of three nonempty disjoint opens sets. When a continuum does not
contain a triod it is atriodic. A continuum M is tree-like if for each positive
number ε there is an open covering of M with mesh less than ε whose
nerve is a tree. A continuum is decomposable if it is the union of two of its
proper subcontinua; otherwise, it is indecomposable. When a continuum
does not have a decomposable subcontinuum it is hereditarily indecom-
posable. Note that every hereditarily indecomposable continuum is atriodic.

In 1951 R. H. Bing [2] proved that every finite-dimensional heredi-
tarily indecomposable homogeneous continuum is 1-dimensional. Re-
cently J. T. Rogers, Jr. [25] proved that every hereditarily indecomposable
homogeneous continuum is tree-like and, therefore, 1-dimensional.
Mackowiak and Tymchatyn [20, Theorem 13.4] proved that every
finite-dimensional atriodic homogeneous continuum is 1-dimensional.
In §13 of [20], Mackowiak and Tymchatyn asked if every atriodic
homogeneous continuum is 1-dimensional. Corollary 1 of §4 (below)
answers this question in the affirmative.

Our arguments involve a decomposition theory for homogeneous
continua that was originated in 1951 by F. B. Jones [15]. Recently Rogers
[24] surveyed this area and presented a general decomposition theory for
homogeneous spaces. Theorem 2 of §4 (below) solves a problem of Jones'
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that Rogers [24, page 142] called the outstanding problem in decomposi-
tions of homogeneous continua.

Mackowiak and Tymchatyn [20, Theorem 14.7] proved that every
decomposable atriodic homogeneous continuum that is not a simple
closed curve has a continuous decomposition to a circle and that the
elements of this decomposition are homeomorphic indecomposable homo-
geneous continua. In §14 of [20] they asked if every atriodic homogeneous
continuum that is not a solenoid and has a decomposable subcontinuum
admits a continuous decomposition to a solenoid such that all elements of
the decomposition are homeomorphic tree-like hereditarily indecomposa-
ble homogeneous continuum. Theorem 2 of §4 (below) answers this
question in the affirmative.

Bing [4, Theorem 10] proved that no tree-like atriodic homogeneous
continuum contains an arc. Mackowiak and Tymchatyn [20, Theorem
14.8] generalized Bing's theorem by proving that no tree-like atriodic
homogeneous continuum has a hereditarily decomposable subcontinuum.
According to Corollary 2 of §4 (below), no tree-like atriodic homogeneous
continuum has a decomposable subcontinuum.

The known examples of atriodic homogeneous continua are the
solenoids [12], the pseudo-arc [1], and the solenoids of pseudo-arcs [23]
[13]. By Rogers' theorem [25] and Theorem 2 of §4 (below), if every
tree-like homogeneous continuum is a pseudo-arc, then there are no other
examples of atriodic homogeneous continua. Unfortunately, it is not
known whether the pseudo-arc is the only tree-like continuum that is
homogeneous. For additional information and unsolved problems in-
volving 1-dimensional homogeneous continua see C. E. Burgess' exposi-
tory article [7].

2. More definitions and related results. A chain is a finite collection
{L{. 1 < / < Λ} of open sets such that Lz Π Ljφ 0 if and only if
|/ —j\^ 1. If Lλ also intersects Ln the collection is called a circular chain.
Each Lz is called a link. A chain (circular chain) is called an ε-chain
(ε-circular chain) if each of its links has diameter less than ε. A continuum
is arc-like (circle-like) if for each positive number ε, it can be covered by
an ε-chain (ε-circluar chain). Bing [1] [3] proved that a continuum is a
pseudo-arc if and only if it is homogeneous and arc-like.

A continuum is a solenoid if it is homeomorphic to an inverse limit of
circles with covering maps as the bonding maps. Note that simple closed
curves are solenoids. The author [12] proved that a continuum M i s a
solenoid if and only if M is homogeneous and every proper subcontinuum
of M is an arc. Rogers [24, Theorem 3] proved that every atriodic
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homogeneous 1-dimensional continuum that contains an arc is a solenoid.
In [20, Theorem 14.8], Mackowiak and Tymchatyn generalized these
results by showing that every atriodic homogeneous continuum that
contains a hereditarily decomposable continuum is a solenoid.

