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NONCOMPACTNESS PRINCIPLES
IN NONLINEAR OPERATOR APPROXIMATION

THEORY

J. APPELL AND M. P. PERA

This paper, which builds on recent work of Anselone and Ansorge, is
concerned with the approximate solution of nonlinear equations involving
noncompact operators. Roughly speaking, the concepts developed (such
as "measure of d-noncompactness", "generalized noncompact conver-
gence", etc.) play the same role for approximation problems as the
theory of condensing operators for existence problems.

1. Introduction. One of the fundamental concepts in nonlinear
functional analysis is that of compactness. For example, the classical fixed
point principles, degree theories, and bifurcation results are based on
compactness arguments. Most of these results, however, involve noncon-
structive existence proofs. The necessity of calculating (or at least ap-
proximating) solutions to integral or differential equations created a large
literature on compact operator approximation. As an example, we men-
tion the survey papers [3] and [4], which are essentially self-contained, and
provide a large amount of methods, results, and examples, and were
actually the motivation for the present paper: In fact, despite the impor-
tance of compactness principles, from the viewpoint of applications it
seems worthwhile to extend the theory of operator approximation to a
larger class of mappings. One of the simplest such classes is that of
condensing mappings, i.e. those which diminish some measure of noncom-
pactness. (A good recent survey on condensing operators is [1], on their
application to functional-differential equations is [2].) It turns out that a
suitable way of describing noncompact operator approximation is to
introduce "^-condensing" mappings, i.e. those which diminish some mea-
sure of J-noncompactness (which means "lack of discrete compactness").
It is the purpose of this paper to develop this idea and to study its
applicability to analytic problems, where noncompact operators occur.

It should be mentioned that there exists already some literature on
noncompact approximation theory (e.g. on the links between condensing
maps and Galerkin methods). In the present paper, however, we restrict
ourselves to generalizing solely the concepts described in [4], but as
systematically as possible. Unfortunately, this made it necessary to intro-
duce a great number of numerical characteristics in §§2 and 3, all
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describing the "lack of some regularity" (compactness, d-compactness,
convergence etc.). At least in part these characteristics will be justified by
a model example in §4; we request the reader's indulgence until then.

2. Discrete noncompactness of sets. Let X be a real Banach space
with norm || ||. Let [xn]N be any sequence of elements xn ^ X(N being an
infinite index set of natural numbers). We will always distinguish between
sequences [xn]N and their values {xn} = {xn: n ^ N}. Let

MN = {x'-x^ X,W £ N such that xn -> x (n e N')}

denote the set of all accumulation points (limits of subsequences) of the
sequence [xn]N. Similarly, for a sequence [Sn]N of subsets Sn c X\et

[Sn]s = U { [ * X : * ' QN,xne S, for all/i e N'}.

Clearly, [{xn}]% = [xn]%.
In what follows, we shall sometimes omit the index N when the

context is clear.
The following properties are not hard to verify:
(2.1)5, c TJor all n implies [Sn]* c [ΓJ*;
(2.2) [Sn]* is a closed subset of X;

(2.3) [sttr c C U ; .
Recall (see [4]) that a sequence [Sn]N is said to be d-compact (dis-

cretely compact) if [Sn]%> Φ 0 for any N' Q N for which 5Π Φ 0 for
/i e N'. Thus, in particular, [*„]# is (i-compact if and only if [xn]% Φ 0.

For any 5 c Xand ε > 0 let

where^ε(jc) = {x'rx 7 e Z, ||x' - JC|| < ε};letΩ ε(0) = 0 .

Theorem 2.1 below contains two characterizations of the d-compact-
ness of a sequence [Sn]N. For proofs and further details we refer to [4].

THEOREM 2.1. Let [Sn]N be a sequence of subsets Sn c X. Then
(i) [Sn]N is d'Compact if and only if[Sn]% is compact and for any e > 0

there exists nε<E N such that Sn c Ώ€([Sn]%)for all n > nε\
(ii) Uπ Sn is compact if and only if[Sn]N is d-compact and the sets Sn are

compact for each n e N. D

For a given S c l , let us recall the Hausdorff measure of noncompact-
ness (see e.g. [11,13])

= in f {ε :ε>0, there exists a finite ε-net for S}
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with the properties:
(i) a(S) < oo if and only if S is bounded;

(ii) a(S) = 0 if and only if S is compact;
(iii) S c Timplies <x(S) < α(Γ);
(iv) a(S U Γ ) = max{α(S), α(
(v)α(ί f l Γ)

(vi)α(S+ Γ)
(vii) α(λS) = |λ|α(S) for λjΞ R;

(viii) a(coS) = α(S), where co denotes the closed convex hull.

After these preliminaries we are now in a position to introduce our
measure of discrete noncompactness δ. Namely, for a given sequence
[Sn]N of bounded sets Sn a Xwe define

where

ω ( l A ] N) = inf{ε : ε > 0, there exists nε e N such that

SnQΏε{[Sn]*N)ΐoτ<ύln>nε}.

