ON THE ORDERS OF AUTOMORPHISMS OF A CLOSED RIEMANN SURFACE

Kenji Nakagawa

Let S be a closed Riemann surface of genus $g(\geq 2)$. It is known that the maximum value of the orders of automorphisms of S is $4 g+2$. In this paper we determine the orders of automorphisms of S which are greater than or equal to $3 g$, and characterize those Riemann surfaces having the corresponding automorphisms. Except for several cases, such Riemann surfaces are determined uniquely up to conformal equivalence.

Theorem 1. Let $N(S, h)$ be the order of an automorphism h of S. Then, $\max _{S, h} N(S, h)=4 g+2$. The Riemann surface having the automorphism of maximum order $4 g+2$ is conformally equivalent to the Riemann surface defined by

$$
y^{2}=x\left(x^{2 g+1}-1\right) .
$$

The automorphism h of order $4 g+2$ is given by

$$
h(x, y)=\left(e^{2 \pi i /(2 g+1)} x, e^{2 \pi i /(4 g+2)} y\right) .
$$

Although the existence of the Riemann surface with the automorphism of order $4 g+2$ is well known, in the above theorem the uniqueness (up to conformal equivalence) is shown.

To simplify, we write Theorem 1 in the following form:

$$
\begin{gathered}
\max N=4 g+2, \quad S: y^{2}=x\left(x^{2 g+1}-1\right), \\
h(x, y)=\left(e^{2 \pi i /(2 g+1)} x, e^{2 \pi i /(4 g+2)} y\right) .
\end{gathered}
$$

Under similar notation,
Theorem 2.

$$
\max _{N<4 g+2} N=4 g, \quad S: y^{2}=x\left(x^{2 g}-1\right), \quad h(x, y)=\left(e^{2 \pi i / 2 g} x, e^{2 \pi i / 4 g} y\right) .
$$

Theorem 3. If $g \equiv 0(\bmod 3)$, for $g \neq 3$,

$$
\begin{gathered}
\max _{N<4 g} N=3 g+3, \quad S: y^{3}=x^{2}\left(x^{g+1}-1\right) \\
h(x, y)=\left(e^{2 \pi i /(g+1)} x, e^{4 \pi i /(3 g+3)} y\right)
\end{gathered}
$$

For $g=3$, we have $4 g=3 g+3$. Then there exist two Riemann surfaces defined by

$$
y^{2}=x\left(x^{6}-1\right) \text { and } y^{3}=x^{2}\left(x^{4}-1\right)
$$

which have an automorphism of order 12. Furthermore,

$$
\max _{N<3 g+3} N=3 g, \quad S: y^{3}=x\left(x^{g}-1\right), \quad h(x, y)=\left(e^{2 \pi i / g} x, e^{2 \pi i / 3 g} y\right),
$$

except for

$$
\begin{array}{cl}
S: y^{20} & =x^{5}(x-1)^{4} \\
: y^{28} & =x^{7}(x-1)^{4} \\
: y^{36} & =x^{9}(x-1)^{4} \\
(g=9, N=20=3 g+2), \\
(g=12, N=36=3 g) .
\end{array}
$$

Theorem 4. If $g \equiv 1(\bmod 3)$,

$$
\begin{gathered}
\max _{N<4 g} N=3 g+3, \quad S: y^{3}=x\left(x^{g+1}-1\right), \\
h(x, y)=\left(e^{2 \pi i /(g+1)} x, e^{2 \pi i /(3 g+3)} y\right) . \\
\max _{N<3 g+3} N=3 g, \quad S: y^{3}=x\left(x^{g}-1\right), \quad h(x, y)=\left(e^{2 \pi i / g} x, e^{2 \pi / / 3 g} y\right),
\end{gathered}
$$

except for

$$
\begin{gathered}
S: y^{12}=x^{3}(x-1)^{2} \quad(g=4, N=12=3 g) \\
: y^{30}=x^{5}(x-1)^{6} \quad(g=10, N=30=3 g) .
\end{gathered}
$$

