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COBORDISM OF MANIFOLDS
WITH STRONG ALMOST TANGENT STRUCTURES

ROBERT GOGGINS

This paper studies the unoriented cobordism classes of closed
smooth manifolds whose tangent bundles admit nilpotent bundle endo-
morphisms.

1. Introduction. An almost tangent manifold is a smooth (differen-
tiable of class C00) manifold M2n for which the structure group of its
tangent bundle τ(M) reduces to the group of matrices of the form (# °),
A e GLn(R), B G End(iΓ). The study of these manifolds is motivated
by the observation that tangent manifolds have this property, i.e., if Nn is
a smooth manifold and E2n is the total space of τ(N), then E2n (a tangent
manifold) is an almost tangent manifold.

Note that if M 2 " is almost tangent, then the matrix

where In is the n X n identity matrix, induces a bundle endomorphism /:
τ(M) -» τ(Af) having constant rank n and satisfying J2 — 0. As / has
constant rank, τ(Af) is isomorphic to the Whitney sum im / Θ ker/, and
i m / = ker/, so one has τ ( M ) = 2 ( i m / ) . Thus M2n has an almost
complex structure and, for M2n closed, one is led to the well-known result
that M is cobordant to a square Nn X Nn. In particular, the cobordism
class of M is decomposable in 9? 2 π, the unoriented cobordism group.

In [4] Epiopoulous defines an almost tangent structure of order r on a
smooth manifold Mn to be a bundle endomorphism /: τ(M) -> τ(M) of
constant rank which satisfies Jr¥=0 and Jr+X = 0 (thus, an almost
tangent manifold has an almost tangent structure of order 1). Motivated
by the splitting property enjoyed by almost tangent manifolds, one says
that an almost tangent structure of order r, /, on Mn is strong and of type
k provided Jr\ τ(M) -» τ(M) has constant rank k.

P R O P O S I T I O N 1.1. Let r, k > 1, and n>{r+ \)k. A compact smooth

manifold Mn has a strnog almost tangent structure of order r and type k iff

τ(M)=(r+ l){*θτiB-ίΓ+1)*
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for some vector bundles ξk

9 ηn~(r+ι>>k -* M". (Note: (r + \)ξk denotes the
(r + \yfold Whitney sum ofξk.)

Proof. If / is such a structure, then for each fiber TMX of τ(M), one
has TMX ££ (r + l)(im //) θ Vχ9 where /, = J\TMX, θ is the direct sum
of vector spaces, and Vx is a complementary vector subspace of ΓMX.
Since / r has constant rank /c, necessity follows by setting ξk — im Jr. For
sufficiency, note that if r(M) = (r + l)ξk θ η, then /: τ(M) -* τ(M),
d e f i n e d b y J ( x l 9 . . . 9 x r + l 9 y ) = (Q9 x l 9 . . . 9 x r 9 0 ) 9 h a s t h e d e s i r e d p r o p -
erties. _ D

This splitting characterization will be exploited to study the unori-
ented cobordism classes of closed smooth manifolds having strong almost
tangent structures. Preliminary results are presented in §2. Manifolds with
structures of type 1 are studied in §3, and manifolds with structures of
type k, k> 1, are treated briefly in §4. Most of the results of this paper
are contained in the author's dissertation at the University of Virginia.

2. Preliminaries. In [8] Stong shows that if τ(Af) contains an
odd-dimensional subbundle, then wn(M)[M] — 0. The following lemma,
which is used throughout the paper, is a direct consequence.

LEMMA 2.1. If Mn has a strong almost tangent structure of type k, and k
is odd, then wn(M)[M] = 0.

The extreme case of a strong almost tangent structure on Mn, n>2,
is a structure of order (n — 1) and type 1, i.e., τ(Mn) = nξ}. If w(£) =
1 + a9 then w(M) = (1 + ά)n and w,(M) = (^a1. By 2.1, an[M] =
wn(M)[M] — 0. Since all Stiefel-Whitney numbers of M are multiples of
an[M] = 0, it follows that Mn bounds.

