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COBORDISM OF MANIFOLDS
WITH STRONG ALMOST TANGENT STRUCTURES

ROBERT GOGGINS

This paper studies the unoriented cobordism classes of closed
smooth manifolds whose tangent bundles admit nilpotent bundle endo-
morphisms.

1. Introduction. An almost tangent manifold is a smooth (differen-
tiable of class C*) manifold M?" for which the structure group of its
tangent bundle 7( M) reduces to the group of matrices of the form (4 9),
A € GL,(R), B € End(R"). The study of these manifolds is motivated
by the observation that tangent manifolds have this property, i.e., if N" is
a smooth manifold and E2" is the total space of 7(N), then E2" (a tangent
manifold) is an almost tangent manifold.

Note that if M?" is almost tangent, then the matrix
( 0 O

I, 0

n

) € End(R™),

where [, is the n X n identity matrix, induces a bundle endomorphism J:
(M) — 7(M) having constant rank n and satisfying J> = 0. As J has
constant rank, (M) is isomorphic to the Whitney sum im J @ ker J, and
im J = kerJ, so one has 7(M) =2(im J). Thus M?" has an almost
complex structure and, for M 2" closed, one is led to the well-known result
that M is cobordant to a square N” X N”. In particular, the cobordism
class of M is decomposable in Nt ,,, the unoriented cobordism group.

In [4] Epiopoulous defines an almost tangent structure of order » on a
smooth manifold M" to be a bundle endomorphism J: 7(M) — 7(M) of
constant rank which satisfies J" %0 and J'*' =0 (thus, an almost
tangent manifold has an almost tangent structure of order 1). Motivated
by the splitting property enjoyed by almost tangent manifolds, one says
that an almost tangent structure of order r, J, on M” is strong and of type
k provided J": 7(M) — 1(M) has constant rank k.

PROPOSITION 1.1. Let r, k =1, and n = (r + 1)k. A compact smooth
manifold M" has a strnog almost tangent structure of order r and type k iff

(M) =(r + 1)gk @ y=(+ Dk
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for some vector bundles £, w" VX - M". (Note: (r + 1)&* denotes the
(r + 1)-fold Whitney sum of £*.)

Proof. If J is such a structure, then for each fiber TM, of (M), one
has TM, = (r + 1)(im J) ® V,, where J, = J|TM,, © is the direct sum
of vector spaces, and V, is a complementary vector subspace of TM,.
Since J" has constant rank k, necessity follows by setting £¥ = im J". For
sufficiency, note that if 7(M) = (r + 1)é* ® n, then J: (M) - (M),
defined by J(x,,...,x,.,, ¥) = (0, x,...,x,,0), has the desired prop-
erties. , O

This splitting characterization will be exploited to study the unori-
ented cobordism classes of closed smooth manifolds having strong almost
tangent structures. Preliminary results are presented in §2. Manifolds with
structures of type 1 are studied in §3, and manifolds with structures of
type k, k > 1, are treated briefly in §4. Most of the results of this paper
are contained in the author’s dissertation at the University of Virginia.

2. Preliminaries. In [8] Stong shows that if 7(M) contains an
odd-dimensional subbundle, then w,(M)[M] = 0. The following lemma,
which is used throughout the paper, is a direct consequence.

LEMMA 2.1. If M" has a strong almost tangent structure of type k, and k
is odd, then w,(M)[M] = 0.

The extreme case of a strong almost tangent structure on M", n = 2,
is a structure of order (n — 1) and type 1, i.e., 7(M") = n¢'. If w(§) =
1+ a, then w(M)=(1+a)" and w,(M) = ()a'. By 2.1, a"[M]=
w,(M)[M] = 0. Since all Stiefel-Whitney numbers of M are multiples of
a"[M] = 0, it follows that M" bounds.

The converse of this result is false, for in [6] Rosendo and Gadea
show that for n # 3 or 7, the sphere S” does not admit an almost tangent
structure of order (n — 1). However, if M” bounds, then M is cobordant
to an n-fold product of circles which has tangent bundle isomorphic to an
n-fold Whitney sum of trivial line bundles. Thus, one has

PROPOSITION 2.2. A class a« € N, n = 2, is represented by a manifold
with a strong almost tangent structure of order (n — 1) and type 1 iff « = 0.