In particular, for a given sequence [x j^ ,

where

ω([;cj N) = inf{ε : ε > 0, there exists nε ^ N such that

w, [*„]*) < ε for all n >nε).

EXAMPLE 2.1. (a) For any n ^ N, let Sn be the unit ball ^(O). Then
ω([5J) = 0 and α([SJ*) = α(5x(0)) = 1, so δ([5J) = 1.

(b) Let X be a Hubert space with countable 6W-basis {el9e2,e39...}.
Take [ x j = [0, el909 e29...]. Then «([*„]•) = α({0}) = 0 and δ([xj) =
ω([xj) = 1. D

Let us point out that neither co nor δ is monotone. In fact, let X be the
Banach space of continuous functions over the interval [0,1] and let zn be
the characteristic function of the interval [n~ι, (n — I ) " 1 ] . Clearly, for
n Φ m we have\\zn - zm\\ = 1. Take Sn = (0, zl9...,zj, Tn = c o ^ . Then
a{[SnT) = 0, ω([Sn]) = 1, and, since [ΓJ* = Uπ Γπf α([ΓJ ) = 1/2,
ω([ΓJ) = 0. Thus δ([SJ) = 1 > 1/2 - δ([ΓJ).
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One might suspect that there is at least some constant c > 0 such that
δ([Sn]) ^ cδ([TnJ) whenever Sn c Tn. The following example shows that
this is not so:

Consider an infinite dimensional Banach space X and sequences [yn]
and [zn] in X such that \\yn\\ = 1, [yn]* = 09\\zn - zo\\ = 1 (||zo|| > 2),
and [ z j * = 0 . Define [xn] = [0, yl9 z l9 0, y2, z2,. . .], £„ =
{ x ^ , . . . , ^ } , and ΓAZ = 5 1 ( z 0 ) U c o { 0 , Λ ) . . . ^ } . T h e n [ 5 J * = {0}?

[ΓJ* = Bλ(z0) U co{0, Λ , y29...}, so that α([SJ*) = ω([ΓJ) = 0, ω([5J)
> ||zo | | - 1, and a([Tn]*) = 1. Therefore, letting ||zo | | -» oo we can make
$([Sn]) = ^([^n]) arbitrarily large, while δ([Tn]) remains equal to 1 inde-
pendently of z0.

Theorem 2.1, inteφreted in terms of α, ω and δ, reads as follows:
(2.4) [Sn]N is d-compact if and only ifδ([Sn]N) = 0;
(2.5) a(Όn Sn) = 0 if and only ifδ([Sn]N) = 0 and sup, a(Sn) = 0.

In particular, we deduce that
(2.6) δ([Sn]N) = 0 implies a([Sn]%) = 0;
(2.7) a(Un Sn) = 0 implies ω([Sn]N) = 0.

It should be observed that the converse implications do not hold as
Example 2.1 shows. Obviously, (2.6) can easily be derived from the
inequality «([£„]*) < δ([SJ), which holds by definition. On the other
hand, a similar estimate for (2.7) (i.e. ω([SJ) < ca(Un Sn)) does not hold.
In fact, let [zn] be a sequence in the closed ball Br(x0) (\\xo\\ > r) without
accumulation points and let [xn] = [0, z l90, z 2 , . . .] . Then a({xn}) < r
and ||xo|| - r < ω([xn]) < \\xo\\ + r, which implies ω([xn]) > ca({xn})
f o r | | x 0 j | > ( c + l)r.

It is not hard to give a direct proof of (2.7). Taking into account this
fact, a suitable extension of (2.5) turns out to be the following:

PROPOSITION 2.1. The equivalence

a(\JSn)+ω{[Sn]N)~siφa(Sn) + δ([Sn]N)

holds, i.e. there exists c, C > 0 such that

c(aί\JSn) + ω([Sn})\ < supα(S ) + S([Sn})
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Proof. Since Sn c Un Sn and [£„]* c U,, Sn, we get

s u p « ( 5 j + δ ( [ S j ) = s u p α ( 5 j + «([Sn]*) + ω([Sn])

that is C = 2. To show the left inequality, take ε > supπ a(Sn) +

(clearly, if this sum is infinite, there is nothing to prove). Hence, ε > co([£J)

so [Sn]* Φ 0 and there exists nε e N such that Sn c ΩP([5Π]*) for w > ΛF.

Therefore,

u sn c o.d^n.

On the other hand, we also have ε > α([*Sw]*) which implies α(Ωε([SJ*))

< 2ε. Thus,

B ) ( U 5 Π ) | < 2ε.
n<ne ' \ n ')

Consequently, α(Uw Sn) + ̂ ([^J) < 3ε and we can take c = 1/3. D

The idea of measuring the "lack of ^-compactness" of a sequence is

not new. For instance, in [16] a discrete noncompactness measure was

introduced which in its simplest version has the form

χ([xn] N) = inf{ε : ε > 0, for any N' c N there exist N" c N'

and x <E X such that ||x,2 - JC|| < ε for all n <Ξ ΛΓ"}.