The converse of this result is false, for in [6] Rosendo and Gadea
show that for n φ 3 or 7, the sphere Sn does not admit an almost tangent
structure of order (n — 1). However, if Mn bounds, then M is cobordant
to an w-fold product of circles which has tangent bundle isomorphic to an
«-fold Whitney sum of trivial line bundles. Thus, one has

PROPOSITION 2.2. A class a E $#„, n > 2, is represented by a manifold
with a strong almost tangent structure of order (n — 1) and type 1 iff a — 0.

THEOREM 2.3. Every 3-manifold M3 has τ(M) = 3ξι for some ξι -> M3

(hence, every M3 has a strong almost tangent structure of order 2 and
type 1).
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Proof. By restricting attention to components, one may assume M3

connected. If v = 1 + υx is the Wu class, then

w{M) = Sq(l + v}) = 1 + t>! + ϋ? = 1 + w, + w,2.

Let £] be the determinant of τ(M3). Then

w(£ ® τ(M)) = (1 + W l ( 0 ) 3 + w,(l + wλ(ξ)f + wf{\ + wx(ξ))9

and since w^ξ) = wl9 it follows that w(ξ ® τ(M)) = 1, so ξ ® τ(Af) is a
Spin3 bundle, and there is a lift:

I-
M 3

Since HP(oo) is 3-connected, / is null homotopic, so ξ ® r(M) is trivial.
Therefore,

τ(M) = 1 ® τ(M) s ( { ® f ) ® τ ( M ) s f ® 3 s 3 ^ . Q

REMARKS. (1) Clark and Goel [2] prove this for M3 = S3.
(2) This is a modification of the well-known argument that an

orientable 3-manifold is parallelizable.

Fix integers r > 2, k > 1, and, for n>rk, define An(r, k) to be the
subset of classes in ^ln represented by manifolds having strong almost
tangent structures of order (r — 1) and type k. In terms of 1.1,

An(r, k) = (α E $1J3 M " G α with τ(M) = rξk θ η}.

It is easily seen that Λw(r5 k) is a subgroup of 9ΪΠ, and if yl(r, A:) is the
weak direct sum Σπ>rΛi4n(r, A), then it also follows that ^4(r, A:) is an
algebra ideal of 31*. Most of this paper is devoted to the study of the
ideals A(r, 1). For convenience, we will write A(r) for A(r, 1).

3. The ideals A(r). In this section some indecomposable classes of
A(r) are exhibited. Recall the manifolds RP(nv. ..9nt) as defined in [7],
RP{nλ,...,nt) is the real projective space bundle of λ, θ θλ , -*
RP{nλ) X XRP(nt)9 where λz is the pullback of the canonical line
bundle over the ith factor, and has dimension nι + - - - +nt + t — 1. In
[7] Stong proves that for t > 1, RP(nl9... 9nt) is indecomposable iff

is odd.

+ nt + t- 2
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THEOREM 3.1. There exist indecomposable classes an E An(r) for:
(<ι)n = 4k9r = 4k-2(k> 1),
(b) n = 4k + 1, r = 4k - 1 (k > 1),
(c) n = 4A: + 2, r = 4k - 1 (fc > 1), am/
(d) n = 2*(2$ + 1) - 1, r = 2^+1# - 1 (p > 2, # > 1).

/. The indecomposability of the classes to be defined follows
from the above remark. For RP(nl9...,nt), let p be the projection
RP(nχy... ,nt) -> RP(nx) X XRP(nt)9 let γ be the canonical line bun-
dle over RP(nl9...,/!,) consisting of pairs

(line in a fiber of λ1 θ Θλ,, vector in that line),

and let μ*~] be the bundle along the fibers so that

τ(RP(nl9...,/!,)) aΛί^ίwi) x *' * X M Ό ) ®μM

(a) Let α4^ be the class of RP(4k — 3,1,0) which has τ isomorphic to
(4A:-2)/?*λ, θ μ 2 .

(b) Let <x4k+{ be the class of RP(4k — 2,1,0) which has T isomorphic
to (4k - l)p*λλ θ μ2.