THEOREM 2.3. Every 3-manifold M> has (M) = 3¢ for some §' — M?>
(hence, every M* has a strong almost tangent structure of order 2 and

type 1).
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Proof. By restricting attention to components, one may assume M?
connected. If v = 1 + v, is the Wu class, then
w(M)=8q(1+v,)=1+0v, +tol=1+w +wl
Let ¢' be the determinant of 7(M?*). Then

w(E® (M) = (14w (§)’ + wi(1 + w(£)) + wi(1 + w,(£)),

and since w\(§) = w,, it follows that wW(§ ® 1(M)) = 1,50 {® (M) is a
Spin, bundle, and there is a lift:

_~BSpin; = HP()

-

Lo
LT EQT(M)
M? ———— BO,

Since HP(o0) is 3-connected, f is null homotopic, so §{ ® 7(M) is trivial.
Therefore,

T(M)=1®7(M)=(({®¢)®@7(M) =£® 3 =3¢ O

REMARKS. (1) Clark and Goel [2] prove this for M* = §°.
(2) This is a modification of the well-known argument that an
orientable 3-manifold is parallelizable.

Fix integers r = 2, k = 1, and, for n = rk, define 4,(r, k) to be the
subset of classes in 9, represented by manifolds having strong almost
tangent structures of order (r — 1) and type &. In terms of 1.1,

A(r k) ={a€N,[IM" € awithr(M) =rik & q}.

It is easily seen that 4,(r, k) is a subgroup of N, and if A(r, k) is the
weak direct sum X, ., 4,(r, k), then it also follows that A(r, k) is an
algebra ideal of 9,. Most of this paper is devoted to the study of the
ideals A(r, 1). For convenience, we will write A(r) for A(r,1).

3. The ideals A(r). In this section some indecomposable classes of
A(r) are exhibited. Recall the manifolds RP(n,,...,n,) as defined in [7].
RP(n,,...,n,) is the real projective space bundle of A, ® --- ®A, -
RP(n,) X --- XRP(n,), where A, is the pullback of the canonical line
bundle over the ith factor, and has dimension n, + --- +n,+¢— 1. In
[7] Stong proves that for ¢t > 1, RP(n,,...,n,) is indecomposable iff

S(n+ oo tn, -2

2 n

i=1 !

1s odd.
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THEOREM 3.1. There exist indecomposable classes a,, € A,(r) for:
(@n=4k,r=4k —2(k=1),

b)n=4k+ L,r=4k—1(k=1),
(c)n=4k+2,r=4k—1(k=1),and

(dn=2rPRq+ 1) -1, r=2rg—1(p=2,9g=1).

Proof. The indecomposability of the classes to be defined follows
from the above remark. For RP(n,,...,n,), let p be the projection
RP(n,,...,n,) > RP(n;) X --- XRP(n,), let y be the canonical line bun-
dle over RP(n,,...,n,) consisting of pairs

(line in a fiber of A; @ - - - ®X , vector in that line),

and let p'~! be the bundle along the fibers so that
7(RP(n,,...,n,)) =p*7(RP(n,) X --- XRP(n,)) ® p'~".

(a) Let ay, be the class of RP(4k — 3, 1,0) which has 7 isomorphic to
(4k — 2)p*A, © p.

(b) Let a4, be the class of RP(4k — 2, 1,0) which has 7 isomorphic
to (4k — 1)p*A, © p*.

(c) Let a4, ., be the class of RP(1,1,0,...,0) with (4k — 1) zeros.
This manifold has 7 isomorphicto 1 © 1 © p**, and it is well known that

1©p*=y®@p*(\, @ -~ Oy )
=(y®p*A) ® - B (y®p*A ).

For i = 3,...,4k + 1, p*A, is trivial (pullback of canonical bundle over
RP(0) = point). Thus, it follows that

7(RP(1,1,0,...,0)) =1 & (y ® p*\,) ® (v ® p*\,) ® (4k — 1)y
=(4k — 1)y ® »’.