We close this section by comparing our measure 8 with χ.

PROPOSITION 2.2. For any given sequence [xn]N in Xwe have

(i)χ([xn]N)<δ([xn]N);

(ϋ) <*([*„]%) ^ cX(lχn]N)forsomec > 0;
(iii) ω([xn]N) £ Cχ([xn]N)forany C> 0.

Proof, (i) If δ([xn]) is infinite, the assertion is trivial. So, let ε > δ([xn])

and take a > a([xn]% ω > ω([xn]) such that δ([xj) < a H- ω < ε. Hence

[xn]* Φ 0 and there exists nω ^ N such that xn G Ωω([x/Z]*) for w > «ω.

Consequently, for any n > nω, we have ||x,? - ^ | | < co for somej^/? G [^,J*

On the other hand, there exists a finite α-net in X, say {zΊ,... ,z m ), such

that [xnr c ^ ( z ^ U 5α(z 2) U U 5 α (z w ) . Thus, if [xn]N, (N' c JV)
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is any subsequence of [xn]N> one can find an index j G {1,... ,m} and an
infinite subset TV" of TV' such that >>„ G Ba(Zj) for n G TV". So, for Λ G TV",

\\xn - Zj\\ < | k - yn\\ + | | Λ - zy|| < co + α < ε,

which implies χ([x j) < ε.
(ii) As above, we may restrict ourselves to the case when χ([x j) is

finite. Let ε > χ([xn]) and suppose α([xj*) > 3ε. There exists a sequence
[ym] in [xn]* such that H^ — yq\\ > 3ε for/? Φ q. On the other hand, for
any m, the sequence [xn]N has a subsequence [x(

n

m)]N> (TV' c TV) converg-
ing to ̂ w. Take the diagonal sequence [x(

n

n)]N>. Clearly, | | x ^ ) - ^ | | <
εn -» 0 (n G TV'). Observe also that [ x ^ } ] ^ is a subsequence of [xn]N. So,
since ε > χ([;cj), there exist iVr/ c N' and x G JT such that \\x(

n

n) - x\\ < ε
(n G TV"). Thus, for/?, g sufficiently large, we get

3ε < ||v - v || <yP- Λ- \XM - χ x - XM\\ + \\XW - v

< εp + 2ε + eq < 3ε,

a contradiction. Therefore «([.*„]*) < 3ε and assertion (ii) is proved with
c = 3.

(iii) We give a counterexample. Let H be a hyperplane in an infi-
nite dimensional space X, i.e. X = H Θ Rx 0, x 0 =£ 0. Let [zn] be a
sequence in H such that | | z j | = 1 and [ z j * = 0 . Consider [ c j =
[z1? λx 0, z2, λx 0, z 3 , . . . ] , λ > 0. It is easily seen that χ([%J) = 1. More-
over, since [xn]* = {λx 0}, we have ω([xj) > λ\\xQ\\. Therefore ω([xn]) >
Cχ([*J)forλ>C/||x0||. D

It is clear from the above result that χ and δ are not linearly
equivalent. However, both are measures of d-noncompactness (in the
sense that they are zero exactly on af-compact sequences), while δ seems to
be "coarser" in some sense than χ (because of (iii)).

3. Discrete noncompactness of operators. Let K and Kn (n G TV)
be (not necessarily linear) operators acting between two Banach spaces X
and Y. Recall the following definitions (see e.g. [4]):

K is called compact if K(S) is compact for any bounded S a X; the
sequence [Kn]N is called collectively compact if Un Kn(S) is compact, and
asymptotically compact (or d-compact) if [Kn(S)]N is d-compact for any
bounded S c X.

The following relation between these notions is shown in [4]:

THEOREM 3.1. [Kn]N is collectively compact if and only if [Kn]N is
asymptotically compact and Kn is compact for each n G TV. D
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Let us now introduce some further parameters (for the definition of

oi{[Kn]N) see also [10,17]):

= M{λ:λ > 0,a(K{S)) < a(S),S c Abounded);

a{[Kn]N) = inf{λ: λ > 0, α(Urt £„(£)) < λα(S), S c Abounded);

*>([*„]*) = i n f { λ : λ > °> «•>([**($)] *) ^ λ<*(S), S c Abounded}

N) = i ϊ l f ( λ λ > 0> δ([^«(^)] J ^ λ«(^)^ S c Abounded}.

According to the above definitions, we have:

(3.1) a(K) = 0 if and only ifK is compact;

(3.2) a([Kn]) = 0 if and only if[Kn] is collectively compact;

(3.3) 8([Kn]) = 0 if and only if[Kn] is asymptotically compact;

(3.4) a([Kn}) = 0 An/?//** ω([Kn}) = 0.

