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DENSITY OF A FINAL SEGMENT
OF THE TRUTH-TABLE DEGREES

JEANLEAH MOHRHERR

This work answers two questions from the topic of degrees of
unsolvability, which is part of recursive function theory. We give a simple
and explicit example of elementary inequivalence of the Turing degrees
to the truth-table degrees. In constructing this example, we show that
every truth-table degree above that of the halting problem is the jump of
another truth-table degree.

The theory of degrees of unsolvability grew directly from the study of
questions about decidability. In 1939, Turing presented the concept of one
theory being decidable with respect to another theory [T]. Later, based on
Turing's work with decidability, Kleene and Post defined degrees of
unsolvability [KIP]. Refinements of degees of unsolvability were defined
in[P].

2)Ύ is the structure of all Turing (T) degrees with the induced partial
ordering; S)iV the structure of all truth-table (tt) degrees with the induced
partial ordering. For a discussion of Turing degrees and truth-table
degrees see Rogers [R] or Odifreddi [02]. As is standard we use boldface
lower case letters to denote degrees of unsolvability. The superscript
denotes Turing jump and (n\ the Turing jump applied n times.

In their paper on reducibility ord,erings [NS], A. Nerode and R. Shore
have the result that for each automorphism Φ of 2τ there is an element
d e ^ τ such that Φ is fixed on the cone of b e 2Ύ for which b > d. They
make the point that the proof of this result relies on the completeness
property of 2Ί

(Va €= 0T)(a > 0 ( π ) -> (3b e @τ)(b U 0(n) = b(n) = a))

for every n > 0; and consequently an analogous theorem for the (for
instance) truth-table reducibility ordering would give a proof that each
automorphism of {3)xv < ) is fixed on a cone.

Later Shore conjectured that the following jump property (a weaker
form of completeness) holds for @it:

(Va e S t t)(a > 0' -* (3b e 0 t t)(b' = a)).
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We prove that 2XX does have this jump property and that moreover

(Va e 0 t t )(a > 0 ( w ) -* (5b e 0 t t)(b ( # f ) = a)),

for every n > 0. Still, we do not know whether there is a d e S t t such that

(Va e S t t)(a > d -> (3b G ̂ t t )(b < a and a = b U d)).

We also do not know whether every automorphism of («®tt, < ) is fixed
on a cone. However, we make use of the jump theorem for 2dxx to answer
another question about Sdxx.

In [01], P. Odifreddi asked if the orderings of T-degrees and tt-degrees
are elementary inequivalent. This follows his discussion of r.e. tt-degrees
where he reviews the result that there are minimal r.e. tt-degrees [Ko].
Shore answers this question in the affirmative [Sh] but notes that his
method of proof is quite indirect and suggests that a natural sentence
might be found to distinguish 3)Ί from 3txx. We give such a sentence in this
paper.

Through the jump theorem for 2XX we prove that in the tt reducibility
ordering the degree 0' has no minimal cover, a is a minimal cover for b if
a > b and, for every c, a > c > b - » c = a o r c = b. That every degree in
S)Ί has a minimal cover is a fundamental result proved by Spector [Sp].
Therefore the sentence

(Va)(Ξb)(b > a and (Vc)(b > c > a - > c = b o r c = a))

is true for 2Ί but false for 2XX. Actually a stronger result holds. In Qxx no
degree above 0' is a minimal cover. By [JS], in S τ every degree above 0 ( ω )

is a minimal cover where 0 ( ω ) = {(n9i)\i e 0(n)}.
Other related properties of 3)xx are investigated.
This work with the exception of the corollary to the jump theorem

formed part of the author's Ph.D. thesis at the University of Illinois at
Chicago written with Carl Jockusch. We thank Carl Jockusch for suggest-
ing that we work on these problems, for his constant example of an
open-minded approach, and for his promptness and thoroughness in
reading numerous drafts, particularly of the jump theorem for tt-degrees.
We thank Richard Shore for pointing out a new direction for this work:
In the first draft we had only used our result of density upward holding
for complete truth-table degrees to observe that complete truth-table
degrees have no minimal covers; he suggested that, since density in the
substructure of complete degrees is immediate, we investigate basic prop-
erties of dense upper semilattices such as, for instance, the existence of
minimal pairs.
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A jump theorem for tt-degrees. The Friedberg Completeness Theo-
rem states that for a > 0' 3b (b' = b U 0' = a). So it is a combined
cupping up and jump theorem. Here we prove a jump theorem for 2ιv

R. Shore conjectured that the Turing jump operator is onto the
complete truth-table degrees. Although he observed that HA > tt 0' and B
is the set Friedberg constructs to prove his completeness theorem then
B' <txA; Shore did not know if the other direction, A <nB' holds.
Certainly if A = t t 0' then A < tt £'. We give a proof for both Bf < tt A and
A <nB'\ we give the details for Bf < t t A as a warm-up for the reduction
of A to B' (by truth-tables).