(d) Let aysp,+1)—; be the class of RP(27"'q —2,1,0,...,0) with
(27 — 1) zeros. This manifold has 7 isomorphic to (27"!'qg — 1)p*A, ®
2P
[Tl (|
The question as to whether these are the largest values of r for which
there is an indecomposable a,, € 4,(r) is answered partially by

THEOREM 3.2. Suppose M" is a closed manifold. (a) If T(M") =
(n — 1)¢' © ', then M" bounds. (b) If n =2 mod4, n =6, and 1(M") =
(n — 2)&' ® 02, then M™ bounds.
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REMARKS. (1) This theorem generalizes 2.2 in dimensions Z 0 mod 4.

(2) The result shows that the results of 3.1(a)—(c) are best possible. In
fact, stronger results are obtained. Namely, the values of r in 3.1(a)—(c)
are the largest for which there is a nonzero a, € 4,(r). (3) An example
showing that 3.1(d) is not best possible will be presented later in this
section.

To begin to establish 3.2(a), suppose 7(M") = (n — 1)¢' ® ' and
consider [M", &, ] as an element of N ,(RP(0) X RP(0)). The result is
trivial for n = 1, so assume n = 2. Consider X" = RP(A' & (n — 1)) >
RP(1) where A' is the canonical line bundle over RP(1). Let y be the
canonical line bundle over X", and also denote by A' the pullback of A' to
X" by the projection. Then one has 7(X)=(n— 1)y ® (y ®A), and
there is the element [ X", v,y ® A] € N (RP(o0) X RP(0)). If ¢ = w\(v)
and d = w,(y ® A), then it is a routine calculation to show that for
0<i<n,cd" '[X]=1iff i = mod?2.

LEMMA 3.3. If [M", &, 4] # O, then [M", £, ] = [ X", v,y ® A].

Proof. Suppose [M", £, 1] # 0 and let w(§) =1+ a, w(n) =1+ b.
By the remarks above, it suffices to show that for 0 <i <n, a'b" '[M"]
= 1iff i = n mod?2.

Forn=2,onehas i(M*) =& @', wM)=(1+a)l +b)=1+
(a + b) + ab, and ab[M] = w,[M] =0 (by 2.1), so M? bounds. There-
fore, wi[M] = 0 which implies a’[M] = b*[M] = 1, so the result is true
forn = 2.

Having assumed inductively the result true for 2 < n’ < n, suppose
one has [M", & 1] # 0. Now observe that [M", £, n] must have a nonzero
characteristic number divisible by a. (To see this, note that if n is odd, the
wi(§) = b, so b"[M]=wb" '[M]=Sq'b" '[M]=0. If nis even, say
n=22q+ 1)(p>0,q=0), one sees that

Op(M) =a> + 0¥ +a* b, so b =vy,(M)+a*" +a* 'b.
Hence,
b"[M] = {Uzp(M) + azp + az”*lb}bzp'l-lq[M]

= Sq2pb2p+l"[M] + ax[ M]
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and
pHI
217
Dualizing ¢ in M gives a submanifold N"~' = M with

7(N) =(n=2)(§|N) ® (n|N), and ax[M] = (x|N)[N].

Since [ M, £, n] has a nonzero number divisible by a, [N, (§|N), (n|N)] #
0. The result follows by applying the induction hypothesis to [N""',

(EIN), (n|N)]. O

Sq¥’b?" [ M] = (2 q)b"[M] =0.)

The result of 3.2(a) now follows, for if [M", £, n] =0, then M”
bounds, and if [M", &, n] = [ X", v, ¥y ® A], then M is cobordant to X, and
Conner and Floyd have shown [3] that X bounds.

The result of 3.2(b) is aided by the notion of a Yoshida manifold. As
in [10] and [11], one defines a Yoshida manifold to be a closed manifold
M" which has Stiefel-Whitney numbers satisfying

w(M)[M] =0 ifw#(27,27,...,27).

