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GLOBAL POSITIVE SOLUTIONS

OF SEMILINEAR ELLIPTIC PROBLEMS

EZZAT S. NOUSSAIR AND CHARLES A. SWANSON

The existence of bounded positive solutions of semilinear elliptic
boundary value problems of the type

(1.1) Lu = λf(x,u), c e Ω ,

(1.2) W(JC) = 0, J C G 3 Ω ,

will be proved in unbounded domains Ω c Γ , n > 2, with boundary
ΘΩ e C 2 + α , 0 < a < 1, where λ is a positive constant and

n

(1.3) L w = - £ Dl[alJ(x)DJu] + m(x)u, x e Ω,

Z), = θ/θx/, Ϊ = 1,..., n. The existence of a bounded positive solution of
(1.1) in the entire space Rn is proved also by the same procedure. The
regularity and additional hypotheses H1-H5 to be imposed on L and /
are stated in §2. In particular, the assumption /(JC,O) = 0 for all x e Ω
implies that the boundary value problem (1.1), (1.2) always has the trivial
solution.

1. Introduction. Generally a positive solution of (1.1), (1.2) in Ω
exists only if λ is sufficiently large, as might be expected from known
results for bounded domains, see e.g. Rabinowitz [23]. In fact, under the
extra hypotheses H8 and H9, we prove the Uniqueness Theorem 5.1:
There exists a positive interval (0, λ*] such that (1.1), (1.2) has no
nontrivial solution u(x9 λ) for any λ in this interval. However, under
different conditions H6 and H7, Theorems 4.4 and 4.6 yield bounded
positive solutions of, respectively, the boundary value problem (1.1), (1.2)
and the differential equation (1.1) in all of Rn for arbitrary positive λ.

The physically important case [9, 25]

(1.4) - Δw + m(x)u = p(x)uΎ - q(x)uβ, X E Ω ,

is included, where 1 < γ < β and/?, q9 m are nonnegative functions in Ω.
Solutions u(x) of (1.4) provide stationary states eιωtu(x) of the corre-
sponding wave equation, often called the Klein-Gordon equation. In the
case of constants/?, q, m, the existence of positive solutions of (1.4) in the
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entire space Rn which decay exponentially at oo (if m > 0) has been
proved by Berestycki and Lions [7], Berestycki, Lions, and Peletier [8],
Berger [9], and Strauss [25]. These results of course are not concerned with
boundary conditions on 9Ω. Our method establishes, in particular, the
existence of positive solutions of the Dirichlet problem for (1.4) in
unbounded domains Ω without the requirement of any symmetry condi-
tions on either Ω or the coefficients. The earlier methods cited, depending
critically on the radial symmetry of the coefficients, could not be extended
to solve the present problems.

However, we are unable to prove in general that the solution has limit
zero at oo. This is proved in §5 only in cases for which the nonlinear terms
in (1.4) have limit zero at oo.

Existence theorems for boundary value problems on bounded domains
are contained in papers by Ako [1], Amann [2], Amann and Crandall [3],
Bandle [4], Keller [16], Nagumo [18], Rabinowitz [23], and Schmitt [24].
Extensive bibliographies appear in [23] and [24], For unbounded domains,
the existence theorems of Benci and Fortunato [5,6], Berger and Schechter
[10], Bose [11], Edmunds and Evans [13], Edmunds and Webb [14],
Noussair [19] and Ogata [21] either apply only to special cases of our
problem, or do not guarantee nontrivial solutions, or both. The complex
theory of weighted Sobolev spaces, as developed and exploited in [5, 6,10,
13, 14], requires restrictions on the "size" of the domain Ω at oo and does
not aim at positivity or asymptotic behavior of the solutions.

Section 2 describes the notation and principal hypotheses. In §3 some
results of Rabinowitz [23] for bounded domains are adapted to our
structure. The main Theorem 4.3 establishes the existence of a bounded
positive solution of (1.1), (1.2) in Ω for all sufficiently large λ if H1-H5
hold. The modifications in Theorem 4.5 and 4.6 yield bounded positive
solutions of (1.1) in Rn. Section 5 concerns the existence of positive
solutions u(x9 λ) of (1.1), (1.2) which have limit 0 as \x\ -> oo. This is
proved in two cases: (i) m(x) is uniformly positive and f(x, t) -» 0 as
|x| -> oo and (ii) in dimensions n > 3,/(x, t) satisfies a Dini condition of
the Meyers and Serrin type [17]. Section 6 contains modifications for
m(x) < 0.