A continuum M is a solenoid of pseudo-arcs if M is circle-like and
there exists a continuous decomposition D̂ of M to a solenoid such that
each element of ^ is a pseudo-arc. In 1959 Bing and Jones [5] constructed
the circle of pseudo-arcs. Rogers [23] used this continuum to construct a
solenoid of pseudo-arcs for each solenoid. The author and Rogers [13]
proved that every circle-like homogeneous continuum is either a solenoid,
a pseudo-arc, or a solenoid of pseudo-arcs.

Following K. Kuratowski [18] we define a continuum M to be of type
λ if M is irreducible and every indecomposable continuum in M is a
continuum of condensation. Type λ continua are studied by E. S. Thomas
in [26]. There they are called continua of type A'.

If a continuum M is of type λ, then M admits a unique monotone
upper semi-continuous decomposition ty such that M/tf) is an arc and
each element of ty has a void interior relative to M [19, Theorem 3, page
216] [26, Theorem 10, page 15]. We shall refer to Θ as simply the
decomposition of Λf.

3. Preliminaries. Throughout this section Λf is an atriodic homoge-
neous continuum with metric p.

Let ε be a positive number. A homeomorphism h of Λf onto Λf is
called an ε-homeomorphism if ρ(xy h(x)) < ε for each point x of Λf.

NOTATION. Let x be a point of Λf. We denote {y E Λf: an ε-homeo-
morphism of Λf onto M takes x toy) by W{x, ε). Let Xbe a subset of Λf.
We denote U {W(x9 ε): x E X) by W(X9 ε).

LEMMA 1. For every positive number ε and every point x of Λf, the set
W{x, ε) is open in M.

Proof, Lemma 1 follows from a short argument [10, Lemma 4, proof]
involving E. G. Effros' topological transformation group theorem [8,
Theorem 2.1].

A continuum is unicoherent provided that if it is the union of two
subcontinuum H and K, then H Π K is connected.

LEMMA 2. Every proper subcontinuum of M is unicoherent [20, Theorem
13.8].
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In the remainder of this section we assume there is a continuum E of
type λ in M. Let k: E -> [0,1] be a quotient map associated with the
decomposition of E. We call k~\0) and k~\l) the end sets of E.

LEMMA 3. Let Y be an element of the decomposition of E distinct from
k~ι(0) and k~\l). Let F be a type λ subcontinuum of M with ends T and V9

and let U be an element of the decomposition of F distinct from T and V.
Suppose h is a homeomorphism of M onto M such that U Π h[Y] φ 0 and
U Π h[k~\0) U k~\l)] = 0 = h[Y] Π ( Γ U V). Then h[Y] = U.

Proof. Lemma 3 follows from the argument given in paragraphs 9
through 11 in the proof of Theorem 1 of [10].

A subcontinuum F of M is called an extension of E away from k~ \0)
if F is a continuum of type λ that contains E and has k~ x(ϋ) as an end set.

NOTATION. We denote the set of all extensions of E away from k" \0)
by S(AΓι(0), E).

LEMMA 4. The set &(k~ \0), E) is linearly ordered by inclusion and does
not have a maximal element [11, Lemma 4].

LEMMA 5. The decomposition of each continuum of type λ in M is
continuous [11, Lemma 5].

A continuum H in E is an essential subcontinuum of E if H intersects
more than one element of the decomposition of E.

LEMMA 6. If H is an essential subcontinuum of E, then H is a continuum
of type λ and every element of the decomposition of H is an element of the
decomposition of E.

Proof. Lemma 6 follows from Lemma 5 and the irreducibility proper-
ties of E [26, Theorem 8, page 14].

LEMMA 7. Suppose F is a continuum of type λ in M such that E\F φ
0 φ F\E. Suppose F Π k~\r) φ 0 for some number r (0 < r < 1).
Then k~\r) is an element of the decomposition of F.

Proof. By Lemma 4, there is a continuum H of type λ in M such that

(1) E is an essential subcontinuum of H that misses both end sets
of//.
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Let / be a continuum of type λ in M such that F is an essential
subcontinuum of / that misses both end sets of /.

Observe that
(2) k~\r) Π(I\F) = 0.