Stong shows in [10] that if M" is a Yoshida manifold, and » is not a power
of 2, then M" bounds.

Proof of 3.2(b). Let n =4k + 2, k=1, and suppose T(M**?) =~
4k&' @y It is claimed that the element

[M4k+2’4§] € %4k+2(HP(OO))

1s zero (it would then follow that M bounds). Let w(§) = 1 + a, w(n) = 1
+ b, + b,, and note that [M, 4£] is determined by characteristic numbers
a¥w (M)[M]. For k = 1, one has w(M¢) = (1 + a)*(1 + b, + b,) and
a* = w,, so to establish [ M, 4£] = 0, it suffices to show M° bounds. Now
ws[M] = 0 (by 2.1), and w}[M] = 0 since w, = 0. Also,

wilM] = bi[M] = Sq’bi[M] = vibi[M] = b,b,bi[ M]
= b1Sq' bb,[M] = biSq' Sq' b,[M] =0

since Sq' Sq' = 0. Since wy, wi and w{ determine on 9, it follows that
M ¢ bounds.

Assume the result true for 1 <k’ < k and that one has [M** "2, 4¢].
Dualizing 4§ in M gives N**72 = M with 7(N)=4(k — 1)(¢|N) @
(n|N). Then [N,4(£|N)] = 0 by induction, so j > 0 implies

a®w,(M)[M] = {a¥*w, (M)|N}[N] = 0.
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Therefore, all numbers involving a* vanish, so w(M) is equivalent in
numbers to 1 + w, + w,, i.e.,, M is a Yoshida manifold, and for k =1,
4k + 2 cannot be a power of 2. Thus, M bounds, so the remaining
numbers w, (M )[ M| are zero. Therefore, [ M***2,4¢] = 0. a

It will now be shown that 3.1(d) is not best possible. Consider the
indecomposable manifold RP(7,14,0) -» RP(7) X RP(14) and pull the
fibration back over RP(7) X P® X P* X P? by a degree 1 map f, where

P = RP(A ® 1) - RP(7), P*=RP(A® 1) > RP(3),
and

P2=RP(A® 1) > RP(1).

(f is the identity on the first factor, and on P® X P* X P2, fis the map
which classifies tpe ltenlsor product of the bundles along the fibers
P® X P4 X P? X F'®E®”3RP(14)). By Proposition 2.4 of [7], M* =
f*{RP(7,14,0)} is indecomposable. Moreover, M** fibers over RP(7) X
RP(7) X RP(3) X RP(1), so 7(M) has 18 linearly independent sections.
Therefore, (M) = 18 @ °.

Since this construction uses the fact that 7(RP(m)) is trivial for
m =1, 3 and 7, it cannot be generalized to produce similar examples in
other dimensions. Nonbounding examples (which are decomposable) are
easily constructed in dimensions 4k + 3, k = 1, by taking a product of a
nonbounding P° with RP(4k — 2). The product then has 7 isomorphic to
(4k — DA @ n* (7(P>) has a section). It will be shown momentarily that
this result is best possible.

This discussion raises two questions: (1) Are there other examples of
indecomposables in 4,(r) with n =272+ 1) — 1 and r >27*'g — 1?
(2) What is the largest value of r for which there exist indecomposables in
A,(r),n=27Q2q+ 1) —1(p>2, q>0)? Theorem 3.1(d) is best possi-
ble for p = 2 by

THEOREM 3.4. If the closed manifold M***3 k =0, has 7(M) = 4k¢&’
© 7, then M bounds.

LEMMA 3.5 (a) If r(M7) = 4£' @ 1P, then M7 bounds. (b) If (M") =
8¢' @ P, then M'! bounds.
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Proof. (a) A nonbounding P’ must have ws(P)w,(P)[P]+#0. If
T(M7) = 4¢' @ 7, then wy(M) = w}(&)wi(n), wy( M) = wy(7), so

ws(M)wy(M)[M] = wy(n)wy(n)wi'(§)[M] = w\(M)wy(M)w}'(§)[ M]
= Sq*wi(¢)[M] = 0.