The case of nonnegative functions f(x, u) for all x9 u is not being
considered here. We solve (1.1), (1.2) in this case elsewhere by completely
different methods.

2. Preliminaries. Let \x\ denote the Euclidean norm of a point
x = (*!,... ,xn) in real Euclidean w-space Rn, n > 2. The notation below
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will be used throughout:

St = {x e Rn: \x\ = t}9 t > 0,

Gt= [x^Rn: \x\> t}9 t> 0,

Gst= {x e R n \ s <\x\< t } 9 0 < s < t9

Ω, = {x e Ω: |JC| < t}9 t> 0.

An exterior domain Ω c Rn has the property that G8 c Ω for some δ > 0,
fixed in the sequel.

For a bounded domain M c Ω , C m + α (M) denotes the usual Holder
space, with norm || | | m + α ^ , 0 < α < 1, m = 0,1,2, The abbreviation
C£c

+α(Ω) is used for the set of all u e Cm+a(M) for every bounded
subdomain M of Ω. The space W^{M) is defined to be the completion of
C™(M) in the norm

HI-

where multi-index notation has been used.
The conditions below will be imposed on the functions aIj9 m, and /

in (1.1), (1.3):

HI. Each au e Cίo^
α(Ω), m e Cfoc(Ω), m{x) > 0 in Ω, and (α f7(x))

is symmetric and uniformly positive definite in every bounded subdomain
of Ω, where a e (0,1) is fixed throughout.

H2. /is locally Lipschitz continuous on (Ω U 9Ω) X i?+, where R + =
[0, oo), and/( JC, 0) = 0 for all X G Ω .

H3. There exists a positive number T such that f(x91) < 0 for all
t> T and for all Λ: e Ω.

H4. There exist JC0 e Ω and Γo e [0, Γ) such that F(xθ9 To) > 0,
where

(2.1) F{x91) = /" '/(*, T) rfr, 0 < t < oo.

H5. For every bounded domain M c Ω and for every ί0 > 0, there
corresponds a positive constant K = K(M,tQ) such that λ/(x, /) + ΛCif is
a nondecreasing function of t on 0 < ί < t0 for each fixed x e M.
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H5 is satisfied, for example, if /(x, /) is continuously differentiable
with respect to / at every (x, /) e Ω X R+. In particular H2 implies that

These hypotheses are all satisfied in the case that (1.1) is specialized
to equation (1.4) under the following conditions: (i) 1 < γ < /?; (ii) p, q,
m are locally Lipschitz continuous, nonnegative, and bounded; and (iii)
p/q is bounded and bounded away from zero in Ω.

3. Construction of subsolutions. Let T be as in H3 and let fτ:
Ω X R -> R be defined by

(3.1)

Also define i ^ by

(3.2) FT(x9t)=ffT(x9T)dr.

Then, by (2.1) and (3.2), Fτ(x, t) = F(x, 0 for 0 < t < T, x e Ω. Associ-
ated with (1.1), consider the following boundary value problem on bounded
domains ΩΛ:

(Lu = λf(x9u), ^ Ω Λ ,
1 * j \u(x) = 09 JC e 3Ω,,

Let IR(φ, λ) be the functional on ^(Ωj?) defined by

(3.4) /Λ(Φ,λ) = / l

where

(3.5) /liΛ(φ) = i / Σ ^ ( ^ A

(3.6) I2R(Φ) = [ Fτ{x,φ(x))dx.

THEOREM 3.1 {Rabinowitz), If H1-H4 hold, there exist positive con-
stants R and λ* = λ*(i?) such that the boundary value problem (3.3) has a
positive solution uR = uR(x, λ) /Λ Ω Λ /<9r all λ > λ*. Furthermore, the
functional IR(φ, λ) c>« W^(ΩΛ) attains its minimum at φ = wΛ( , λ) /<9r
λ > λ*.
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H4 implies that R can be chosen large enough (and fixed in the
sequel) so that there exists a point x0 e ΩΛ with F(x0, To) > 0. Then
Theorem 3.1 follows from a theorem of Rabinowitz [23, p. 177] applied to
the bounded domain ΏR.