Moreover, from Proposition 2.1 we can immediately deduce the

following extension of Theorem 3.1:

PROPOSITION 3.1. The equivalence

a([Kn]N) + ω([Kn]N) - supa(Kn) + δ([Kn]N)
n

holds, where ~ w defined as in Proposition 2.1. D

The notions of compact, collectively compact, and asymptotically

compact operators can be characterized also in terms of sequences of

elements in X (see [4]). From this point of view, in our context we are led

to

PROPOSITION 3.2. Let [xn]N be a bounded sequence in X, and let

TΓ: N -> N be any bijection. Then

(i) δ([Kxn]N) < a(K)a({xn}) + ω([Kxn]N);

(ii) δ([Kvin)xn]N) < a([Kn]N)a({xn}) + c o ( [ ^ ( π ) x j ) ;

(iii) δ([Knxn]N) < δ([Kn]N)a({xn}).

In particular,

(i)' a(K) = 0 if and only if δ([Kxn]N) = 0 for any bounded sequence

LXnJN>

(iiy oc([Kn]N) = 0 if and only if δ{[Kvin)xn]N) = 0 for any bounded

sequence [xn]N and bijection π;

(in)' δ([Kn]N) = 0 if and only if δ{[Knxn]N) = 0 for any bounded

sequence [xn]N.
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Proof. It suffices to observe that for any ε > 0,

a{[KxnY) < a({Kxn}) < (a(K) + ε)a({xn}),

a([K,{m)xH] ) < «({Kn(n)xn}) < (a([Kn}) + ε)a({xn}),

δ([Knxn])<(δ([Kn]) + ή*({xn}),

and moreover, that

a{K) = 0 implies «([**„]) = 0,

a([Kn]) = 0 implies ω([K,{n)xn]) = 0. D

We will now introduce various types of convergence for operator
sequences.

Kn —> K (pointwise convergence) means that Knx —> Kx

as n -* oo for all x ^ X\

Kn-> K (continuous convergence) means that x -> x0

implies Knx -> Kx0 (n -* oo), or equivalently

xw -> x0 (« -» oo) implies iRΓ̂ x,, -* Kx0 (n -> oo),

or equivalently xm -> x0 (m -* oo) implies
κnxm -* Kxo{m,n -> oo).

Observe that Kn-+ K implies the continuity of K\ furthermore, for

continuous Kn the continuous convergence Kn -> K is equivalent to the
pointwise convergence Kn-+ K and to the equicontinuity of the family
[Kn]. Moreover, for linear continuous K, Kn from the Banach-Steinhaus
theorem it follows that pointwise convergence implies equicontinuity, and
hence pointwise and continuous convergence coincide.

Furthermore, we will define two other types of convergence, generaliz-
ing those in [4]; given λ > 0,

λ~cc

Kn -> K (λ-collectively compact convergence) means

that each Kn is continuous, Kn -> K, and

a{[Kn\N) + ω{[Kn]N) <λ;

Kn -> K (X-asymptotically compact convergence) means

that each Kn is continuous, Kn-* K, and
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We remark that, for λ = 0, our 0-cc and 0-ac convergences are nothing

else but the cc and ac convergences introduced in [4]. Hence, the next

proposition generalizes corresponding results in [4].

PROPOSITION 3.3. The following relations hold:

(i) Kn -> Kimplies a(K) < a([Kn]N);

(ii) Kn ^K implies a(K) < δ([KJN)',
λ-cc λ-ac

(iii) Kn-> K implies Kn -> Kand supn a(Kn) < λ;
λ-ac Cλ-cc

(iv) Kn-+ Kand supw a{Kn) < λ imply Kn -> Kfor some C > 0.

Proof. To show (i), (ii) and (iii) it suffices to observe that, for any

bounded subset S c X9 we have

K(S)c[Km(S)\* Q\JK,(S).
n

(iv) follows from Proposition 3.1. D

Let us now consider X = Y and K, Kn as operators in X. Our aim is

to obtain information about the nonemptiness of the set

Fix{K,S) = {x:χtΞ S G X,Kx = x]

and especially of Fix(K) = Fix(K, X). This will be carried out by means

of the various kinds of convergence introduced above, more precisely by

comparing the fixed point problem Kx = x with the exact problem

Knx = x or with the approximate problem \\Knxn — xn\\ -> 0.

Lemma 3.1 below will be used in proving our main results.

LEMMA 3.1. The following relations hold:

(i) Ifa(K) < 1, then <x(Fix(K, S)) = 0 for any bounded S c X.

(ii) Let [Sn]N be any sequence of subsets in X such that UnSn is

bounded. Then [Sn]% Φ 0 if and only ifδ([Sn]N) < oo.

(iii) Let [Sn]N, [Tn]N be sequences of subsets in X. Let Δ(S,T) be the

Hausdorff distance of S and Γ, i.e. the infimum of all ε > 0 such that

S c Ωe(Γ) and T c Ωe(S). Then Δ(5Π, Tn) -> 0 (n -> oo) implies δ([Sn]N)

= S([Tn]N).