To see this note that since F\E Φ 0 , the continuum F is not in
k~\r). Since M is atriodic, it follows from (1) that there is a point x of F
in H\k~\r). Let / be the continuum of type λ in H such that x belongs
to one end set of / and the other end set of / is k~\r). By Lemma 2,
F Π / is a subcontinuum of /.

Suppose that (2) is false. Then F Π / does not contain k~\r). Hence
F Π J is a proper subcontinuum of /. Since x E F Π / and F Π /
intersects k~\r)9 this contradicts the fact that / is irreducible between x
and k~ι(r). Hence (2) is true.

Since M is atriodic and F D k~\r) φ 0 , it follows from (2) that
k~\r) C F. Therefore, since M is atriodic and E\F Φ 0, there is a point
y of E\k~\r) in I\F.

Let K be the continuum of type λ in E such that y belongs to one end
set of K and the other end set of K is k~\r). Let L be a subcontinuum of
/ that is irreducible between y and k~\r). It follows from Lemma 2 and
the irreducibility of K and L that K = K Π L = L. Hence L is a con-
tinuum of type λ and k~\r) is an element of the decomposition of L.
Since k~x{r) C F and y E I\F, the continuum L is an essential subcon-
tinuum of /. By Lemma 6, k~\r) is an element of the decomposition of /.
Since F is an essential subcontinuum of / and k~\r) C F9 it follows from
Lemma 6 that k"\r) is an element of the decomposition of F.

LEMMA 8. Suppose F is a continuum of type λ in M that intersects E and
misses either k~\0) or AΓι(l). Then U(S(λΓ*(()), E) U &(k'\l)9 E))
contains F.

Proof. The conclusion follows immediately if E contains F. Therefore
we assume that F <fLE. Assume without loss of generality that F misses
k~^O). By Lemma 7, for each number r (0 < r < 1) if k~~\r) intersects an
element Y of the decomposition of F, then k~ι(r) = Y. Hence the union
<Φ of the decompositions of E and F is a monotone continuous (Lemma 5)
decomposition of the continuum EOF. Each element of Φ has void
interior relative to E U F. The quotient space (E U F)/6^ is the union
of two arcs. Since M is atriodic, (E U F)/6^ is atriodic. Moreover
(E U F)/6^ is not a simple closed curve since F misses /^(O). It fol-
lows from Lemma 2 that (E U F)/6!) does not contain a simple closed
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curve. Thus (E U F)/6^ is an arc and E U F is a continuum of type λ.
Furthermore k~~ *(()) is an end set of E U F. Hence EOF belongs to
&(k~\0), E). This completes the proof of Lemma 8.

LEMMA 9. Every element of the decomposition of E is homogeneous.

Proof. Lemma 9 follows from paragraphs 5 through 12 in the proof of
Theorem 1 of [10].

LEMMA 10. Suppose N is an indecomposable subcontinuum of M that
contains E. Then N contains U&(k~\0)9 E).

Proof. Assume N does not contain U&(k~\0), E). Let F be an
element of &(k~\0), E) that intersects M\N. Let A be the composant of
N that contains E. Let Y be the end set of F opposite k~\Q). It follows
from Lemma 2 and the irreducibility of F that N Π Y = 0 . Let ε =
ρ(N, Y). By Lemma 1, there exist two ε-homomorphisms / and g of M
onto M and two composants B and C of N distinct from A such that
f[F] Π B φ 0 φ g[F] Π C. By Lemma 2, F9f[F], and g[F] are disjoint.
Since/and g are ε-homeomorphisms, M\N contains /[ Y] U g[Γ]. Hence
N U F U /[F] U g[F] is a triod. This contradicts the assumption that M
is atriodic. Therefore N contains US(k~\0), E).

NOTATION. Let X be a subset of M. We denote the boundary of X and
the closure of X in M by Bd X and Cl X, respectively.

LEMMA II. If N is an indecomposable subcontinuum of M that contains
E, then Cl U S^fc'^O), E) is an indecomposable subcontinuum of N.

Proof. By Lemma 10, Cl U &(k~λ(0), E) is a subcontinuum of N.
The argument given in paragraphs 2 through 11 in the proof of Lemma 6
of [11] proves that Cl U &(k~x(0), E) is indecomposable.