Theorem 3.1 is strengthened to the result below under the following
additional hypotheses:

H6. Each atj{x) and f(x, t) are bounded in Ω for each fixed t > 0,
and m(x) = 0 identically.

H7. There exists a positive constant C such that

limsupi?1""/^ F(x,C) dx = +oo,

where F(x91) is defined by (2.1).

THEOREM 3.2. // H1-H3, H6, and H7 hold, there exists R > 0 such
that (3.3) has a nontriυial nonnegative solution uR(x,λ) in tiRfor all λ > 0.

Proof. H7 implies that H4 holds for some x0 in a domain ΩΛ for some
R > 0. The proof given by Rabinowitz [23, pp. 176-177] shows on the
basis of H1-H4 in ΏR that IR(φ, λ) attains its minimum on ^ ( Ω ^ ) at a
point φ = uR( -, λ) which is a nonnegative classical solution of (3.3) in ΩΛ.
To show that uR is nontrivial, consider the piecewise C1 function on Ώ,R

defined by

wR(x) =

0 ifjceί2fl,

C(\x\- a) if a <\x\ < a + 1,

C if a + 1 <|x| < R - 1,

C(i? — |JC|) if 7? - 1 < | jc |<i ί ,

where a > 0 is chosen so that G f l cΩ, and i? > a + 2 without loss of
generality. Since wΛ = 0 on 3ΩΛ, wΛ e ^ ( Ω ^ ) . Each α ί y(x) and Fτ(x, t)
are bounded in Ω for each fixed / > 0 by H6, (3.1), and (3.2). Then one
sees easily from (3.5) and (3.6) that there exist positive constants Kλ and

K2 such that

Fτ(x, C) dx,
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for R > a + 2. Since C < T by H3 and H7, Fτ(x9 C) = F(x, C). Then
H7 and (3.4) show that IR(wR,λ) < 0 for some sufficiently large R.
However, 7Λ(0, λ) = 0 from H2, (3.2), (3.4)-(3.6) and hence uR is nontriv-
ial from the minimum property of uR.

REMARK. The boundedness hypothesis H6 can be relaxed to allow
unbounded functions atJ{x) and /(x, •) provided H7 is modified. This
can be accomplished by a different choice of wR(x) in the proof of
Theorem 3.2.

4. Existence of positive solutions. A solution of (1.1), (1.2) in an
unbounded domain Ω c Rn is understood to be a function u = w( , λ) e
CΊ2

Oc
 α(Ω) such that w satisfies (1.1), (1.2) identically.
Let uR(x,λ) be a nontrivial nonnegative solution of the boundary

value problem (3.3) in a bounded domain ΩΛ. If H1-H4 are satisfied,
Theorem 3.1 shows that uR(x,λ) exists for some R > 0 (fixed) and for all
λ > λ* > 0. If H1-H3, H6, and H7 hold, Theorem 3.2 shows that
uR(x, λ) exists for all λ > 0. Let wo(x, λ) denote the extension of
uR(x, λ) to all of Rn defined by

(4.1) o ( , )
10 otherwise.

The Lemma below concerns functions v e Cfo^
a(Ώ,) (to be found

later) which satisfy

(4.2) Lv>λf(x,v) inΩ, v > 0 onθΩ.

LEMMA 4.1. Under hypotheses HI, H2, and H5, suppose there exist
non-trivial functions uR e C 2 + α(ΩΛ) and v e C^a(ίl) satisfying (3.3) and
(4.2), respectively, such that 0 < uR(x, λ) < v(x, λ) for all x e ΩΛ, i? > 0,
λ > 0. Tfteπ Λ̂ere ex/51^ α sequence of functions Wj e C 2 + α(ΩΛ + 7) satisfying

Lwj < λf(x, Wj) in ΩΛ+ , w7 = 0 o« 9ΩΛ+

to WO(JC, λ) < Wj(x9 λ) < ϋ(x, λ) throughout ΩΛ+y , wΛere wo(x, λ)
? defined by (4.1).