(b) Assuming 7(M'") = 8¢' @ 9’ let

w(é)=1+a,
wn)=1+w +w,+w=1+w(M) + wy (M) + wy(M).

Then a®wy[M] = 0 by 2.1, a®w}[M] = Sq' a®w?[M] = 0, and a®ww,[ M]
= Sq’ a®[M] = 0, so w( M) is equivalent in numbers to 1 + w, + w, + w;.
The proof that all w,[M] involving w,, w, and wy are zero is routine, but
tedious, and will be omitted. O

PROPOSITION 3.6. If M***3 k =0, has w(M) equivalent to 1 + w, +
w, + wy in numbers, then M bounds.

Proof. Remarks in the proof of 3.5 give a basis for induction on k, so
assume the result true for all 2 < k’ < k, and suppose w(M***3) ~ 1 +
w, + w, + w,. Note that if M is nonbounding, then some Stiefel-Whitney
number divisible by w; is nonzero (otherwise M is a Yoshida manifold
with 4k + 3 = 2° impossible).

Suppose wiw,[M]# 0. Dualize w} in M to get N*7> = M with
w(N) ~ 1+ w, + w, + wy (use of restriction homomorphisms is omitted
in this proof) and wiw,[M] = w,[N]. By Proposition 5 of [9], N is
cobordant to a Dold manifold P(2" — 1,2°"! — 2), 0 <r <. Then 4k —
3=2"—1+4+2%—4,s0r=1and 4k +3=2""24 3 with N¥" 3 ~
P(1,2"' —2) havingw=1+d+ cd, d € HX(P(1,2°*' = 2); Z,), c €
H'(P(1,2°"' —2); Z,). The only nonzero number of N is then
ww2 T[N}, so the only possible nonzero number of M involving w? is
wiw2 ' T3 M). )

Consider M 5 BO and pull back to BO,_,s so that w ~ 1 + w} +
w} + wi. Now wiw,[M] = 0 (note that s > 1 since k > 2), so one can
dualize w’, which gives N2 '+3 = M with

w(N) ~(1+w +w,+ w3)/(1 + wi + szs)’



COBORDISM OF MANIFOLDS 369

and w; ¥y [M]= w,[N]. Now wj contributes zero on N, for w x;[N] =
w2 'x;[M], and

wi" wi[M] = Sq'(w} " 'w?)[M] =0,
(3.7 w¥ ' ww[M] =Sg*w? '[M] =0, and

w2 wy[M] = w2 (ww, + Sq' ww, )[M] = 2ww? T [ M] = 0.
Therefore, w(N) ~ (1 + w, + w, + wy) /(1 + w). Dualize wZ in N to
get p2'*3 = N with w(P) ~ (1 +w +w, +wy)/(1+w ™. By dimen-
sion, w*" = 01in H*(P) SOwW(P)~1+w +w, +w, and P bounds by
induction. Therefore, wZ'w,[N] = w_[P] = 0, i.e., w?’ contributes zero on
N,sow(N)~1+w +w,+w,

Hence, N bounds by induction, so w3 wi M = wiwd I[N =
Therefore, all numbers of M involving w{ are zero.

Now dualize w, in M to get P* <> M with P » BO reducing to BO,,
so one can dualize w, in P to get N* 72 <> P <> M with w(N) ~ 1 + w, +
w, and w,waw, [M] = w_[N]. By Proposition 3’ of [9], N is cobordant to
RP(27*!' —2) X RPQ29*! — 2) 0<p<gq. Then 4k — 2 =2°,*! 4 29*1
— 4 implies p = 0, so NZ"*' ~ RP(29%" — 2) having only w>"" ' ~2[N]
nonzero. Therefore w,w,w?’" ~2[M] is the only possible nonzero number
involving w,w;.

Dualize w?’ in M to get Q%' with

w(Q)~(1+w +w,+ w3)/(1 + wlzq).