(c) Let α 4 Λ + 2 be the class of RP(\, 1,0,...,0) with (4k - 1) zeros.
This manifold has T isomoφhic to 1 θ 1 θ μ4*, and it is well known that

For / = 3,... ,4k + 1, /?*λz is trivial (pullback of canonical bundle over
RP(0) = point). Thus, it follows that

, 1,0,...,0)) = l θ ( γ Θp λj) θ (γ ® j^*λ2) θ

(d) Let α2><2*+i)-i b e t h e c l a s s o f RP(2p+ιq - 2,\9O9...9O) with
(2^ - 1) zeros. This manifold has r i s o m o φ h i c to (2P+Xq - l)p*λx θ
μ2/>. D

The question as to whether these are the largest values of r for which
there is an indecomposable an E An(r) is answered partially by

THEOREM 3.2. Suppose Mn is a closed manifold, (a) // τ(Mn) =
(n - \)ξλ θ Ί]\ then Mn bounds, (b) Ifn=2 mod 4, /i > 6, and τ(Mn) =
(Λ - 2)ζι θ η2, rte/i Mπ
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REMARKS. (1) This theorem generalizes 2.2 in dimensions ^ 0 mod 4.

(2) The result shows that the results of 3.1(a)-(c) are best possible. In

fact, stronger results are obtained. Namely, the values of r in 3.1(a)-(c)

are the largest for which there is a nonzero an E An(r). (3) An example

showing that 3.1(d) is not best possible will be presented later in this

section.

To begin to establish 3.2(a), suppose τ(Mn) =(n - I ) ! 1 Θ η1 and

consider [ΛΓ, ξ, η] as an element of $ln(RP(oo) X ΛP(oo)). The result is

trivial for n= 1, so assume n > 2. Consider Xn = RP(λι θ (w - 1)) ->

#P(1) where λ1 is the canonical line bundle over RP(l). Let γ be the

canonical line bundle over Xn, and also denote by λ1 the pullback of λ1 to

Xn by the projection. Then one has τ ( I ) = ( « - l ) γ θ ( γ ® λ), and

there is the element [X\ γ, γ ® λ] G S»π(ΛP(oo) X RP(oo)). If c = w^γ)

and J = Wj(γ <8> λ), then it is a routine calculation to show that for

0 < / < /I, cιdn~ι[X] = 1 iff / = mod2.

LEMMA 3.3. // [M Λ , f, η] ^ 0, then [M\ ξ, η] = [ Z n , y , γ 8 λ].

/. Suppose [AT, | , η] ^ 0 and let w(ξ) = \ + a, w(η) = I + b.

By the remarks above, it suffices to show that for 0 < / < «, αl'6'l~l'[

= 1 iff / = w mod 2.

For Λ = 2, one has τ(M 2) = ξ] θ η1, w(M) = (1 + a){\ + b) = 1 +

(α + 6) + α6, and α6[Λf ] = w2[M] = 0 (by 2.1), so M2 bounds. There-

fore, Wj2[M] = 0 which implies a2[M] = b2[M] = 1, so the result is true

for n — 2.

Having assumed inductively the result true for 2 < ri < n, suppose

one has [AfΛ, | , η] Φ 0. Now observe that [M", ξ, TJ] must have a nonzero

characteristic number divisible by a. (To see this, note that if n is odd, the

wx(ξ) = b, so bn[M] = wxb
n-χ[M] = Sqιbn~x[M] = 0. If n is even, say

n = 2p(2q + 1) (p > 0, q > 0), one sees that

fl2 + 62 + fl2'^, so

Hence,

a2P + a2P-χb}b2P+ι*[M]
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and

= 0.)

Dualizing ξ in M gives a submanifold Nn~x =* M with

τ(N) = (« - 2)(ζ\N) Θ (τj|JV), and α

Since [M, ξ9 η] has a nonzero number divisible by a9 [N, (£ | TV), (171ΛΓ)] ^

0. The result follows by applying the induction hypothesis to [Nn~\

tt\N)9(v\N)]. G

The result of 3.2(a) now follows, for if [M\ ξ, η] = 0, then Mn

bounds, and if [Mn, ξ, η] — [Xn, γ, γ ® λ], then M is cobordant to X, and

Conner and Floyd have shown [3] that X bounds.

The result of 3.2(b) is aided by the notion of a Yoshida manifold. As

in [10] and [11], one defines a Yoshida manifold to be a closed manifold

Mn which has Stiefel-Whitney numbers satisfying

wω(M)[M] = 0 i fω

Stong shows in [10] that if Mn is a Yoshida manifold, and n is not a power

of 2, then Mn bounds.