Proof. Define

7}= sup ϋ(x), j = 1,2,....
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By H5, we can choose a positive constant Kj9 depending on υ9 such that
λ/(x, t) + Kjt is a nondecreasing function of t on 0 < t < T} for each
fixed x e ΏR+J Define Wj = Wj{x9 λ) to be the unique solution of the
linear boundary value problem

= λf(x, wo(x)) + *>>0(x) in

onθΩ U SR+J.

We now verify that Wj has all the properties stated in Lemma 4.1. Since λ

is fixed, we delete the λ dependence from the notation wAx9 λ), etc.

First let Fj(x) = λf(x,wo(x)) + KjW0(x)9 x e QR+J. Then Fj e

Cα(ΩΛ + y) by H2, and the standard Schauder estimate for the solution of

(4.3) [12, p. 335] shows that w, e C2 + α(ΩΛ + 7),7 = 1,2,....

It follows from (4.2) and (4.3) that

(L + ^ ) ( ^ - wy) > [λ/(x, i;) + Kjv] ~[λf(x, w0) + ^

in Ω Λ + y . Since υ >uR in ΩΛ by hypothesis, so also ϋ > w0 in
(L -f ϋ^Xϋ - wy ) > 0 in ΩΛ+y-. Furthermore, ϋ - wy = y > 0 on 9Ω U
SR+J and therefore v — wJ > 0 throughout Ω Λ + J by the maximum principle
[22].

Similarly, (L 4- Xy)>vy > 0 in ΩΛ + y and hence wy > 0 throughout
Ω Λ + y . From (3.3) and (4.3) we obtain

on 3Ω,

on *SΛ,

from which Wj > uR throughout Ώ,R by the maximum principle, and hence

Wj > w0 throughout Ω U 3Ω by (4.1).

Finally, from (4.3),

Lwj - λ/(x, Wj) = [λf(x9 w0) + KjW0] - [λf(x, Wj) + KJWJ] < 0

inQR+jJ = 1,2,....

LEMMA 4.2. Under the hypotheses of Lemma 4.1, there exists a sequence

of functions Uj in Ω U 3Ω with the following properties:

( ) 2 + S Ϊ
(B) M/X, λ) = 0 ifx G 3 Ω U SR+J U G Λ + y ;

(C) ZΛ7. = λf(x9 uj(x, λ)) i/x e ΩΛ + y;

(D) wo(x, λ) < Wj(x, λ) < M7-(Λ;, λ) < υ(x9 λ) m ΏR+J;

(E) iιy-+1(x, λ) > Uj(x9 λ)ιwΩ U 3Ω,y = 1 , 2 , . . . .
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Proof. By Lemma 4.1, Wj is a subsolution and v is a supersolution of
the boundary value problem

(Lu = \f(x9 u), x e= ΩΛ+y.,
1 * \κ(x) = 0 χ e 3 Ω

with wy(x, λ) < v(x, λ) throughout ΩΛ + y . Then a theorem of Amann [2,

p. 283] shows that (4.4) has a minimal solution u = Uj e C 2 + α ( Ω Λ + y )

satisfying w0 < w, < [^< v throughout Ω Λ + 7 , i.e. W} > Uj on ΩΛ + 7 for any

solution fl^. of (4.4) satisfying wj < W} < v on QR+J. The extension ιtj(x, λ)

of l£(jt, λ) to Ω U 9Ω defined to be 0 for |JC| > R + j then has properties

(A)-(D) of the Lemma.

To prove (E), notice from (A)-(D) that uJ+1 is a supersolution of (4.4)

in Ώ,R+J. By Amann's Theorem [2] again, there exists a solution Wj of (4.4)

satisfying wQ < Wj < Wj < uJ+ι in ΏR+J. The minimality of Vj then im-

plies that Wj > Uj, and hence uJ+ι > Uj in Ω Λ + y . Since the same inequal-

ity holds if |JC| > R + j by (B), (D), property (E) has been proved.