But w* contributes zero on Q, for wi'x;[Q] = wi’x;| M] (see 3.7). There-
fore w(Q) ~ 1 + w, + w, + w;, so Q bounds by induction. Hence,

W2W3W1q _I[M] = wyww{'~'[Q] = 0.
Hence, the only possible nonzero number of M divisible by w; is
wikw,[ M] = wik(ww, + Sq'w, ) [ M] = 2w w,[ M] = 0.
Therefore, M bounds. O

Proof of 3.4. Lemma 3.5 gives a basis for induction on k, so assume
the result true for 1 <k’ <k, and suppose 7(M**3) =4k¢' ® v’. Let
a = w(£¢) and note that any w, divisible by a can be written w, = a*w,,
0 < s < k, where w_, is a polynomial in w(n). Dualizing 45§ in M gives
N¥k=9%3 o5 M with 7(N) =4k — s)(E|N) @ (n|N). If s <k, then N
bounds by induction; if s = k, then dim N = 3 and N bounds. Therefore,
a**w_[M]=w_(N)M] = 0. Hence, all numbers divisible by a are zero,
so w(M) ~ w(n) in numbers. The result follows by 3.6. O
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4. The ideals A(r, k), k > 1. Here the case k > 1 is treated briefly;
results are not as extensive as those of §3. By 3.1, one has

COROLLARY 4.1. Let k = 1. There exist indecomposables o, € A, (r, k)
for:

@n=4m,r=[4m — 2)/k](m=1)

®yn=4m+ Lr=[4m— 1)/k}(m=1)

n=4m+2,r=[@4m — 1)/k](m=1), and

@n=2PQq+ 1) —1,r=[2 g—1/kl(p=2,q=1).
provided that r = 2 in each case ([ x] is the greatest integer < x).

There is a subalgebra E = 3, . E,, of i, where E,, is the subset of
classes of 9,,, represented by weakly almost complex manifolds for
which all Chern numbers divisible by an odd-dimensional Chern class are
zero. Floyd [5] showed there are generators x,, i > 1, i # 2/ — 1, of N,
such that

(4.2) EC Zz["f'|£zk—1 =38, 60 = 8, &340,y = 4]'

(It was later shown by Buhstaber [1] that equality holds in 4.2.)

If M™%/ (r = 2) has 7(M) = r&* @ n/, then dualizing (r — 2)¢* © o/
in M gives N** =M with 7(N)=2(¢*|N). Then w,  (M)M]=
wy(N)[N], and since 7(N) = 2(£|N), it follows that [N] € E,,. By 4.2
one sees that E,, =0 for 0 <2k < 16 and for 2k Z 0 mod 8. Thus, one
has the following generalization of Proposition 2.1:

PROPOSITION 4.3. Suppose M" has a strong almost tangent structure of
type k. If k = 4 or if k Z 0 mod 4, then w,(M)[M] = 0.

Using this, it is easy to show that for k = 2, 4.1(a) is best possible.
Also, for k = 2, 4.1(b) is best possible:

PROPOSITION 4.4. (a) If M*™, m > 0, is closed and 1(M) = 2mé?, then
M bounds. (b) If M*" "', m > 0, is closed and T(M) = 2mé&? ® v', then M
bounds.

Proof. (a) Let w(§) = 1+ a, + a, so w(M) = (1 + a? + a3)™. Then
all Stiefel-Whitney numbers of M are sums of terms a?/a3/[M], 2i + 4;
=4m. Fori >0,

at'a}/[M] = Sq'(ai""'a}/)[M] = wia}' " a3/ [M] = 0
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since w; = 0, and for i = 0, one has a3"[M]=w,, [M]= 0 by 4.3. For
(b),letw(é) =1+ a, +a,,w(n) =1+ bso

w(M) = (1+a?+a2)"(1+b).

Then all Stiefel-Whitney numbers of M are sums of terms a?'a3/b'[M]
with 2i + 4j + [ = 4m + 1, so / must be odd. Then

at'ay’b'[M] = b(ai'ad’b' ™' )[M] = w(ai'a3/b'™") [ M]
= sa(afas' )] =0

since a'a3’/b'"! is a square. O

(1

(31
(4]
(5]
(6]

[7]
(8]
(9]

(10]
(1]
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