Theorem 5. If $g \equiv 2(\bmod 3)$,

$$
\max _{N<4 g} N=3 g, \quad S: y^{3}=x^{2}\left(x^{g}-1\right), \quad h(x, y)=\left(e^{2 \pi i / g} x, e^{4 \pi i / 3 g} y\right),
$$

except for

$$
S: y^{6}=x^{3}(x-1)^{3}(x-\zeta)^{2} \quad(g=2, N=6=3 g, \zeta \in \mathbf{C}, \zeta \neq 0,1) .
$$

We introduce the following notation; $\langle h\rangle$ denotes the cyclic group generated by h of order $N . \tilde{S}=S /\langle h\rangle$ denotes the closed Riemann surface of genus \tilde{g} obtained by identifying those points on S which are equivalent under the action of $\langle h\rangle$ on $S . \tilde{p}_{1}, \ldots, \tilde{p}_{t} \in \tilde{S}$ denote the projections of branch points of the covering map $\varphi: S \rightarrow \tilde{S} . \nu_{1}, \ldots, \nu_{t}$ denote the multiplicities of φ at the branch points over $\tilde{p}_{1}, \ldots, \tilde{p}_{t}$, respectively.

A Fuchsian group is said to be a $\left(\gamma ; m_{1}, \ldots, m_{n}\right)$ group if its signature is $\left(\gamma ; m_{1}, \ldots, m_{n}\right)$. If $n=0$, it is said to be a surface group. A homomorphism from a Fuchsian group onto a finite group is said to be a surface kernel homomorphism if its kernel is a surface group.

Lemma 1. (Harvey [2].) Let Γ be a $\left(\gamma ; m_{1}, \ldots, m_{n}\right)$ group, Z_{N} the cyclic group of order N, and $M=\operatorname{lcm}\left(m_{1}, \ldots, m_{n}\right)$. Then there exists a surface kernel homomorphism from Γ onto Z_{N} if and only if the signature $(\gamma ;$ m_{1}, \ldots, m_{n}) satisfies the following l.c.m. condition;
(1) $M=\operatorname{lcm}\left(m_{1}, \ldots, \check{m}_{i}, \ldots, m_{n}\right)(i=1, \ldots, n)$. Here, \check{m}_{i} denotes the omission of m_{i}.
(2) $M \mid N$, if $\gamma=0$ then $M=N$.
(3) $n \neq 1$, if $\gamma=0$ then $n \geq 3$.
(4) If $2 \mid M$, the number of m_{i} 's which are divisible by the maximum power of 2 which divides M is even.

Lemma 2. (Riemann-Hurwitz relation.)

$$
2 g-2=N(2 \tilde{g}-2)+N \sum_{i=1}^{t}\left(1-\frac{1}{\nu_{i}}\right)
$$

Lemma 3. If $\tilde{t}=0$, then S is conformally equivalent to the Riemann surface defined by

$$
y^{N}=f(x) \quad(f(x) \text { is a polynomial of } x)
$$

Lemma 4. ($\left.\tilde{g} ; \nu_{1}, \ldots, \nu_{t}\right)$ satisfies the l.c.m. condition.
Proof. Let D be the unit disk, K a Fuchsian surface group which uniformize S, and ψ the natural projection from D onto $S=D / K$. Let $D^{*}=D-(\varphi \circ \psi)^{-1}\left\{\tilde{p}_{1}, \ldots, \tilde{p}_{t}\right\}, \tilde{S}^{*}=\tilde{S}-\left\{\tilde{p}_{1}, \ldots, \tilde{p}_{t}\right\}$, and let Γ be the covering transformation group of the covering $\varphi \circ \psi: D^{*} \rightarrow S^{*}$. Then Γ is a $\left(\tilde{g} ; \nu_{1}, \ldots, \nu_{t}\right)$ group and $\Gamma / K \simeq Z_{N}$. So from Lemma 1, we find that (\tilde{g}; $\left.\nu_{1}, \ldots, \nu_{t}\right)$ satisfies the l.c.m. condition.

Lemma 5. If $N>2 g-2$, then $\tilde{g}=0, t=3,4$.
Proof. From the Riemann-Hurwitz relation, if $\tilde{g} \geq 2$,

$$
2 g-2 \geq N(2 \tilde{g}-2) \geq 2 N
$$

This contradicts the hypothesis. If $\tilde{g}=1$, from the l.c.m. condition, $t \geq 2$.