Proof. There exists λ > 0 such that a(K) < λ < 1. On the other

hand, since Fix(#, S) = #(Fix(#, S))9 we have

a{Fix(K, S)) = a(K(Fix(K, S))) < λa(Fix(K, S)).



22 J. APPELL AND M. P. PERA

To prove (ii), let r > 0 be such that a([Sn]*) < a(Όn Sn) < r and let

x e [5J*. For any n e TV, 5Π c 5 r(0). Hence, 5, c Ωε([S;]*), for ε >

||x|| + Λ Thus, also ω([Sn]) is finite. Conversely, if [Sn]* = 0 then, by

definition, ω([SJ) = oo.

Under the assumptions of (iii), let us show first that [Sn]* = [Tn]*.

Take x e [Sn]* and, for each n e JV, JCΠ e 5^ such that x,7 -> x. Now, for

any ε > 0 there exists nF e JV such that SΛ c Ω ε(ΓJ, ΓA7 c Ώε(Sn) for all

n > nr Therefore, for any n > nε one can f i n d ^ e 7̂  such that ||xrt - yn\\

< ε. Thus, ^ -> x and, consequently, Λ: G [7^]*. Analogously, [7^]* c

[SJ*. Observe now that the equality [SJ* = [ΓJ* implies co([5J) < oc if

and only if ω([Tn]) < oo. In fact, suppose ω([Sn]) < oo. Then there exists

ω > ω([Sw]) and nω ^ N such that, for all n > nω,

Moreover, for any ε > 0 there exists nF G N such that, for n > nε,

Tn c tiF(Sn). Consequently, for n > max{«ω, nε}9 we have Tn c

Ωω + ε([ΓJ*), so co([ΓJ) < co + ε. Since this inequality holds for all ε > 0,

we have also proved that ω([Tn]) < ω([Sn]). By symmetry we clearly

obtain the converse. Consequently, δ([SJ) = δ([ΓJ) as claimed. D

We state now some existence and convergence results which contain,

as particular cases, Theorems 3.7 and 3.8 of [4].

THEOREM 3.2. Let Kn, K be operators in X. Suppose there exists a

sequence [xn]N in Xsuch that \\Knxn — xn\\ -> 0. Then

(i) Kn~* K implies

xn]N) = 8([xn\N) and [ x j ^ c Fix(^);

(ii) If[xn]N is bounded, then

and

n] N) < (a([Kn]N) + ω([Kn]N))a({xn});

λ-ac

(iii) If Kn -> Kand [xn]N is bounded, then

8{[xn]N)<λa({xn}) and 0 Φ [xn\* c Fix(K).

Proof, (i) By (iii) of Lemma 3.1, and since [Knxn - xn] converges to

zero, we immediately get 8([Knxn]) = δ([xn]). Moreover, if X E [xn]*>
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there exists N' Q N such that xn -» x (n e TV'). Therefore,

| |£x - x|| < ||tfx - * „ * J + \\Knxn - xn\\ + | k - * | |

and the right-hand side converges to zero as n -> oo.

(ii) As above, 8([Knxn]) = S([xn]). Thus, the assertion follows from

Proposition 3.2 (iii) and (ii).

(iii) As above, δ([Knxn]) = δ([xn]) Thus, δ([xn]) < δ([Kn])a({xn})

< λa({xn}). This implies, in particular, δ([xn]) < oo. So, by (ii) of

Lemma 3.1, we get [xn]* Φ 0 . The assertion follows now as in (i). ϋ

Observe that in (i) above, [ x j * may be empty even if [xn] is bounded.

In other words, (iii) is an existence result for fixed points, while (i) is not.

To give an example, let [xn] be a sequence in an infinite dimensional

space X such that \\xn\\ = 1 for each n e TV and [xn]* = 0 . Define

Knx = (1 + l/n)x9 Kx = x. Then [Knxn — xn] converges to zero and, if

x -> xQ9 one has

\\Knx - 1 + - I x - x
n n '

c λ-ac

which means Kn -> K. Clearly, Kn -+> K for any value of λ.

λ-ac

THEOREM 3.3. Let Kn9 K be operators in X with Kn -> K. Let [Sn]N be a

sequence of subsets in X such that \Jn Sn is bounded, and let 0 < εn -> 0.

Define

Sn={x:x<=Sn,\\x-Kπx\\zen}.

Then

(i)δ([Sn]N)<λsupna(Sn);

(ii) 0 Φ [Sn]% c Fix(#, S) for any bounded S 2 [Sn]%;

(iii) for any ε > 0 ί/zere ex/̂ /5 nε G A/' JWC/Z /Aαί n > nε implies Sn c

Ωη + ε(Fix(7^, S)) for any bounded S 2 [SJ^, whereη = λsup^ α(Sn).