In the first main theorem we specialize Lemma 4.2 to the case of the

constant function v(x, λ) = Γ, which evidently satisfies (4.2) if H3 holds.

THEOREM 4.3. //H1-H5 are satisfied, there exists λ* > 0 such that the

boundary value problem (1.1), (1.2) has a bounded positive solution u(x, λ)

in Ω satisfying wo(x, λ) < u(x, λ) < T for all x G Ω U 3Ω and for all

λ>λ*.

Proof. Since H1-H4 hold, Theorem 3.1 guarantees a positive solution

uR(x, λ) of (3.3) in ΩΛ for all λ > λ* > 0, as required for Lemma 4.2. We

need to check first that the constant solution v(x, λ) = T of (4.2) satisfies

uR{x, λ) < T for all c e ΩΛ. Suppose to the contrary that uR(xQ,λ) > T

is a (necessarily positive) maximum of uR(x,λ) in ΩΛ. Then, in ap-

propriate coordinates, 0 < LuR(x0, λ) = λ/(x 0 , uR(x0, λ)), contradicting

H3. Accordingly it follows from (4.1) that H>0(JC, λ) < T for all x G Ω.

Therefore the sequence {wy(x, λ)} in Lemma 4.2 exists. The next

(crucial) step is to prove, for every positive integer /, that there exists a

positive constant K(i)9 independent of j > i, such that

This can be accomplished by L ̂ -estimates, Sobolev embedding, and

Schauder estimates as in [20, Lemma 3.2]. Then the compactness of the

injection C2+a(QR+i) -> C2(ΏR+i) enables us to define a subsequence



GLOBAL SOLUTIONS OF SEMILINEAR ELLIPTIC PROBLEMS 185

{Uj} of {wj"1} inductively which converges in the C2(ΩR+ι) norm to a
function u[ e C 2(ΩΛ + ί), i = 2,3,..., where ιή = uy The proof given in
[20, p. 126] shows that the diagonal sequence {uj} converges to a solution
u of (1.1), (1.2). By property (D) of Lemma 4.2, the solution satisfies
wo(x, λ) < u(x, λ) < Γin Ω, and so is bounded.

The pointwise limit of {Uj{x, λ)} exists by the monotone property
(E), and the limit can only be the function u(x,λ) constructed above. To
prove that u(x, λ) > 0 for all x e S l , let M be any bounded domain with
M c Ω and choose an integer / such that M e QR+i. By Lemma 4.1, wz is
nontrivial and satisfies

(L + KjwiTzO inΩ Λ + l , wι = 0 on3ΩΛ + /

for Kt > 0. Then the strong maximum principle [22] shows that wt > 0
throughout tiR+r By properties (D) and (E) of Lemma 4.2, Uj > ut > wt

throughout ΩΛ+/ for ally > /, and therefore u(x, λ) = lim^^^ Uj(x, λ) > 0
on M. Since M is arbitrary, W(JC, λ) is a positive solution of (1.1), (1.2) in
Ωforal lλ> λ*.

The following analogue of Theorem 4.3 is proved in the same way by
using Theorem 3.2 instead of Theorem 3.1.

THEOREM 4.4. Suppose that H1-H3 and H5-H7 are satisfied. Then the
boundary value problem (1.1), (1.2) has a bounded positive solution u(x, λ)
in Ω satisfying wQ(x, λ) < u(x, λ) < T for all x e Ω U 3Ω and for all
λ > 0.

The existence of a bounded positive solution of (1.1) in the entire
space Rn is proved by exactly the same method. An analogue of Lemma
4.2, with Ω replaced by Rn and 3Ω deleted, follows from Theorem 3.1 or
Theorem 3.2 without essential change. The hypotheses H'l-H'7 are form-
ally the same as H1-H7 with Rn replacing Ω and 3Ω deleted.

THEOREM 4.5. //HΊ-H'5 hold, there exists λ* > 0 such that (1.1) has
a bounded positive solution w( , λ) e Cfo^

a(Rn) satisfying wo(x,λ)<
u(x, λ) < Tfor all x e Rn and for all λ > λ*.

THEOREM 4.6. / / H Ί - H ' 3 and H /5-H7 are satisfied, then (1.1) has a
bounded positive solution u(x, λ) satisfying wo(x,λ) < u(x,λ) < T for all
x G Rn and for all λ > 0.