Then,

$$
2 g-2=N \sum_{i=1}^{t}\left(1-\frac{1}{\nu_{i}}\right) \geq t N / 2 \geq N
$$

This also contradicts the hypothesis. So $\tilde{g}=0$, and

$$
2 g-2=-2 N+N \sum_{i=1}^{t}\left(1-\frac{1}{\nu_{i}}\right) \geq \frac{(t-4) N}{2}
$$

Thus $t=3,4$ or 5 . But if $t=5$,

$$
2 g-2=N\left(3-\sum_{i=1}^{5} \frac{1}{\nu_{i}}\right)
$$

and from $N>2 g-2$, we find that

$$
2<\sum_{i=1}^{5} \frac{1}{\nu_{i}}<3
$$

The signatures which satisfy these inequalities are the following:

$$
(0 ; 2,2,2,2, *), \quad(0 ; 2,2,2,3,3), \quad(0 ; 2,2,2,3,4), \quad(0 ; 2,2,2,3,5)
$$

None of these satisfies the 1.c.m. condition.
Lemma 6. If $N>2 g+2$, then $t=3$.
Proof. From Lemma 5, $\tilde{g}=0, t=3$, 4. If $t=4$, from the RiemannHurwitz relation, we find that

$$
1<\sum_{i=1}^{4} \frac{1}{\nu_{i}}<2
$$

The signatures which satisfy these inequalities and the l.c.m. condition are the following (N on the right side is given by $N=M=\operatorname{lcm}\left(\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}\right.$), g is calculated from $\tilde{g}, \nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}, N$ by the Riemann-Hurwitz relation):

$$
\begin{array}{lll}
(0 ; 2,2, m, m)(m \neq 2) & \text { if } 2 \mid m, & g=m / 2, N=m=2 g \\
& \text { if } 2+m, & g=m-1, N=2 m=2 g+2, \\
(0 ; 2,3,3,6) & & g=3, N=6=2 g \\
(0 ; 2,3,4,12) & g=6, N=12=2 g \\
(0 ; 2,3,5,30) & g=15, N=30=2 g \\
(0 ; 3,3,3,3) & & g=2, N=3=2 g-1, \\
(0 ; 3,3,4,4) & & g=6, N=12=2 g \\
(0 ; 3,3,5,5) & & g=8, N=15=2 g-1
\end{array}
$$

None of these satisfies $N>2 g+2$.

Proof of theorems. If we assume $N \geq 3 g(\geq 2 g+2)$, from Lemma 3, $\tilde{g}=0, t=3$ or exceptionally (I) $\tilde{g}=0, t=4,\left(\tilde{g} ; \nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}\right)=(0$; $2,2,3,3$), $g=2, N=6$. When $\tilde{g}=0, t=3$, from the Riemann-Hurwitz relation, we find that

$$
\frac{1}{3}<\frac{1}{\nu_{1}}+\frac{1}{\nu_{2}}+\frac{1}{\nu_{3}}<1
$$

The signatures which satisfy these inequalities and the 1.c.m. condition are the following;

$(0 ; 2, m, m)$	$(2 \mid m$ then $4 \mid m(m \neq 4))$	$g=m / 4$,	$N=m=4 g$,
$(0 ; 2, m, 2 m)$	$(2+m(m \neq 3))$	$g=(m-1) / 2$,	$N=2 m=4 g+2$,
$(0 ; 3, m, m)$	$(3 \mid m(m \neq 3))$	$g=m / 3$,	$N=m=3 g$,
$(0 ; 3, m, 3 m)$	$(3+m)$	$g=m-1$,	$N=3 m=3 g+3$,
$(0 ; 4,5,20)$		$g=6$,	$N=20=3 g+2$,
$(0 ; 4,6,12)$		$g=4$,	$N=12=3 g$,
$(0 ; 4,7,28)$		$g=9$,	$N=28=3 g+1$,
$(0 ; 4,9,36)$		$g=12$,	$N=36=3 g$,
$(0 ; 5,6,30)$		$g=10$,	$N=30=3 g$.