. (i) Since Δ(5Λ, ^ Π (S Π )) < εrt -^ 0, from Lemma 3.1 (iii) we get

= δ([Kn(Sn)]). Hence, because of λ-ac convergence, δ([SJ) <

λα(SΛ)forallΛ e TV.

(ii) By (i), δ([Sπ]) < oo. So, because of Lemma 3.1 (ii), [SJ* ^ 0 .

Now apply Theorem 3.2 (i).

(iii) From (ii) we know that [Sn]* c Fix(ϋ:, 5). On the other hand, (i)

implies that, given ε > 0, there exists «ε e N such that Sn c Ωη + e([5π]*)

for n > nF. D
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4. Applications. In this section we shall illustrate Theorem 3.2 by
means of two examples: First, we will study the significance of the
assumptions of this theorem for a simple nonlinear operator, namely the
Hammerstein operator

(4.1) Kx(s)= ί h(s9t)f(t9x(t))dt

in various function spaces. Second, we will indicate an application of
Theorem 3.2 to an initial value problem for ordinary differential equations
in a Banach space.

EXAMPLE 4.1. (a) Let Ω be a bounded domain in R ,̂ and let fn9 f and
hn, h be real continuous functions on Ω XR and Ω XΩ, respectively.
Consider the operators

(4.2) Hnx{s)= ί hn{s9t)x(t)dt9

Hx(s)= ί h(s9t)x(t)dt9

(4.3) Fnx{t)=fn{t9x(t))9 Fx(t)=f(t9x(t)).

Obviously, all these operators act in the space X = C(Ω) of continuous
functions on Ω. Together with the operator (4.1) (i.e. Kx = HFx) we
consider the approximations

(4.4) Knx{s) = HnFnx{s) = ί hn(s9 t)fn(t9 x(t)) dt.

Q

Now, Kn^> K means that uniform convergence (on Ω) of [xn]N implies

the same convergence of [HnFnxn]N. If this holds, then

(4.5) [Kn(S)\* = K(S)

for each bounded S c X. In fact, given y e [Kn(S)]*9 there exist N' c N
and a sequence [xn] in S such that Knxn -> y {n e Nf). But since also
Knxm -> Kxm (m fixed), we must havey = Kxm = Kxm+ι = for some
m, that is y e K(S). Conversely, given y = Kx (x G 5), take yn = ^ x ;
obviously,Λ e ^ ( 5 ) a n d ^ -> j , so j e [

As a consequence of (4.5), ω([Kn(S)]) = 0. In other words, the
λ-ac

condition 8([Kn]) < λ (which is the condition Kn -> K in Theorem 3.2

(Hi)) means nothing else than
(4.6) a(K) < λ.
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Q

Roughly speaking, this shows that for a c-convergent sequence Kn-> K
the discrete noncompactness of [Kn] is essentially the noncompactness of
K (and vice versa).

Clearly, a(K) < \\H\\a(F); but \\H\\ can be evaluated in terms of the
kernel function Λ, and a(F) is exactly the minimal Lipschitz constant for
the function/with respect to the second argument (see [5, Theorem 1]).

(b) Consider now the same problem, but with /„, f satisfying only a
Caratheodory condition. More precisely, let Fn and F map the space
Lp(Ώ) into the space Lq(Ώ) (1 < q < p < oo), while Hn and H vice versa.
In this situation, Kn ^> K means that convergence in the mean (to the
power/?) of [xn]N implies the same convergence of [HnFnxn]N. Again, we
are led to the estimate (4.6). While \\H\\ can be evaluated in terms of the
kernel function h as before, the number a(F) is now given by

a(F) = cW'UAp ~ 4)]-l/'[p/(p ~ <lΨ\

where c = sw£>t>o\\ae\\q&Ap~q) < oo and/is supposed to satisfy a family
of Lipschitz conditions

|/(5, u) - / ( * , υ)\ < ae(s) + ε\u - vf/q {a£ G L,(Ω), ε > O),

(see [5, Theorem 3]).
(c) Before considering the third variant of this example, we emphasize

that all definitions and results obviously carry over to the case where the
space X is a metric space rather than a Banach space. (In fact, all
constructions in [4] are posed in metric space settings.) So, let X = S(Ώ)
be the space of all (Lebesgue) measurable functions on Ω, equipped with
the metric

d ( x , y ) = i n f [ h + m e a s ^ : s e Ω , \x(s) — y ( s ) \ > h ) ] ;

convergence with respect to this metric coincides with convergence in
measure. Given fn and / on Ω X R, it is known that (Lebesgue) measura-
bility of these functions is neither sufficient ([14]) nor necessary ([8]) for
the operators (4.3) to map the space X into itself. Apart from the classical
Caratheodory condition, there are many other sufficient conditions
guaranteeing F( X) c X (see e.g. [9] and the bibliography therein). More-
over, a condition on fn and / which ensures that xm -» x (in measure)
implies Fnxm -> Fx (in measure) can be found in [15].