5. Behavior of solutions as |JC| -> oo. In this section we consider the
case that (1.1) is the Schrόdinger equation. Then the boundary value
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problem (1.1), (1.2) reduces to

(5.1) -Δw + m{x)u = λ/(jc, w), x e Ω,

(5.2) u(x) = 0, x e ΘΩ.

We prove in particular, under hypotheses selected from the list below, that
(5.1), (5.2) has an exponentially decaying positive solution w(x, λ) in Ω as
|JC| -> oo, provided λ is sufficiently large.

H8. There exists w 0 > 0 such that m(x) > m0 > 0 for all x e Ω.

H9. /(x, OA i s bounded in Ω X (0, J]9 and l im^ 0 + (/(x, 0 / 0 = 0
for all x e Ω.

H10. lim | j e H o o sup o < ^ Γ (/(x, 0 / 0 = 0.

Hll . There exists r0 > 0 such that

where

sup φ(x) < 2 for all r > r0,

φ(x) = sup /(x, ί)
0</<Γ

and δ(r) denotes a Dini function, i.e. the improper integral /°° r ιδ(r) dr
exists and is finite.

UNIQUENESS THEOREM 5.1. // H1-H4, H8, and H9 hold, then there
exists λ* > 0 such that the only nonnegative bounded solution u(x, λ) of
(5.1), (5.2) is identically zero in ΏforO < λ < λ*.

Proof, Define h(x, t) = /(JC, ί)/* if * > 0, A(x,0) = 0 for all x e Ω,
and

= sup h{x,t),
m o

Thus /jt̂  is positive and finite by H4 and H9, so λ* > 0. For any
nonnegative bounded solution u(x, λ) of (5.1), (5.2), define

(5.3) M(x9 λ) = m(x) - λh(x9 u(x9 λ)), x e Ω.
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If 0 < λ < λ* and 0 < u(x, λ) < Tit follows that

λh(x, u(x, λ)) < λ*μ* = mo/2, x e Ω,

and hence by H8 that

(5.4) M(x9 λ) > m(x) - mQ/2 > mo/2 > 0, JCGSI.

However by H3, h(x, u(x, λ)) < 0 for all x e Ω such that u(x, λ) > T9

and for all λ > 0, and so M{x9 λ) > m(x) > mQ at all such points.
Therefore (5.4) is satisfied for all x e Ω and for all λ in 0 < λ < λ*.

By (5.1) and (5.3), u(x, λ) is a solution of the linear differential
equation

(5.5) - Δw + M(x9 λ)u = 0, x e Ω.

Since u(x, λ) is bounded, a theorem of Kato [15, p. 415] shows in view of
(5.4) that there exists a positive constant C(λ) such that

0 < u(x, λ) < C(λ) exp[-/mo/2 |JC|], Λ: e Ω,

for 0 < λ < λ^. Because of the boundary condition (5.2) on 3Ω, u(x, λ)
must have a local positive maximum at some point x0 e Ω unless w(x, λ)
is identically zero in Ω. The conclusion of Theorem 5.1 then follows from
the maximum principle for (5.5).

THEOREM 5.2. Suppose H1-H5, H8, and H10 are satisfied. Then there
exists λ* > 0 such that, for all λ > λ*, the boundary value problem
(5.1), (5.2) has a positive solution u(x, λ) in Ω satisfying u(x, λ) <
C(λ) exp[— yjmQ/2 |x|] for some constant C(λ) > 0.

Proof. Let u(x, λ) be the solution of (5.1), (5.2) constructed in
Theorem 4.3: 0 < w(x, λ) < T for all x e Ω, λ > λ*, λ* as in Theorem
4.3. Define

H{x)= sup h(x,t), h(x,t) =f(x9t)/t.
0<t<T

By H10 there exists p(λ) > 0 such that XH(x) < mo/2 for all x e Ω with
|JC| > p(λ). Since 0 < u(x, λ) < Γfor all x e Ω, it follows that

, w(x, λ)) < mo/2 for |JC| > p(λ), λ > λ*.