So if we exclude the exceptional cases (I) and (II), the signatures (\tilde{g}; $\nu_{1}, \nu_{2}, \nu_{3}$) are listed as following;

$$
\begin{array}{ll}
\text { If } N=4 g+2, & (0 ; 2,2 g+1,4 g+2) \\
\text { If } N=4 g, & (0 ; 2,4 g, 4 g) \\
\text { If } N=3 g+3, & (0 ; 3, g+1,3 g+3)
\end{array}
$$

(In this case, $3+m$ and $g=m-1$ imply $g \equiv 0,1(\bmod 3)$.)

$$
\text { If } N=3 g, \quad(0 ; 3,3 g, 3 g)
$$

Now S branches over three points of the Riemann sphere $\overline{\mathbf{C}}$, and the branching orders are given as above, so if we assume that the projections of branch points are 0,1 and ∞, from Lemma $3, S$ is conformally equivalent to the Riemann surface defined by

$$
y^{N}=x^{a}(x-1)^{b}
$$

where a, b are given by the following conditions;
$1 \leq a, b<N, \quad N /(N, a)=\nu_{1}, \quad N /(N, b)=\nu_{2}, \quad N /(N, a+b)=\nu_{3}$. ((N, a) denotes the g.c.m. of N and a.)

Then if $N=4 g+2, S$ is defined by

$$
\begin{equation*}
y^{4 g+2}=x^{2 g+1}(x-1)^{2 k} \quad((2 g+1, k)=1,1 \leq k<2 g+1) \tag{1}
\end{equation*}
$$

This surface is conformally equivalent to the Riemann surface defined by

$$
Y^{2}=X\left(X^{2 g+1}-1\right)
$$

under the birational transformation

$$
\left\{\begin{array} { l }
{ y = \frac { Y } { X ^ { g + 1 + k } } , } \\
{ x = - \frac { 1 } { X ^ { 2 g + 1 } } + 1 , }
\end{array} \quad \left\{\begin{array}{l}
Y=e^{(g+1) \pi i /(2 g+1)} \frac{x^{a}(x-1)^{b} y^{(2 g+1) c}}{\left(x^{p}(x-1)^{q} y^{2 r}\right)^{g+1}} \\
X=e^{\pi i /(2 g+1)} \frac{1}{x^{p}(x-1)^{q} y^{2 r}}
\end{array}\right.\right.
$$

where $(a, b, c),(p, q, r)$ are the solutions of the indeterminate equations

$$
\left\{\begin{array} { l }
{ 2 a + (2 g + 1) c = 1 , } \\
{ b + k c = 0 , }
\end{array} \quad \left\{\begin{array}{l}
p+r=0 \\
(2 g+1) q+2 k r=1
\end{array}\right.\right.
$$

If $N=4 g, S$ is defined by
(2) $y^{4 g}=x^{2 g}(x-1)^{k} \quad((4 g, k)=(4 g, 2 g-k)=1,1 \leq k<4 g)$.

This surface is conformally equivalent to the Riemann surface defined by

$$
Y^{2}=X\left(X^{2 g}-1\right)
$$

under the birational transformation

$$
\left\{\begin{array} { l }
{ y = e ^ { \pi i / 4 g } X ^ { (k - 1) / 2 } Y , } \\
{ x = - X ^ { 2 g } + 1 , }
\end{array} \quad \left\{\begin{array}{l}
Y=e^{\pi i / 4 g} x^{a}(x-1)^{b} y^{c} \\
X=e^{\pi l / 2 g} x^{p}(x-1)^{q} y^{r}
\end{array}\right.\right.
$$

where $(a, b, c),(p, q, r)$ are the solutions of the indeterminate equations

$$
\left\{\begin{array} { l }
{ 2 a + c = 1 , } \\
{ 4 g b + k c = 1 , }
\end{array} \quad \left\{\begin{array}{l}
p+r=0 \\
2 g q+k r=1
\end{array}\right.\right.
$$