Concerning (4.6) in the space X = S(Ω), this condition follows cer-
tainly from a Lipschitz condition for /, but this is far from being
necessary. Actually, we do not know conditions on the functions / and h
which are both necessary and sufficient for (4.6).
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EXAMPLE 4.2. Let us now consider a more concrete example which
shows the applicability of Theorem 3.2. To this end, consider in a Banach
space E the initial value problem for t e [0, T]9

(4.7) x'(t) = f(t, x(t))9 x(0) = xo^E,

where/is supposed to be uniformly continuous and bounded on [0, T] X
BR(x0) with

(4.8) M = sup {\\f(t, x)\\E:0< t < T, \\x - xo\\E < R ) < R/T.

It is a well-known fact that these conditions, however, are not sufficient
for local solvability of (4.7), but there must be some compactness condi-
tion in addition. As a typical existence theorem we mention the following
result (see [1, p. 229], see also [12]):

THEOREM 4.1. Let aE be the Hausdorff measure of noncompactness in
the space E. Suppose

(4.9) aE(f[t,B])<φ(t,aE(B))

for any B c BR(x0) and t e [0, T]9 where φ is a continuous function on
[0, T] X R with the property that the scalar problem

(4.10) z'(t) = φ(t9z(t))9 z(0) = 0,

has only the trivial solution z(t) = 0 on [0, T]. Then there exists r = τ(x0)
> 0 such that (4.7) is solvable on [0, T], D

In recent years, this theorem has been weakened in different ways,
often by constructing special new measures of noncompactness (for a
sample result see [6]). It is our purpose here to deduce (global) solvability
by means of Theorem 3.2. Let Z = C([0, T\\ E) be the space of continu-
ous abstract functions, with norm ||x|| = maxo<,<Γ IMOII^- I n this space,
the Arzela-Ascoli criterion reads as follows: A subset S Q Z is relatively
compact if and only if it is equicontinuous and the sets S(t) = {x(t): x
e S} are relatively compact for all t e [0, T]. Consequently (see [12]), by

a(S) = max aE(S(t))
0<t<T

a measure of noncompactness is given on the system of all equicontinuous
subsets S c Z . Now define X to be the subset of all x e Z such that
x(0) = JC0 and \\x(t) - xo\\E < R for t e [0, Γ]; then X is a bounded
metric space with metric induced by the norm on Z. The initial value
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problem (4.7) is equivalent to the fixed point problem Kx = x, where

Kx{t) = xo+ f'f(s, x(s)) ds (t e [0, T]),

and, because of (4.8), K maps X into itself.
Let h = T/n (n e N), and /, = vh (v = 0,1,...,«). As in [4], define

KnonXhy

Knx{t) = xo + hΣ f{K, * (O

tk<t < tk+ι,k = 0,l,...,n - 1.

Clearly Knx(0) = x0 and Kn{ X) c Z since

||A"ΛJc(ί) - xo | |£ < (A: + l)AΛf < nhM = TM < R

Moreover, the continuity of / implies that Kn -> Γ̂; the uniform continu-
ity of/together with the inequality

(4.11) | | ^ x - Kny\\ < 1\\Fx - Fy\\

(F as in (4.3)) imply that [Kn] is equicontinuous. Therefore, as previously
observed, Kn -> K. Furthermore, Un Kn(X) is equibounded and, being

\\Knx{s)-Knx{t)\\E<AM\s-tl

also equicontinuous. Now assume there exists a continuous function γ on
[0, T] such that

(4.12) «E(fU,B])zΎ(t)aE(B)

for any B c BR(xQ) and / e [0, Γ] (compare this condition with (4.9)).
λ-cc

We will show that Kn -> K with λ = Γ||γ||. Equivalently, we will prove

that

(4.13) «(K])<λ;

(the relation ω([Kn]) = 0 follows again from the fact that Kn-* K). To

this end, let S be any equicontinuous subset of X, and take η > a(S).

Then, for any t e [0, Γ],

«E(Hs(t))) = «

Let {zxίO^. ί^ίO} b e a γ(O^-net for F(S(t)) in £, i.e. for any
x(t)eS(t) there exists z y ( 0 such that \\f(t9 x(t)) - Zj(t)\\E < y(t)η.
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Define

Zj(t) = f zj(s) ds + x0

and observe that {Zv...,Zm} is a λη-net (λ = Γ||γ||) for K(S) in X,

since

- Zj(t)\E < ζ \\f(s, *(,)) - φ)l<h < vT\\y\\.

This means a(K(S)) < λa(S). Moreover, from (4.11) we also deduce
aE(Kn(S(t))) < Ty(t)η for all t e [0, T] and n e N. On the other hand,
since Λ^ -* Λ̂ , for any ε > 0 there exists nε & N such that Kn(S) c

/i > /ie. Thus

< λα(S') + ε
λ-cc

for any ε > 0. This shows that αflXJ) < λ, hence Kn -> K.
Observe now that the same argument as used in [4, p. 606] shows that,

for each n e N, the fixed point problem Knx = x has a unique solution
λ-cc

xn EL X. Therefore, from Theorem 3.2 (iii) (recall that Kn -> K implies
λ-ac

Kn -+ K) we get that K has a fixed point x G [*J* such that, for any

ε > 0 ,
dist(^,Fix(^)) < λa({xn}) + ε (w > /ie).