Suppose £ = {L, : 1 < / < 5} is a 5-linked chain in M.

NOTATION. We denote the 3-linked subchain {Lt: 2 < / < 4} of £
by£'.

The chain £ is/ree if B d ^ U L5)\C1 U £' contains Bd U £.
The chain £ is normal if Cl Lz Π Cl Ly = 0 whenever | / - j | > 1.
The continuum E runs straight through £ provided
(l)EC U£,
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(3)k-\l)CL5\L49

(4) if 0 < r < 1 and k~\r) Π Bd Lt ^ 0 , then k~\r) C Bd Lz, and

(5) if 0 < r < / < 1 andk~\r) U /T 1 ^) C Li9 then AT *[[/•> ί]] C L ,

The chain £ is regular if for each component AT of U £', the set Cl AT is

a continuum of type λ that runs straight through £.

A chain {Pf: 1 < z < 5} is an ordered refinement of £ if for each z, the

link L, contains Pr

LEMMA 12. Suppose E runs straight through a normal regular chain

£ = {L, : 1 < z < 5}. Sqp/wwe fc~'(O) C L,\C1 L2 and / ^ ( l ) C L5\C1 L4.

Then E runs straight through a free normal regular ordered refinement

of £.

Proof. Let A and B denote the open sets LX\C\L2 and L5\C1L4,

respectively. Since £ is regular, E\(A U 5) is an essential subcontinuum

of £. Since M is atriodic, /?\(Λ U B) is a component of M\(A U 5).

Since no component of M \ ( ^ U δ) intersects both E\(A U B) and

M \ U £, there exist disjoint open sets C and D in M such that (1) C con-

tains E\(AU B)9 (2) Z> contains M \ U £, and (3) C U D contains

M\(A U B) [22, Theorem 44, page 15].

Let Pλ = L] and P5 = L5. For / = 2, 3, and 4, let f ^ C Π L r The

chain P̂ = {Py: 1 < / < 5} is a free normal regular ordered refinement of

£. Note that E runs straight through <3\

LEMMA 13. Suppose e is a positive number, A is a closed set that misses

E, and B is an open set that contains k~\0) U k~\\). Then E runs straight

through a free normal regular chain ^ — {Pt: 1 < / < 5} in M\A with the

property that B contains C\(Pι U P5) and for each component K of Utf'

there is an ε-homeomorphism h of M onto M such that Cl K is an essential

subcontinuum of h[E].

Proof. Let {xt: 0 < i < 15} be a set of numbers such that x0 — 0,

JC15 = 1, xt < JC I + 1 for each / (0 < i < 14), and ^"^[0, JC3] U [JC12, 1]] C B.

Let δ be a positive number less than ε, ρ(A, E), p(M\B, k~ι[[0, x3] U

[xl291]]), and the minimum of {$p(k~l[[09 xέ]]9 k~l[[xi+}9l]]): 1 < ι <

13}.

For each integer / (1 < z < 5), let Lt be the open set

W(k~ι[[x3i_3, χ3t]]9 δ) (Lemma 1). Let £ = [Lf. 1 < z < 5}. Note that £

is a normal chain in M \^4.

Next we prove that £ is regular. To accomplish this let h be a

δ-homeomorphism of M onto M.
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Note that
(\)h[E] C U£,and
(2) h[k-\O)] C L\Cl L2 and h[k~\l)] C L5\C1 L4.
For each number r (0 < r < 1) and each integer / (1 < / < 5)
(3) if h[k'\r)] n i ^ 0 , then h[k~\r)] C Z,,.
To prove (3) assume for some numbers r and ι, AI/Γ^ίr)] intersects

both L, and M\Lt. It follows from the definition of δ that r E
[x2, Xi3]\[*3z-3, * 3 J . There exist a number s in [*3/_3, x3i] Π [x2, xλ3]
and a δ-homeomorphism g of M onto M such that g[k~\s)] Π A^" 1 ^)]
=£ 0 . By Lemma 3, g[k~\s)] = Λlfc-^r)]. This contradicts the fact that
L, contains g[fc-1(.y)]. Hence (3) holds.