Proof of 3.2(b). Let n = 4/c + 2, & > 1, and suppose τ ( M 4 * + 2 ) s

4A:!1 θ ?]2. It is claimed that the element

is zero (it would then follow that M bounds). Let w(ξ) = 1 + a, w(η) = 1

+ Z>, + 62, and note that [M,4ξ] is determined by characteristic numbers

a4jwω(M)[M]. For fc = 1, one has w(M6) = (1 + α) 4 (l + bx + 62) and

α 4 = w4, so to establish [Λί6,4ξ] = 0, it suffices to show M6 bounds. Now

w6[M] = 0 (by 2.1), and w3

2[Λf ] = 0 since w>3 = 0. Also,

w,6[M] = b\[M] = Sq3b][M] = υ3b][M] = bφ2b][M]

= Z^Sq1 bxb2[M] = 6?Sq' Sq1 b2[Aί] = 0

since Sq' Sq1 = 0. Since vv6, w3

2 and wf determine on 9?6, it follows that

M6 bounds.

Assume the result true for 1 < k' < k and that one has [M4k+2,4ξ].

Dualizing 4£ in M gives N4k~2 ^ M with τ ( i V ) s 4 ( / t - l)(ξ|JV) θ

(η I TV). Then [TV, 4 ( | | TV)] = 0 by induction, soy > 0 implies

a4Jwω(M)[M] = {α4^4vvω(M)|7V)[TV] = 0.
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Therefore, all numbers involving a4 vanish, so w(M) is equivalent in
numbers to 1 + wx + w2, i.e., M is a Yoshida manifold, and for k > 1,
4k + 2 cannot be a power of 2. Thus, M bounds, so the remaining
numbers wω(M)[M] are zero. Therefore, [M4k+2,4ξ] = 0. D

It will now be shown that 3.1(d) is not best possible. Consider the
indecomposable manifold 7?P(7,14,0) -* RP(Ί) X RP( 14) and pull the
fibration back over RP(Ί) X P 8 X P 4 X P 2 by a degree 1 map/, where

P 8 = RP{λ Θ 1) -> ΛP(7), P 4 = RP(λ Θ 1) -> i?P(3),

and

P2 = RP(λ@ l)^RP(l).

(/is the identity on the first factor, and on P 8 X P4 X P 2 , / i s the map
which classifies the tensor product of the bundles along the fibers

Ml ®/A2®/*3

P*XP4 XP2 X -> i?P(14)). By Proposition 2.4 of [7], M 2 3 =
/*{i?P(7,14,0)} is indecomposable. Moreover, M23 fibers over i?P(7) X
ΛP(7) X RP(3) X i?P(l), so τ(M) has 18 linearly independent sections.
Therefore, τ(M) s 18 θ η 5 .

Since this construction uses the fact that τ(RP(m)) is trivial for
m = 1, 3 and 7, it cannot be generalized to produce similar examples in
other dimensions. Nonbounding examples (which are decomposable) are
easily constructed in dimensions Ak + 3, k > 1, by taking a product of a
nonbounding P 5 with RP(4k — 2). The product then has T isomorphic to
(4& — l)λ] θ 7j4 (r(P5) has a section). It will be shown momentarily that
this result is best possible.

This discussion raises two questions: (1) Are there other examples of
indecomposables in An{r) with n = 2^(2^ + 1) - 1 and r > 2p+λq - 1?
(2) What is the largest value of r for which there exist indecomposables in
An(r)9 n = 2/?(2<? + 1) - 1 (p > 2, q > 0)? Theorem 3.1(d) is best possi-
ble f or p = 2 by

THEOREM 3.4. // the closed manifold M4k+\ k > 0, has τ(M) = 4kξι

θ η3, then M bounds.

LEMMA 3.5 (a) Ifr(MΊ) s 4£* θ η3, then M1 bounds, (b) Ifτ(Mu)
θ η 3 , thenM11 bounds.
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Proof, (a) A nonbounding PΊ must have w5(P)w2(P)[P] φ 0. If
τ(M 7) = 4ξι Θ η\ then w5(M) = ^ ( ^ ( T J ) , w2(M) - w ^ ) , so

- wλ(M)w2(M)wt(ξ)[M]

(b) Assuming τ(Mu) = 8£] θ η3, let

1 + wx + w2 + w3 = 1 + w,(Λf) + w2(M) + w3(M).