Let us give a more suggestive interpretation of this result by dis-
tinguishing various cases for the noncompactness of the sequence [Kn]\

(a) λ = 0. This corresponds to the ordinary ac convergence of [Kn}\
hence, from [4, Theorem 3.7] we get existence of a fixed point, and
convergence xn -> x if [xn]* = {x}.

(b) 0 < λ < 1. In this case we have a(K) < 1 according to Proposi-
tion 3.3 (i), and existence of fixed points follows from Sadovskii's theorem
(see [11, 13]). Moreover, if [xn]* = {*}, then the difference \\xn - x\\ is
controlled by a({xn}) + ε (n > nε)\ but since [xn]* = {x} implies com-
pactness of {xn}, we again have convergence xn -> x.

(c) λ > 1. Now existence of fixed points does not follow any more
from fixed point principles for condensing operators, but our Theorem 3.2
(iii) gives F i x ^ ) Φ 0. On the other hand, the distance of xn to Fix(AΓ)
may now be very large: In fact, it will increase linearly with respect to the
noncompactness of both [Kn] and [xn].
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5. Concluding remarks. Apart from fixed point problems, inhomo-

geneous problems are also treated in [4]; in this connection, the concept of

regular operators and regular convergence plays an important role. In this

final section, we shall briefly indicate a possible generalization.

First, let us recall that an operator A between two Banach spaces X

and Y is called regular if for any bounded S a X, the compactness of A (S)

implies the compactness of S; a sequence [An]N of operators is called

asymptotically regular if for any uniformly bounded sequence [Sn]N and all

subsets N' c N, the d-compactness of [An(Sn)]N> implies the J-compact-

ness of [ S J ^ . A possible generalization of this is to introduce the

numbers

p{A) = inf {λ :λ > 0, a(S) < λa{A(S))9 S c Abounded}

and

p{[An)N) = supinf{λ: λ > 0, «([$„]„,) < λδ([An(Sn)]N.),

[Sn]N uniformly bounded},

where the supremum is taken over all infinite subsets N' c N. Further, we

introduce a type of convergence which generalizes the regular convergence

in [4]; given λ > 0,

An-> A (λ-regular convergence) means

An^A and p([An]N)<λ.

As a motivation for this generalization, we give a result on λ-r convergent

operator sequences which contains in part Theorem 4.10 in [4] and plays

the same role for inhomogeneous equations Ax = y as Theorem 3.3 for

fixed point equations Kx = x.

THEOREM 5.1. Let An9A be operators between X and Y and let An-> A.

Let [Sn]N be a sequence of subsets in X such that \Jn Sn is bounded, and let

[yn]N be a bounded sequence in Y. Define

Sn = {x:x G Sn,Anx=yn).

Then

(ϊ)8([Sn]N)<8([yn)N);

(ϋ) [yn]% * 0 implies [Sn]*N Φ 0 and A([Sn]*N) c [γn]%.
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Proof, (i) From An -> A it follows that

δ([Sn])<λδ([An(Sn)]) =

by definition of Sn.

(ii) If [yn]* Φ 0, then δ([yn]) < oo, hence fi([SJ) < oo, hence [SJ*
# 0 . Moreover, given x e [SJ* and j£Λ e Sπ such that *„ -> x (Λ e #'),
we havej^ = ^4ΛxΛ -> Ax (n e #') which means Ax e [ j j * . •

Regular convergence has applications to boundary value problems for
nonlinear differential equations (see [4, Example 4.2]). However, there
seems to be another field of possible applications, namely nonlinear
spectral theory. The reader can find some interesting topics on nonlinear
spectral theory, for example, in [7]; in this paper the number

β(A) = sup{λ: λ > 0, a(A(S)) > λa(S), S c Abounded}

plays a crucial role for the definition and description of the spectrum of a
nonlinear operator A. It is not hard to see that β(A) = \/p(A)\ conse-
quently, all results involving the number β(A) can be expressed equiva-
lently in terms of ρ(A). (To give a simple example, a continuous linear
operator A between two Banach spaces X and Y is Fredholm if and only if
ρ(A) and ρ(A*) are both finite, where A* is the adjoint of A.)

Some connections between nonlinear spectral theory and regular
operator convergence will be discussed in a forthcoming paper.

Note added in proof. After submitting the present paper, the authors
became acquainted with G. M. Vainikko's work on measures of discrete
noncompactness (see [18-21] and, in particular, [22]). Our measure δ,
however, is defined in another way, and has different properties. We
thank Professor Vainikko for pointing our attention to the papers [18-22].
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