Then H8 and (5.3) imply that

(5.6) M(x9 λ) > mo/2 for |JC| > p(λ), λ > λ*.

Since u(x, λ) is a solution of the linear equation (5.5) with (5.6) holding in
(7p(λ), Kato's Theorem [15, p. 415] implies that there exists a constant
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C0(λ) > 0 for λ > λ* such that

0 < u(x, λ) < C0(λ) exp[-/mo/2 |x|], |x| > p(λ).

The estimate in Theorem 5.2 then follows, where C(λ) = max[C0(λ), T].
A version of the Dirichlet problem for unbounded domains is

!

—Δw + m(x)u = λf(x, w), x e Ω,

«(x) = 0, x e θ Ω ,

W(JC) -> 0 as |JC| -> o c .

Under the hypotheses of Theorem 5.2, a positive solution w(x, λ) of (5.7)
in Ω exists for all λ > λ*.

We now obtain an analogue of Theorem 5.2 without the uniform
positivity hypothesis H8 on the coefficient m(x) in (5.1). In particular,
m(x) is allowed to be identically zero.

THEOREM 5.3. // H1-H5 and Hl l hold, and n > 3, then there exists
λ* > 0 such that (5.1), (5.2) has a positive solution u(x, λ) in Ω such that
u(x, λ) -> 0 as \x\ -> oo for all λ > λ*.

Proof. With φ(x) as in Hll, consider the linear boundary value
problem

-Δf + m(x)v = λφ(x), x e Ω,

In view of Hll, a theorem of Meyers and Serrin [17, Theorem 10, p. 527]
shows, if n > 3, that (5.8) has a nontrivial solution υ = v(x, λ) in Ω such
that v(x, λ) -> 0 as |x| -> oo.

Let uR = wΛ(x, λ) be the solution of (5.1) in the bounded domain ΏR

guaranteed by Theorem 3.1, for λ > λ*:

(5 9) / ~ Δ W * + m^uR
* j \wΛ(x,λ) = 0, χ e θ Ω Λ .

For x e ΩΛ, (5.8) and (5.9) give

(5.10) (-Δ + m(x))(v ~ uR) = λ[φ(x) -f{x9 uR(x, λ))].

Since uR(x, λ) < Γ for all x e ΩΛ by the proof of Theorem 4.3, it follows
from (5.8)-(5.1O) and Hl l that

' ( - Δ + m(x))(y - uR) > 0 inΩΛ,

t; — wΛ = 0 on 3Ω,

^ - uR > 0 on 5^.
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Then the maximum principle implies that

0 < uR(x9 λ) < υ(x9 λ ) , χ G Ω Λ , λ > λ * > 0 ,

The sequence {«,(*, λ): j = 1,2,...} constructed in Lemma 4.2

satisfies, in particular,

(D) 0 < wo(x9 λ) < Uj(x9 λ) < υ(x9 λ)

for all x e Ω U 3Ω, λ > λ*, j = 1,2,..., where wo(x9 λ) is defined by

(4.1). The proof of monotone convergence of the sequence {Uj(x9 λ)} to a

solution u(x, λ) of (5.1), (5.2) is exactly the same as in Theorem 4.3. It

also follows from (D) that u(x, λ) -> 0 as |JC| -> oo since v(x, λ) -> 0 and

the convergence of {Uj(x, λ)} to w(x, λ) holds pointwise in Ω for all

λ>λ*.
For example, the results of this section apply to the equation

-Δw + m(x)u = λp(x)(uΎ - euβ),

x e Ω, l < γ < β,ε > 0, λ > 0.

Hypotheses H3-H5 hold automatically, and the other hypotheses of this

section reduce to the following:

H1-H2. m and p are nonnegative, m, p e C£C(Ω), and p is not

identically zero.

H8. m is uniformly positive.

H9. /?(.*) is bounded.

H l l . max j ; c |= r/?(x) < 8(r)/r2, r > r0 > 0, where δ(r) is a Dini function.

Results parallel to Theorems 5.2 and 5.3 hold in the entire space Rn if

Hypotheses Hj are replaced by formally identical Hypotheses H'j with Rn

replacing Ω and ΘΩ deleted.