Then asw3[M] = 0 by 2.1, a 8 w 3 [M] = Sq1 β8w,2[M] = 0, and 08w,w2[Af ]

= Sq3 as[M] — 0, so w(M) is equivalent in numbers to 1 + ŵ  + w2 + w3.

The proof that all wω[M] involving wl9 w2 and w3 are zero is routine, but

tedious, and will be omitted. G

PROPOSITION 3.6. IfM4k+3, k > 0, has w(M) equivalent to 1 + wx +

w2 + w3 in numbers, then M bounds.

Proof. Remarks in the proof of 3.5 give a basis for induction on k, so

assume the result true for all 2 < k' < k, and suppose w(M 4 * + 3 ) — 1 +
w\ + H>2 + H>3. Note that if M is nonbounding, then some Stief el-Whitney

number divisible by w3 is nonzero (otherwise M i s a Yoshida manifold

with 4k + 3 = 2s impossible).

Suppose w3wω[M] φ 0. Dualize w3 in M to get N4k~3 -* M with

w(N) ~ 1 + wx + w2 + w3 (use of restriction homomorphisms is omitted

in this proof) and w3wω[M] — wω[N], By Proposition 5 of [9], N is

cobordant to a Dold manifold P(2r - 1,2S+X - 2), 0 < r < s. Then 4k -

3 = Ύ - 1 + 2 5 + 2 - 4, so r = 1 and 4k + 3 = 2 5 + 2 + 3 with iV2'+2"3 -

- 2 ) having w= I + d + cd, d E H2{P{\,2s+λ - 2 ) ; Z 2 ), c E

^ 1 - 2); Z 2 ) . The only nonzero number of N is then

w3w2

2+1~3[ΛΓ], so the only possible nonzero number of M involving w3 is

2sτ

Consider M-+BO and pull back to BO3_2s so that w — 1 + wf +

w2 + w3\ Now w3

2Vω[M] = 0 (note that s > 1 since k > 2), so one can

dualize vv2

2', which gives jV2'+1+3 «=* M with
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and w2wω[M] = wω[N], Now w2 contributes zero on N9 for w^x^N] =

w2

2* + JC 3 [M], and

wfιw'[M] = SqVl'Vlt^l = 0,
(3.7) wfιwλw2[M\ = Sq3w2

2 ί + 1[M] - 0, and

f+ 1 + 1 [ ] = 0.

Therefore, w(iV) ~ (1 + wx + w2 + w3)/(l + wf). Dualize WJ2* in JV to

get P 2 * + 3 =* N with w(P) ~ (1 + ̂  + w2 + w3j/(l + wj2'*1). By dimen-

sion, wf'+x = 0 in H*{P), so H>(P) - 1 + w, + w2 + w3, and P bounds by

induction. Therefore, wfwω[N] = wω[P] = 0, i.e., wf contributes zero on

N9 so w(N) — 1 + wx + w2 + w3.

Hence, JV bounds by induction, so w^w2

s+ι'3[M] — w3wξ~3[N] = 0.

Therefore, all numbers of M involving w3

2 are zero.

Now dualize w3 in M to get P4k ^ M with P -» 5 O reducing to BO2,

so one can dualize w2 in P to get N4k~2 ~* P =* M with w(N) ~ I + w} +

w2 and w2w3wω[M] = wω[N]. By Proposition 3' of [9], TV is cobordant to

RP(2p+{ - 2) X RP(2^1 - 2), 0<p<q. Then 4fc - 2 = 2^ + I +

- 4 implies /? = 0, so N2q+ι~2 - RP(2^1 - 2) having only wf+ 1"

nonzero. Therefore w2w3wfq+ι~2[M] is the only possible nonzero number

involving w2w3.

Dualize w2q in M to get β 2 < 7 + 3 with

But w2q contributes zero on Q, for w2<7;c3[β] = wfqχ3[M] (see 3.7). There-

fore w(Q) ~ 1 + Wj + w2 + w3, so β bounds by induction. Hence,

w2w3w
2q+λ-χ[M] = w2w3w

2q-χ[Q\ = 0.