If $N=3 g+3, S$ is defined by

$$
\begin{gather*}
y^{3 g+3}=x^{j(g+1)}(x-1)^{3 k} \tag{3}\\
((g+1, k)=(3 g+3,(3-j)(g+1)-3 k)=1 \\
\quad j=1,2,1 \leq k<g+1)
\end{gather*}
$$

When $g \equiv 0(\bmod 3),(3)$ is conformally equivalent to the Riemann surface defined by

$$
Y^{3}=X^{2}\left(X^{g+1}-1\right)
$$

under the birational transformation

$$
\begin{gathered}
\left\{\begin{array}{l}
y=e^{k \pi i /(g+1)} \frac{Y^{j}}{X^{k+j(g / 3+1)}} \\
x=-\frac{1}{X^{g+1}}+1
\end{array}\right. \\
\left\{\begin{array}{l}
Y=e^{(g+3) \pi i /(3 g+3)} \frac{x^{a}(x-1)^{b} y^{(g+1) c}}{\left(x^{p}(x-1)^{q} y^{3 r}\right)^{g / 3+1}} \\
X=e^{\pi i /(g+1)} \frac{1}{x^{p}(x-1)^{q} y^{3 r}}
\end{array}\right.
\end{gathered}
$$

where $(a, b, c),(p, q, r)$ are the solutions of the indeterminate equations

$$
\left\{\begin{array} { l }
{ 3 a + j (g + 1) c = 1 , } \\
{ b + k c = 0 , }
\end{array} \quad \left\{\begin{array}{l}
p+j r=0 \\
(g+1) q+3 k r=1
\end{array}\right.\right.
$$

When $g \equiv 1(\bmod 3),(3)$ is conformally equivalent to the Riemann surface defined by

$$
Y^{3}=X\left(X^{g+1}-1\right)
$$

under the birational transformation

$$
\begin{gathered}
\left\{\begin{array}{l}
y=e^{k \pi I /(g+1)} \frac{Y^{j}}{X^{k+j(g+2) / 3}} \\
x=-\frac{1}{X^{g+1}}+1
\end{array}\right. \\
\left\{\begin{array}{l}
Y=e^{(g+2) \pi i /(3 g+3)} \frac{x^{a}(x-1)^{b} y^{(g+1) c}}{\left(x^{p}(x-1)^{q} y^{3 r}\right)^{(g+2) / 3}} \\
X=e^{\pi i /(g+1)} \frac{1}{x^{p}(x-1)^{q} y^{3 r}}
\end{array}\right.
\end{gathered}
$$

where $(a, b, c),(p, q, r)$ are the solutions of the indeterminate equations

$$
\left\{\begin{array} { l }
{ 3 a + j (g + 1) c = 1 , } \\
{ b + k c = 0 , }
\end{array} \quad \left\{\begin{array}{l}
p+j r=0 \\
g p+k r=1
\end{array}\right.\right.
$$

If $N=3 g, S$ is defined by

$$
\begin{align*}
y^{3 g}= & x^{j g}(x-1)^{k} \tag{4}\\
& ((3 g, k)=(3 g,(3-j) g-k)=1, j=1,2,1 \leq k<g)
\end{align*}
$$

Then we notice that $k \equiv j(\bmod 3)$ or $k \equiv 2 j(\bmod 3)$. In the case $k \equiv j$ $(\bmod 3),(4)$ is comformally equivalent to the Riemann surface defined by

$$
Y^{3}=X\left(X^{g}-1\right)
$$

under the birational transformation

$$
\left\{\begin{array} { l }
{ y = e ^ { ((k + j g) \pi i / 3 g) } X ^ { (k - j) / 3 } Y ^ { j } , } \\
{ x = - X ^ { g } + 1 , }
\end{array} \quad \left\{\begin{array}{l}
Y=e^{((g+1) \pi i / 3 g)} x^{a}(x-1)^{b} y^{c} \\
X=e^{\pi i / g} X^{p}(x-1)^{q} y^{3 r}
\end{array}\right.\right.
$$

where $(a, b, c),(p, q, r)$ are the solutions of the indeterminate equations

$$
\left\{\begin{array} { l }
{ 3 a + j c = 1 , } \\
{ 3 g b + k c = 1 , }
\end{array} \quad \left\{\begin{array}{l}
p+j r=0 \\
g q+k r=1
\end{array}\right.\right.
$$