We are breaking from the tradition of degree theory which is to prove
theorems by constructing sets. We begin with a set known in the literature
and prove the theorem by constructing recursive functions. However, we
can cite a precedent. It is an exercise in Rogers [Ro] to show that X > tt 0'
and Y < w t t X imply Y < tt X. Carl Jockusch related a proof of this that
employs a technique we use in the jump theorem. (According to our
memory) his proof goes this way:

X is an oracle for r.e. questions by the hypothesis X > tt 0'. In a
truth-table reduction of Y to X, I can ask X any number of r.e. questions
as long as I decide recursively which questions I want to ask. Fix a
reduction of Y < w t t X and consider the computation for the number n. I
have a recursive bound k on the use of the oracle X in the computation.
There are 2k possibilities for the subset of X bounded by k. When I choose
one, F say, it is an r.e. question to ask if the computation for n using F
puts n into Y. I ask two questions of the oracle for each of the 2k subsets
of ω bounded by A:: Is n computed to be in Y and is this subset the true
subset of XΊ

We comment that the disjunction of this pair of questions over 2k is
recusively determined and it a correct truth table for Y using the oracle X.
The choice of questions depends on the reduction that was fixed for
Y < w t t X and the procedure to find these questions still converges if an
oracle other than X is used.

THEOREM 1 {jump theorem). For every A > t t0', there is a B such that

Proof. Let B be the set Friedberg constructed to prove his complete-
ness theorem. We will show that this set satisfies our theorem after we
review his construction.

Friedberg''s construction.

Let a string be a sequence of zeros and ones. We will use Greek letters
σ, δ to represent strings. For a given string σ, |σ| means the length of σ and
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σ(n) refers to the value of the nth position. We say that string σ is
contained in set C, i.e. σ c C, when, for every « < |σ|, σ(n) = 0 if and
only if n e C. We use Φe(C; x) to denote the partial recursive function
having Gόdel number e and using the set C as an oracle. For |σ| = s,
Φ^(σ; x ) | means using the values coded by σ, the computation refers to
the oracle for numbers < s only and the computation converges in s steps.
In other words, for every C =) σ, Φes(C; x) j . Now given e, x and C it is
always the case that when Φe(C\ x)i we can determine this by using
finitary information about C. Consequently, given e, x9 and finite σ it is
the case that when there is a string σ' extending σ for which Φe(σ'; x) I,
we can find σ' recursively.

For a fixed A > t t 0 ' we construct, in stages, an infinite binary se-
quence σ so that B = {n\σ(n) = 0}. Beginning with state 0, σ0 is the
empty string; at stage s9 os+ι is a string that extends σs.

At even stages s = 2e:
If there is an x such that there is a binary string δ of length x which
extends os and Φex(δ; e)l, we set σs+ι equal to the least such δ. Other-
w i s e , ^ = σs.

At odd stages s = 2e + 1:
We set σ5+1 = σ/0 if e ^ A. Otherwise, σs+1 = σ5*l.
End of the construction.

First direction: B' <ttA.
Let us assume we have completed a truth-table for numbers less than

n. So given u as a canonical index of a finite set, we can compute a table
to decide if Du is the set of all m < n with m e Z)'.