For each number r (0 < r < 1)

(4)ifΛ[Af V)] ΓΊ B d L z ^ 0, thenΛtA:-1^)] CBdL^ .
To see this let p be a point of ^[^"^r)] Π Bd Lz and assume that

Bd L, misses a point g of ΛfArV)]. By (3), q & Lt. Let μ = p(^? L;). By
Lemma 1? there exists a μ-homeomorphism/of M onto M such XhaXfh is a
δ-homeomorphism and f(p) E L;. It follows from the argument for (3)
that β[k~\r)] C Lr This contradicts the fact that/(#) £ Lt. Hence (4)
holds.

Note that
(5) if 0 < r < r < 1 andA:~V) U Γ ! ( 0 C Lz, then ife'^ίr, /]] C Lz.
To see this assume the contrary. By (1), (2), and (3), there exist

numbers r, s, and ί (0 < r < ^ < t < 1) and an integer / (1 < / < 4) such
that h[k'\s)] C L, and h[k~\r) U fc'^ί)] C L^^L,. Let w be a num-
ber in [.x3/_3, x3i] and g be a δ-homeomorphism of M onto Λf such that
g[k"\u)] ΓΊ AfA:"^)] 7̂  0 . Since M is atriodic and g[k~\0, x3i)]] mis-
ses Li+ι\Li9 it follows that gίfc^fO, x3i]] C Λ[fc"1[['') ί]] This contradicts
the definition of δ. Hence (5) holds.

It follows from (1), (2), (4), and (5) that
(6) h[E] runs straight through £.
Let K be a component of U£'. Let Λ be a δ-homeomorphism of Λf

onto M such that # Π h[E] φ 0 . Since M is atriodic, it follows from (6)
and Lemma 6 that Cl K is an essential subcontinuum of h[E] that runs
straight through £. Hence £ is regular.

Since h in (2) and (6) can be the identity, k~ι(0) c L,\C1 L2, AΓ^l)
C L5\C1 L4, and E runs straight through £. By Lemma 12, JE1 runs
straight through a free normal regular ordered refinement ^ = (1>: 1 < /
< 5 } o f £ .

Since U £ C M \ Λ and C^L! U L5) C B, it follows that U ^ C
M\A and Cl ί^ U P5) C B. Let # be a component of U #' . Since δ < ε,
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M is atriodic, and ζP is a regular ordered refinement of £, there is an
ε-homeomorphism h of M onto M such that Cl K is an essential subcon-
tinuum of h[E]. This completes the proof of Lemma 13.

NOTATION. Suppose P̂ ={/>,-: 1 < / < 5} is a regular chain. Let
denote the collection (Z: Z is an element of the decomposition of the
closure of a component of U # ' } . Let Δ(<3>) be {Z: Z <Ξ Ω(<3>) and
Z n C l ( ? 1 U P 5 ) = 0} . Note that since <$ is regular, Δ(̂ P) is a decom-
position of (U <$)\C\{PX U P5).

LEMMA 14. Suppose 9 = {P,: 1 < / < 5} is a free regular chain. Then
the decomposition Δ(*P) of(U(3>)\C\(Pι U P5) is continuous.

Proof. Suppose {Z,} and {z,} are sequences such that (1) Z;

and zt E Z, for each positive integer i9 and (2) {zz} converges to a point z
of UΔ(*P). Let Z be the element of Δ(^) that contains z. It suffices to
show that {Zj} converges to Z.

Let ε be any positive number less than %ρ(UΔ(Φ)9 Λf\ U *P') Let
Ko be the z-component of U^P'. For each positive integer /, let Kt be the
zΓcomponent of U^Pr. Since 9 is regular, for each non-negative integer /',
the end sets of Cl Kt are in M\ U ^P'. By Lemma 3, if zz belongs to the
open set W(z9 e) (Lemma 1), then there is an ε-homeomorphism h of M
onto M such that h[Z] = Zr Since ε is arbitrarily small, {ZJ converges to
Z. Therefore Δ(̂ P) is continuous.

LEMMA 15. Suppose 9 = {/>: 1 < / < 5} w α/ree regular chain. Then
there is a positive number ε such that if Z E Δ(̂ P) and h is an ε-homeomor-
phism of M onto M, then h[Z] E Ω(<3>).