In the case $k \equiv 2 j(\bmod 3),(4)$ is conformally equivalent to the Riemann surface defined by

$$
Y^{3}=X^{2}\left(X^{g}-1\right)
$$

under the birational transformation

$$
\left\{\begin{array} { l }
{ y = e ^ { ((k + j g) \pi i / 3 g) } X ^ { (k - 2 j) / 3 } Y ^ { j } , } \\
{ x = - X ^ { g } + 1 , }
\end{array} \quad \left\{\begin{array}{l}
Y=e^{\pi i / 3} x^{a}(x-1)^{b} y^{c} \\
X=e^{\pi i / 3} x^{p}(x-1)^{q} y^{3 r}
\end{array}\right.\right.
$$

where $(a, b, c),(p, q, r)$ are the solutions of the indeterminate equations

$$
\left\{\begin{array} { l }
{ 3 a + j c = 1 , } \\
{ 3 g b + k c = 2 , }
\end{array} \quad \left\{\begin{array}{l}
p+j r=0 \\
g q+k r=1
\end{array}\right.\right.
$$

Finally, if $g \equiv 0(\bmod 3)$, two Riemann surfaces

$$
y^{3}=x\left(x^{g}-1\right) \quad \text { and } \quad Y^{3}=X^{2}\left(X^{g}-1\right)
$$

are conformally equivalent under the birational transformation

$$
\left\{\begin{array} { l }
{ y = - X ^ { g / 3 + 1 } Y , } \\
{ x = X ^ { - 1 } }
\end{array} \quad \left\{\begin{array}{l}
Y=-x^{g / 3+1} y \\
X=x^{-1}
\end{array}\right.\right.
$$

For a surface in (4), if $g \equiv 1(\bmod 3)$, we obtain $k \equiv j(\bmod 3)$, while if $g \equiv 2(\bmod 3), k \equiv 2 j(\bmod 3)$.

In the exceptional case (I), the surfaces are conformally equivalent to the Riemann surface defined by

$$
y^{6}=x^{3}(x-1)^{3}(x-\zeta)^{2} \quad(\zeta \in \mathbf{C}, \zeta \neq 0,1)
$$

In the case (II), the surfaces which have the same signature are conformally equivalent to each other. Thus we have the following forms
of S :

$$
\begin{array}{ll}
y^{20}=x^{5}(x-1)^{4}, & (0 ; 4,5,20) \\
y^{28}=x^{7}(x-1)^{4}, & (0 ; 4,7,28) \\
y^{12}=x^{3}(x-1)^{2}, & (0 ; 4,6,12) \\
y^{36}=x^{9}(x-1)^{4}, & (0 ; 4,9,36) \\
y^{30}=x^{6}(x-1)^{5}, & (0 ; 5,6,30)
\end{array}
$$

References

[1] R. D. M. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. Soc., 131 (1968), 398-408.
[2] W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford (2), 17 (1966), 86-97.
[3] T. Kato, On the number of automorphisms of a compact bordered Riemann surface, Kodai Math. Sem. Rep., 24 (1972), 224-233.
[4] Y. Kusunoki, Function theory, (Japanese) Tokyo Asakura, (1973).
[5] J. Lewittes, Automorphism of a compact Riemann surface, Amer. J. Math., (1963), 738-752.
[6] A. M. Macbeath, Discontinuous groups and birational transformations, Proc. Dundee Summer School, (1961).
[7] G. Springer, Introduction to the Riemann Surfaces, Addison Wesley (1958).
[8] R. Tsuji, Conformal automorphisms of a compact bordered Riemann surface of genus 3, Kodai Math. Sem. Rep., 27 (1976), 271-290.
[9] A. Wiman, Übwer die hyperelliptischen Curven und diejenigen vom Geschlechte $p=3$ welch eindeutigen Transformation in sich zulassen, Bihang Till. Kongl. Svenska Veienskaps-Akademiene Halinger, 21 (1895-6), 1-23.

Received April 28, 1983.
Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo, 152 Japan