Our table for w is the disjunction of all statements of the following
form, where DUQ [m\m < n) and δ is a string of length n: "Du is the set
of all m < n in B\ and δ is the binary string of length n that codes an
initial segment of A and comp(π, w, δ) holds." comp(«, w, δ) holds if
there are strings as, for all s < 2n such that:

as+ι = as if s = 2y andy £ Z)M;

α 5 + 1 is the first extension of as that putsy" into the jump if

s = 2] and (y e Du orj = /i);

What we are doing with comp(«, w, δ) is analyzing the construction
of B. It should be noted that comp(«, w, δ) is an r.e. relation and hence,
since 0' < t t A, comp(«, w, δ) can be replaced by an equivalent truth-table
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about A which can be effectively found. Our use function for A is
recursive because we need only A f n plus a number of 0\A) questions
that can be determined uniformly for each n. We also need to know which
m < n have been put into Bf before the jump for n was described, but we
have that by our induction hypothesis. No information about A is needed
to construct the table. We have effectively constructed truth-table condi-
tions with this property: If X is an arbitrary set and X > t t0', then {n\X
satisfies the truth-table condition for n} = the jump of the Friedberg set
constructed for X.

Other direction: A < t t B\
Since one might be more skeptical about this direction, we first show

what the table is for deciding 0 <= A. Here, let "use Φ0(B; 0)" be defined
only if 0 e B' and be equal to the actual bound on information in B used
for the computation.

0 e ^ ^ α ( 0 ί F a n d 0 e 5 ) or (0 e B' and use Φ0(J?; 0) e B\\

The first disjunct is co-r.e. in B and the second disjunct is r.e. in B.
For the general case, we ask whether, for some j < n, j G B' and
use Φj(B; j) > \o2j\. If not, n e A iff n e B. Otherwise letting m be the
greatest suchy, n e A iff (use Φm{B\ m) + n — m) e B. We need to know
A Γ n in order to compute |σ2v|, for j < n. However by induction, we can
always assume we know this much. We will define a relation r.e. in B that
will tell us if m < n is such a j . Let Du c {m\m < n} and 8 be a string of
length n: growth5(π, w, δ, m) holds if there are strings as for all s < 2m
such that:

as+ι = as if s < 2m, s = 2/ and / £ Z^;

Oy+1 is the first extension of α5 that puts / into the jump if

s < 2m, s = 2/ and/ e 2^;

<*.+i = <δ(/) ifj = 2ι + l ; and \a2m\ < useΦm(£; m).

Now we can show what the table is for deciding n ^ A.

\ / { j < n<mάj e 5 r} and δ codes 1̂ Γ Λ

and {(n e 5 and V/ < π growth5(π, w, δ, j) is false)

o r V ({uscΦj(B; j) + « - j) G β a n d g r o w t h 5 ( « , u9δ,j)
j<n

and Vm >y growthβ(w, w, δ, m) is false)] j " .

This is a boolean combination of statements r.e. or co-r.e. in B and these
statements can be computed effectively for n. D
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An π-generic set B is like this: If a number e is not in B^n\ the nth
jump of B; then B has an initial segment, say B Γ s, such that e is never in
C(n) for any set C, C Γ s = 5 Γ s. 0' is an example of a set that is not
^-generic.

The set we use in the proof above is a special case of a 1-generic set. It
is special because step 2n decides whether n e Br and therefore the order
of the steps is effective.

DEFINITION. B(ω) = {(Λ, i)\i <Ξ B(n)}.

COROLLARY (to the proof). For every k > 0, for every A >n0
(k\ there

is a B such that B(k) = ttA and, for every A > t t 0
( ω ) , there is a B such that

B(ω)=nA.

Proof. For every k > 2, let Qky abreviate the alternation of k - 1
quantifiers beginning with Vy2. For example, Q4y abreviates Vy2Ξj>3Vy4.
Just as

X' = {φδ

and every question of the form

can be effectively coded as a question concerning membership of 0',

and every question

can be effectively coded as a question concerning membership of 0(k\
For 4̂ > n 0 ( / c ) , we construct 5 as in the proof above but with

Qky Φe(δ;y,e) in place of Φe(δ; e) so that we obtain a set B with the
property that for every e there is a string σ c 2? that forces 2 ^ Φ ^ σ ; y , e ) .
σ forces (?*y Φe(σ; j>, e) if <2*J Φe(σ; J, β) I or, for every δ extending σ,
QkyΦe(δ; y9 e)T 5 ( / c ) = t t yl follows from the reduction procedure for
5 ' Ξ

 tt 4̂ but asking 0(/c) questions instead of 0' questions.
Now for the case A > t t 0

( ω ) and B(ω) =n A is desired, we use what is
essentially a forcing argument; satisfaction (or refutation) of every sentence
arithmetic in B is determined by a finite amount of information about B.
We construct B in the following manner. Let (n9m) be the standard
enumeration of ω X ω.
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Construction.
At stages s = (k9e) where k > 0:

If there is an x such that there is a string δ of length x which extends σ5

and QkyΦe(δ; j>, e), we set σJ+1 equal to the least such 8. Otherwise,

We set σ s + 1 = σ/0 if e ^ A. Otherwise σs+1 = σ/1.
At states s = (0, e)\

1 = σ/0 if e
construction.