Hence, the only possible nonzero number of M divisible by w3 is

wfkw3[M] = w*k(wxw2 + Sq1 w2)[M] = 2wfk+ιw2[M] = 0.

Therefore, M bounds. D

Proof of 3.4. Lemma 3.5 gives a basis for induction on k, so assume

the result true for 1 < kr < k, and suppose τ ( M 4 * + 3 ) = 4kξι θ τ)3. Let

α = Wjd) and note that any wω divisible by a can be written wω = a4swω>,

0 < s < A:, where wω, is a polynomial in w(η). Dualizing 4^ξ in M gives

N4(k-s)+3^M w i t h τ(jV)=4(&-s)(£|τV)®(τj|iV). If j<Λ, then iV

bounds by induction; if s = k, then dim N = 3 and iV bounds. Therefore,

α 4 V ω ,[M] = wω(Λ^)[M] = 0. Hence, all numbers divisible by a are zero,

so w(M) — w(η) in numbers. The result follows by 3.6. D
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4. The ideals A{r,k),k> 1. Here the case k > 1 is treated briefly;
results are not as extensive as those of §3. By 3.1, one has

COROLLARY 4.1. Let k > 1. There exist indecomposables an E An(r, k)
for.

(a) n = 4m, r = [(4m - 2)/k] (m > 1)
(b) n = Am + 1, r = [(4m - \)/k) (m>\)
(c) n = 4m + 2, r = [(4m - \)/k] (m > 1), and
(d) n = 2'(2<7 + 1) - 1, r = [(2"+ιq - l)/k] ( p > 2 ) ? > I ) .

provided that r >2 in each case ([x] is the greatest integer < x).

There is a subalgebra £ = Σ^>0 ̂ 2/t o f ^*> where £ 2 Λ is the subset of
classes of 3l2k9 represented by weakly almost complex manifolds for
which all Chern numbers divisible by an odd-dimensional Chern class are
zero. Floyd [5] showed there are generators xi9 i > 1, / φ 2* — 1, of 9?*
such that

(4.2) E C Z2[x<;\ε2k_x = 8, ε2* = 8, e2*k{2j+l) = 4 ] .

(It was later shown by Buhstaber [1] that equality holds in 4.2.)
If Mrk^ (r > 2) has τ(M) = rξk Θ ηJ\ then dualizing (r - 2)ξk θ i/̂ '

in M gives N2k ^ M with τ (#) = 2({Λ|iV). Then w r Λ +/M)[M] =
w2k(N)lNl a n d s i n c e τ ( ^ ) = 2(£\N)> i ι follows that [N] G £2y^. By 4.2
one sees that E2k = 0 for 0 < 2& < 16 and for 2& ^ 0 mod 8. Thus, one
has the following generalization of Proposition 2.1:

PROPOSITION 4.3. Suppose Mn has a strong almost tangent structure of
type k.Ifk = 4orifk^0 mod 4, then wn(M)[M] = 0.

Using this, it is easy to show that for k = 2, 4.1 (a) is best possible.
Also, for k = 2, 4.1(b) is best possible:

PROPOSITION 4.4. (a) //M 4 m , m > 0, is c/αyed and τ(M) = 2ra£2,
M bounds, (b) IfM4m+\ m > 0, is ctoeί/ απrf τ(M) = 2m| 2 θ ij1, then M
bounds.

Proof, (a) Let w({) = 1 + ^ + α2 so w(M) = (1 + a\ + α^)w. Then
all Stief el-Whitney numbers of M are sums of terms a\Ja\j\M\ 2/ + 4j
= 4m. For / > 0,

( ) = 0
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since wγ - 0, and for / = 0, one has a\m[M] = w4m[M] = 0 by 4.3. For
(b), let w(ξ) = 1 + aλ + a29 w(η) = 1 + b so

Then all Stiefel-Whitney numbers of M are sums of terms a\ia\jbι\M\
with 2/ + 4/ + / = 4m + 1, so / must be odd. Then

a\ιa\>b\M\ = b(a^aψbι-λ)[M] - wx(a\ιaybι-χ){M\

= Sq1(α1

2/fl^-«)[Λf] - 0

since a\ιa\Jbι~x is a square. •
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