THEOREM 5.4. Suppose that H Ί - H r 5 , H'8, and HΊO are satisfied. Then

there exists λ* > 0 such that, for all λ > λ*, equation (5.1) has a positive

solution u(x,λ) in Rn satisfying

u(x9 λ) < C(λ) exp[-/mo/2 |x|], x e /?",

constant C(λ) > 0.
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THEOREM 5.5. Suppose that n > 3, and HΊ-H'5 and H'll are satisfied.
Then there exists λ* > 0 such that, for all λ > λ*, equation (5.1) has a
positive solution u(x, λ) in Rn such that u(x, λ) -> 0 as \x\ -> oc.

Theorem 5.4 is proved from the solution constructed in Theorem 4.5
by application of Kato's theorem. The method used for Theorem 5.3 also
proves Theorem 5.5.

6. Existence theorems in the case of negative m(x). It will now be
proved, under modified hypotheses, that the existence theorems of §4
remain valid when m(x) has negative values in Ω. Although m(x) will be
allowed to change sign for arbitrarily large |JC|, the set { c e Rn: m(x) < 0}
will be required to have sufficiently large measure so that the linear
operator L in (1.3) is nodally oscillatory in Ω, i.e. for arbitrary R > 0 there
exists a nonempty bounded domain M c GR Π Ω such that the Dirichlet
problem

(6.1) Lu = 0 in M, u = 0 on 9M

has a nontrivial nonnegative solution uM. Many explicit nodal oscillation
criteria are known [26]; for example, L is nodally oscillatory in R2 if the
entries of the matrix (aij(x)) are bounded and

/ m(x) dx = - oo, n = 2.

Hypotheses H2 and H5 will be retained while HI and H3 need to be
slightly modified:

H*l. The atj are as in HI, m e C£C(Ω), and L is nodally oscillatory in Ω.

H*3. There exists T > 0 such that f(x, T) = 0, /(JC, t) > 0 if 0 < t < T,
and/( JC, t) < 0 if t > T for all x e Ω ,

By H*l and the linearity of L, (6.1) has a nontrivial nonnegative
solution uM in some nonempty bounded domain M c Ω satisfying uM{x)
< T for all c e M . Then H*3 implies that

(6.2) f(x,uM(x))>0 forall ceM.

Let R be a positive number such that M c ΩΛ. By H5 there exists a
positive constant A^ for eachy = 1,2,..., such that both

(i) m(x) + Kj > 0 for all x e ΩΛ+y; and
(ii) λf(x, t) + Kjt is a nondecreasing function of / in [0, T] for each

fixed x e Ω ^ .



GLOBAL SOLUTIONS OF SEMILINEAR ELLIPTIC PROBLEMS 191

The lemma below is then easily established by the procedure used for

Lemmas 4.1 and 4.2.

LEMMA 6.1. Suppose that H*l, H2, H*3, and H5 are satisfied. Let

uM e C2+a(M) be a nontrivial nonnegative solution of (6.1) chosen so that

uM(x) < T for all x ^ M, and suppose that M c ΩΛ. Then there exists a

sequence of functions Uj in Ω U 3Ω with properties (A), (B), (C), (E) of

Lemma 4.2 and

(D*) wo(x) < Uj(x9λ) < T for all x G Ω U dΏj = 1,2,..., λ > 0,

where wo(x) = uM(x) if x e M and wQ(x) = 0 otherwise.

THEOREM 6.2. / / H * l , H2, H*3, and H5 Λo/rf, then the boundary value

problem (1.1), (1.2) Λαs α bounded positive solution u(x,λ) in Ω swcΛ that

wo(x) < u(x, λ) < T for β / / x ^ Ω u 9 Ω and for all λ > 0, wΛere wo(x) w
defined in Lemma 6.1.

THEOREM 6.3. Suppose that the hypotheses of Theorem 6.2 hold in the

entire space Rn (with 3Ω deleted). Then equation (1.1) Λαs a bounded

positive solution satisfying wo(x) < u(x,λ) < T for all x e Rn and for all

λ > 0.

The proofs on the basis of Lemma 6.1 are essentially the same as the

proof of Theorem 4.3.
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