Now ̂ 4 = tt i5
( ω ) is proved by induction as B' = tt A is proved above. D

Application of the jump theorem.

DEFINITIONS. For A > itD, A splits over D if there are sets Ax and A2

strictly in between A and D such that A <nAι Θ A2. For £> <nA,D cups
to 4̂ if there is a set ̂ 40 < tt A and yl < t t ΰ θ 4

tt

WfΘD

THEOREM 2. If A > t t 0 ' and D <itA9 then either A splits over D or D
cups to A.

Proof. Choose B so that B' =UA. Do any Sacks splitting of Bf

relative to B; say W* and Wf. We have W*, Wf <mB' and Bf <uWf θ

Now

D<i

If

D<« ' <nB\

j

then A splits over D. Otherwise D cups up to C. Π

Kallibekov [Ka] proved that the r.e. truth-table degrees are dense
upwards. We observe that the truth-table degrees below 0' are dense
upwards and relativize this result.

THEOREM 3. Let A < tt C. There is a set U such that A < tt U < tt C.

Proof. Let A < tt C We build a set U such that A < tt U < tt C.
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Preliminaries. We fix an approximation of A that is recursive in C and

has the property that, for every initial segment of A9 there is an n such

that every approximation after the nih is correct on the initial segment.

Also we fix an enumeration of C" that is recursive in C. U9 the set we are

going to build, is partitioned into uniformly recursive rows. One row is set

aside to copy A and the other rows are numbered.

Strategy. We prevent U <UA by copying C" into U whenever we

think there is a reduction. We prevent C" < t t U by withholding all

information but A from U when we think there is a reduction. In the end,

U < t t C because U is the recursive join of A with a set r.e. in C.

Notation. As, U\ (C')s are the approximation at stage s. /(s, /, U9 A)

is the largest n < s such that for all m < n Φ, s(m)i and m e UsiΐΐAs

satisfies the truth-table condition indexed by Φ7 s{m). Define l(s9 /, C", U)

similarly.

Construction. Stages.

We see if l(s, z, U9 A) has grown for any / < s. If so, pick the least

such / and copy (C')s into row /. Next, if l(s, /, C", U) has grown for some

/ < 5, then for anyy, i < j < s9 put {O9...9s} into rowj. (This is covering

up information.)

LEMMA 1. If Φι does not tt-reduce U to A, there is a stage sQ and a

witness w such that, for all stages s > sθ9 l(s, /, U9 A) < w..

Proof. This is a property of our approximation of A.

LEMMA 2. // Φ7 does not tt-reduce C to U\ there is a stage sQ and a

witness w such that, for all stages s > sO9l(s9 /, C\ U) < w. D

LEMMA 3. A < t t U < t t C and U is strictly in between A and C.

Proof. U is a recursive join of A and a set r.e. in C. Therefore,

A < t t U < t t C. We prove that U is strictly in between by contradiction.

Suppose U<nA. Then we know by Lemma 2 that for every /,

l(s, /, C'9 U) as a function of s is bounded. Let e be the index of a partial

recursive function that reduces U < t t A. Then by the construction {e} X

C c t/ and for some m, s > m implies (e9 s) G C7 iff (e, s) ^ ί/.

However, this contradicts U <nA.
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Now suppose C <ttU and let e be an index for which Φe: C < t t U.

It is clear from the construction that in this case (TV \ ( 0 , . . . , e} X N Q U).

Now add to this that, l(s, /, U, A) as a function of s is bounded, for / < e,

by Lemma 1 and we see that U must be tt-equivalent to A. U <tiA9

however, contradicts C < t t U. Thus we have proved A < t t U < t t C". D

Corollary to the proof. If A < t t C , then there is an independent set of

Uι9i Ξ N9 strictly in between A and C.