/. Let ε = ip(UΔ(#), M \ U <?'). By Lemma 3, if Z E Δ(<3>)
and A is an ε-homeomorphism of M onto M, then h[Z] E

LEMMA 16. Suppose P̂ = {P7: 1 < / < 5} w α /ree regular chain.
Suppose K is a component of U<3>f and X is an end set of Cl K. Suppose F is
an extension of Cl K away from X and D̂ is the decomposition of F. Then no
element of D̂ intersects three consecutive links of $*.

Proof. Assume the contrary. Let d: F -> [0,1] be a quotient map
associated with D̂ such that d~ ι(0) = X. Let s be the greatest lower bound
of S = {r E [0,1]: d~\r) intersects three consecutive links of <•?}. Since
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no element of the decomposition of Cl K intersects three consecutive hnks
of <3\ it follows that s > 0. Since D̂ is continuous (Lemma 5), s $ S and
sφl.

Since 9 is free, there exist a 3-linked subchain £ of P̂ and numbers /,
w greater than s such that

(1) for each number u (t < u < H>), d~\u) intersects each link of &
and no element of ^P\S that intersects a link of 2,.

Let t> be a number between £ and w.
Since ^ is regular, there exists a component // of U^P' such that

ffflίΓ^)^ 0 and
(2) Cl // runs straight through *P.

Since Cl H intersects each link of <3\ the continuum d~ι[[t, w]] does
not contain Cl H. Therefore, since M is atriodic, Cl H intersects either
d~~\t) or d~~\w). Assume without loss of generality that Cl H Π d"\t)
φ 0 . By (1) and (2), there exist distinct elements Y and! Z of the
decomposition of Cl H such that Y Π d~\t) φ 0 and Z D d~ι(v) φ 0.
Let / be the essential subcontinuum of Cl H that is irreducible between Y
and Z. It follows from Lemma 2 and the irreducibility of / and d~λ[[t, v]]
that / = / Π cΓι[[t9 υ]] = cΓι[[t9 v]]. Since no element of the decomposi-
tion of / intersects all three links of % each element of the decomposition
of / is properly contained in an element of the decomposition of d~ι[[t, v]].
This contradicts the fact that the decomposition of d~ι[[t, υ]] is unique.
Hence Lemma 16 is true.

4. Principal results.

THEOREM 1. Suppose M is an atriodic homogeneous continuum. Suppose
N is an indecomposable subcontinuum of M that contains a decomposable
continuum. Then M — N. Furthermore M admits a continuous decomposi-
tion D̂ such that M/ty is a solenoid and the elements of D̂ are homeomor-
phic. Moreover if the elements of D̂ are not points, then they are tree-like
hereditarily indecomposable homogeneous continua.

Proof. By the argument in paragraphs 1 and 2 in the proof of
Theorem 1 of [10], N has a subcontinuum E of type λ. Let k: E -» [0,1] be
a quotient map associated with the decomposition of E.

Let ε be a positive number.
By Lemma 13, E runs straight through a free normal regular chain

9 = {Pi'. 1 < i < 5} with the property that
(1) for each component K of U <3)/ there is an ε-homeomorphism h of

M onto M such that Cl K is an essential subcontinuum oih[E].
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For each element Z of Ω(^P)\Δ(^P), let K(Z) be the component
of U ^ ' that contains Z. Let X(Z) be the end set of Clϋ:(Z)
that is separated from Z in Cl K(Z) by Pv By Lemma 11,
Cl U &(X(Z), Cl K(Z)) is an indecomposable subcontinuum of N. Thus
U&(X(Z),CIK(Z)) intersects P3\K(Z). Hence there is an element
F(Z) of &{X{Z\C\ K{Z)) that intersects P3\K(Z). By Lemmas 7 and
16, each element of the decomposition of F(Z) that intersects U ^ ' is an
element of the decomposition of the closure of a component of U^P'.
Hence there is an essential subcontinuum J(Z) of F(Z) that contains Z,
misses Cl P3, and has one end set in K{Z) Π (U Δ(^P)) and the other end

By Lemma 13, J(Z) runs straight through a free normal regular chain
= {P{Z\: 1 < / < 5} such that

(2) U Φ(Z) misses Cl P3, and
(3) UΔ(«P) contains Cl(P(Z)1 U P(Z) 5).

(The sets ̂ 4 and 5 in Lemma 13 are Cl P3 and U Δ(^P), respectively.)
Let ® be the collection of open sets { UΔ(*P)} U (UΔ(?(Z)): Z G

Ω(^)\Δ(^)}. Since <$ is free and since Φ(Z) is free and (3) holds for each
element Z of Ω(^P)\Δ(^), it follows that U® is a closed open subset of
M. Hence % covers M.

Let S be UίSί/Γ'ίO), £ ) U S ^ O ) , £)).
Next we prove that
(4) ρ(/?, S) < ε for every point/? of M.

If /? E UΔ(^P), then (4) follows from (1). Therefore we assume that
p ^ UΔ(^P). Let Z be an element of Ω(^)\Δ(^P) such that p E
UΔ(^P(Z)). Let i/ be the /7-component of UΔ(^P(Z)). Let X be an end
set of Cl H. Let K be the component of U 9 ' that contains X. By (1),
there is an ε-homeomorphism h of M onto M such that Cl ^ is an
essential subcontinuum of h[E], By (2) and Lemma 2, Cl H does not
intersect both h[k~\0)] and ^[/^( l)] . Hence, by Lemma 8, H is a subset
of Γ = U(S(A[^"1(0)], /*[£]) U SίΛίλΓ^l)], A[£])). Note that T =
h[S]. Since/? £Ξ H C h[S] and h is an ε-homeomorphism, (4) holds.

Since ε may be arbitrarily small, it follows from (4) that S is dense in
M. Hence, by Lemma 10, M = N.

For convenience we define Φ(Z0) to be 9.
Since M is compact, there exists a finite subcollection β =

{ U Δ(^(ZJ): 0 < i < π} of ® that covers M.
Let ^ be U {Δ^Z,)) : 0 < / < Λ}.
We must show that ^ is a decomposition of M. Since β covers M, it

suffices to show that the elements of Φ are disjoint. Let A and B be
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intersecting elements of Φ. If A U B intersects UΔ(^P), then, by (2), (3),
and Lemma Ί,A—B. Hence we assume that A U B misses U Δ(^P). Let i
andy be positive integers such that A E Δί^Z,.)) and B E Δ ^ Z , ) ) . Let
/ be the component of U 9{Zt)

f that contains A, Let / be the component
of U Φ{Zj)' that contains B. Since A U B misses U Δ(*P), it follows from
(3) that ^ U ί misses both end sets of Cl / and both end sets of Cl /.
Thus, by Lemma 3, A = B. Hence ̂  is a decomposition of Λf.

It follows from Lemma 14 that <*D is continuous. According to Lemma
9, each element of φ is either a point or a homogeneous continuum. Since
Λf is atriodic, it follows that the quotient space M/% is an atriodic
continuum.

The quotient space M/6]) is homogeneous and the elements of fy are
homeomorphic. To see this first note that for each integer / (1 < i < Λ),
since ^(Z,) is a free regular chain, it follows from (2) and (3) that each
component of U Δ^Z,-) misses P3 and intersects Λf \ U ty\

Since ^ is a free regular chain, it follows from (3) and Lemma 7 that
(5) for each integer i (0 < / < n), Q(*P(Z,.)) C <>D.
By Lemma 15, for each integer / ( 0 < / < w ) there is a positive

number εt such that if Z E Δί^Z,-)) and h is an εΓhomeomorphism of Λf
onto Λf, then h[Z] E i2(^P(Zf.)). Let δ be the minimum of {ε,: 0 < / < Λ}.

It follows from (5) that
(6) if Z E ^ and A is a δ-homeomorphism of M onto M, then

h[Z] Gty.

Let X and Y be elements of φ. Since M is a continuum, there is a
finite subset {xt\ 1 < / < / W } of Λf such that 7 Π JF(xl5 δ/2) ^ 0,
X Π W(xm9 8/2) Φ 09 and W(xi9 8/2) Π W(xt+l9 8/2) Φ 0 for each
integer / (1 < i < m).