Proof. For every /, we require Uι £ti φ ,JJj and therefore, we have

the requirement Pι

e\ not Φe: Ut < t t Θ .^. t^ . As before we copy C into row

e of Ui when Φe looks like it is going to truth-table reduce JJiΛo 0 φVΓ

Here in addition, we copy Λ̂  into row k of Uj9 for (j\ k) > (i9e).

Now assume that some Pι

e is not satisfied and choose / and e so that,

for all j and k such that P{ fails, (i9e) < (j,k). Then C r < t t Ut and

Θ _̂ . Uj < m A which is a contradiction. D

As usual this implies that any countable partial ordering can be

embedded in the truth-table degrees in the interval between A and C if

A<nC.

THEOREM 4 (interpolation theorem).

(3A)(VB >itA)(\fC <nB)(3D)(C <ttD <nB).

Proof. Let A = 0'. By Theorem 1 and by Theorem 3 above, the

sentence is true. D

This interpolation theorem goes counter to what might be expected of

the complete truth-table degrees. There are minimal r.e. truth-table de-

grees [Ko] and of course the construction relativizes to 0' to produce a set

M that has degree minimal over 0' with respect to truth-table reducibility

via functions recursive in 0'. Note that M is over 0r with respect to a

function recursive in 0'.

The tt-degrees above 0r are dense. The sentence of Theorem 4 is

glaringly false for 2Ύ. This interpolation property for 2XX shows that 3>xx is

dense above truth-table degeee 0'. If a, b are truth-table degrees above 0'

and 0 < b then there is a tt-degree c for which a < c < b by Theorems 1

and 3.

A partial ordering is an upper semilattice if finite supremums are

always defined. An upper semilattice JSf is homogeneous if any embedding
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into <£?of a substructure of a finite upper semilattice J^can be extended to
an embedding of ^. Since density is one of the properties of a homoge-
neous structure, it is natural to ask if the upper semilattice of the
tt-degrees above 0' is homogeneous. It is well known that the Turing
degrees and the r.e. degrees are not homogeneous. The r.e. truth-table
degrees and the r.e. weak-truth-table degrees have also been shown not to
be homogeneous. S. Schwartz gives some evidence that the quotient of the
r.e. degrees by a definable ideal may be homogeneous [Sc].

A commonly used procedure for showing that upper semilattices with
a least element are not homogeneous is producing a minimal pair. Two
nonzero elements form a minimal pair if they have an infimum and
infimum is equal to 0. The tt-degrees above 0' fail this test because every
truth-table degree is the infimum of two strictly greater truth-table de-
grees.

THEOREM 5. Let A and B be given with A <nB. For some set C,
C > nA and the truth-table degree of A is the infimum of those of B and C.

Proof. We will construct an infinite binary string σ to represent the
set, 5, of all n such that o{n) = 0. The plan is that C = S θ A. We
construct σ by making a sequence of finite extensions, working always
with a finite initial segment σs, the initial segment defined by stage s.

For each partial recursive function Φ7 we have the requirement

R(: NotΦ,: S <ttA.

We use [i}Λ to denote {n\A satisfies the truth-table condition coded
by Φi(n)}. {i}σsθA refers to that initial segment of {i}SΘA whose use
function is less than the length of σs. For each pair {i}SΦA and {j}B, we
have the requirement

Q i J : Φ i a n d Φ,. t o t a l a n d { i } S ( B A = { j } B - { j } B < « A .

C o n s t r u c t i o n .
Stages 5 = 2/: We can satisfy i?z once and for all at this stage because

σs has a finite extension that satisfies the requirement.
Stages s = 2((/, j)) + 1: We deal with Qi%J \ possibly, we may not

satisfy this directly. We look for a finite extension σs+ι of σs such that, for
some x9 {i}°s+l(BA(x) and {j}B(x) are defined and distinct. If none such
exists let σ5+1 = os.
End of the constuction.
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Set C = S Θ A. A < t t C because we satisfy not Φ,: S < t t A at stage
2/. We also succeed in making A the infimum of B and C: If the set
X <nB, C, then for some i and7, X = {/}c and X = {j}B- This can only
happen (since Φ, , Φy are total) if {i}τ@A = {j}B for every set Γ extending
σs where .y = 2((/, 7)) + 1. Let Γ be recursive with Γ extending σs so that

i={jr<tt^^<ttA •
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