Define a set {υz: 0 < / < m} such that ϋ o 6 7 Π ^ ( x b δ/2), ι;m E X
Π W(xm,δ/2l and υ, E W{xt,8/2) Π W(JC I + 1, δ/2) for each integer /
(1 < / < m). For each / (1 < / < m), let /r, be a δ-homeomorphism of Λf
onto Λf such that A^^) = t ̂ j . By (6), each hi maps each element of Θ
onto an element of D̂. Therefore hιh2

mm 'hm induces a homeomorphism of
Λf/6]) onto itself that takes X to Y. Hence Λf/6]) is homogeneous. Since
h{h2 - - - hm[X] = 7, it follows that the elements of ^ are homeomorphic.

Since Aί/̂ D is an atriodic homogeneous continuum that contains an
arc, M/ty is a solenoid [20, Theorem 14.4].

Suppose <3) has a nondegenerate element Z. By Lemma 2, Z is
hereditarily unicoherent. Since Z is homogeneous, it follows that Z is
indecomposable [15] [9]. In fact, Z is hereditarily indecomposable; for if Z



ATRIODIC HOMOGENEOUS CONTINUA 345

has a decomposable subcontinuum, then, by the above argument, M = Z
and this is impossible. Hence Z is tree-like [25]. Therefore, if the elements
of Φ are not points, they are homeomorphic tree-like hereditarily inde-
composable homogeneous continua.

THEOREM 2. Suppose M is an atriodic homogeneous continuum that is
not a solenoid and has a decomposable subcontinuum. Then M admits a
continuous decomposition D̂ such that M/ty is a solenoid and the elements of
Gζl are homeomorphic tree-like hereditarily indecomposable homogeneous
continua.

Proof. If M is indecomposable, the conclusion follows immediately
from Theorem 1. Therefore we assume that M is decomposable. Accord-
ing to Theorem 14.7 of [20], M admits a continuous decomposition D̂ such
that M/6?) is a simple closed curve and the elements of <3) are homeomor-
phic indecomposable homogeneous continua. Let Z be an element of ty.
The indecomposable continuum Z is hereditarily indecomposable; for if Z
has a decomposable subcontinuum, it follows from Theorem 1 that
Z = M and this is impossible. Hence Z is tree-like [25] and the proof is
complete.

The following corollary to Theorem 2 answers in the affirmative
Mackowiak and Tymchatyn's question [20, § 13].

COROLLARY \. If M is an atriodic homogeneous continuum, then M is
X'dimensionaL

Proof. If M is hereditarily indecomposable, then M is tree-like [25],
and, therefore, 1-dimensional. Furthermore, if M is a solenoid, then M is
1-dimensional. Hence we assume that M is not a solenoid and has a
decomposable subcontinuum. By Theorem 2, M admits a continuous
decomposition tf) such that M/ty is 1-dimensional and the elements of tf)
are 1-dimensional continua. According to the second inequality in the
proof of Theorem VI 7 on page 92 of [14], the dimension of M is either 1
or 2. Hence, by Theorem 13.4 of [20], M is 1-dimensional.

COROLLARY 2.IfM is a tree-like atriodic homogeneous continuum, then
M is hereditarily indecomposable.

Proof. Suppose M has a decomposable subcontinuum. By Theorem 2,
M admits a monotone continuous decomposition D̂ such that Λf/Φ is a
solenoid. Since M is indecomposable [15] [9], M/6!) is not a simple closed
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curve. This contradicts the fact that no tree-like continuum can be
mapped onto a solenoid that is not a simple closed curve [6] [17].
Therefore M is hereditarily indecomposable.

In 1968 F. B. Jones [16] suggested the following method for proving
that every indecomposable homogeneous plane continuum M is heredi-
tarily indecomposable. Assume that M has a decomposable subcon-
tinuum. Find a monotone decomposition D̂ of M such that M/ty is a
homogeneous plane continuum that contains an arc. It follows from a
theorem of Bing [4] that M/6!) is a simple closed curve and this con-
tradicts the fact that M is indecomposable.

Every indecomposable homogeneous plane continuum is atriodic [10,
Lemma 1]. In Theorem 2 (above), since the elements of D̂ are tree-like, if
M is planar, then M/6^ is planar [21]. Hence Theorem 2 provides the
decomposition that Jones requested and we obtain the following:

COROLLARY 3. Every indecomposable homogeneous plane continuum is
hereditarily indecomposable [11].
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