
PACIFIC JOURNAL OF MATHEMATICS
Vol. 116, No 1, 1985

DECOMPOSITIONS OF ALGEBRAICALLY
COMPACT MODULES

ALBERTO FACCHINI

This paper is mainly concerned with describing the category of all
algebraically compact ( = pure-injective) modules. A family of functors
from this category to categories of injective modules, that is, spectral
categories, is defined. Via these functors we transfer the decompositions
of the objects of a spectral category and their invariants to algebraically
compact modules. For instance, as a corollary we find the decompositions
and the invariants for algebraically compact abelian groups and the
decompositions for algebraically compact modules over Prϋfer rings. Our
results yield a connection between the theory of algebraically compact
modules and the one of injective modules.

The theory of algebraically compact abelian groups, mainly due to
Kaplansky [12], Los [13], Balcerzyk [2] and Maranda [14], has been
extended to modules by Stenstrδm [18] and Warfield [19]. Recently the
structure of algebraically compact modules has been studied with methods
of model theory by Fisher [6], Garavaglia [9], [10], and Ziegler [21]. It was
Maranda [14] who first pointed out the similarity between the theory of
algebraically compact abelian groups and that of divisible (injective)
groups. Later Warfield implicitly asked in the last paragraph of [20]
whether it was possible to fit his methods and results on injective modules
to algebraically compact ones.

In this paper we answer Warfield's question and study algebraically
compact modules in the context of categories of injectives, i.e. spectral
categories. Spectral categories (Grothendieck categories in which every
exact sequence splits) were introduced by Gabriel and Oberst [8] and
studied by Roos [17], Goodearl and Boyle [11], where a beautiful dimen-
sion theory for the objects of a spectral category was constructed, and the
author [5].

After the preliminaries of the first section, we define a family of
functors FE from the full subcategory of Mod-i? generated by all algebrai-
cally compact modules into suitable spectral categories. This is done in
section two by using the powerful results on algebraically compact mod-
ules obtained by Zimmermann-Huisgen and Zimmermann in [22]. In
section three we show that our functors FE map pure-injective envelopes
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of direct sums into injective envelopes of direct sums. In section four an
additive category whose objects are algebraically compact modules and
whose small full subcategories are equivalent to full subcategories of
spectral categories is constructed. Section five is devoted to the decom-
position of algebraically compact modules into five types—Ify 1^, II / ?

II 0 0, III—in analogy with von Neumann's and Murray's classification.
Finally, section six shows the existence of a close relation between

dimension theory for nonsingular injective modules constructed by
Goodearl and Boyle [11], the dimensions for algebraically compact mod-
ules defined by Ziegler [21], and the invariants for algebraically compact
abelian groups considered in Orsatti's book [16].

1. Preliminaries. All rings in this paper are associative with 1 and
all modules are right unital modules unless otherwise specified. Endomor-
phism rings act on the left of their modules. For any ring R, Mod-R
denotes the category of all right /{-modules. We write the cardinality of a
set S as \S\. Given a set S and a module M, M(S) and Ms denote the
direct sum and the direct product, respectively of |5 | copies of M. A
module M is algebraically compact (abbreviate a.c. in the proofs) if every
finitely soluble family of linear equations over R in M has a simultaneous
solution. A submodule A of a right /{-module B is pure if for any left
/{-module F the natural homomorphism A ® F -> B <8> F is injective. A
module M is pure-injective if for any module B and pure submodule A of
/?, any homomorphism of A into M can be extended to a homomorphism
of B into M. A module is pure-injective if and only if it is algebraically
compact [19, Thm. 2].

For every left /{-module M we denote by M* its dual Hom z(M, β/Z),
where Z is the integers and Q the rationals. The group M* may be
considered as a right /{-module by defining (φr)(x) = φ(rx) for x e A/,
r e R and φ e M*. Similarly for right /{-modules.

Our study of algebraically compact (= pure-injective) modules is
based on the following Theorem and its Corollary.

THEOREM 1. Let R be a ring. Then there exists an algebraically compact
right R-module E such that every right R-module M is isomorphic to a pure
submodule of E2m.

Proof. The proof is modelled on the proof of [4, Thm. 2.4]. Let IF
denote a set of representatives of the left finitely generated /{-modules.
Then the right /{-module E = ( e ^ ^ F ) * is a.c. by [18, Prop. 9.1 and
9.2]. Let M be a right /{-module and { Aff | Ϊ e /} be the family of all
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finitely generated submodules of the left Λ-module M*, so that |/| < 2 | M |.
By [4, pg. 201, Lemme], the canonical epimorphism θJ.e/AfJ -> M* has a
pure kernel, and therefore the dual morphism Af** -» ( 0 j.e/AfJ )* is split
mono [18, Prop. 9.1]. By [4, Prop. 2.2(a)] M is a pure submodule of M**.
Since (Θ.€/-M,.)* is a direct summand of E1, it follows that M is
isomoφhic to a pure submodule of 2?7.

COROLLARY 1. Let R be a ring and let a be a cardinal number. Then
there exists a right R-module E with the following properties:

(a) E is algebraically compact;
(b) every algebraically compact right R-module of cardinality < a is

isomorphic to a direct summand ofE;
(c) every algebraically compact right R-module M is isomorphic to a

direct summand of E2 .

Proof. The module E2° of Theorem 1 has the desired properties.

2. Definition of the functors and their properties. Fix an algebrai-
cally compact right Λ-module E with the properties of Corollary 1. Let
A = EndR(E) be its endomorphism ring, so that E has an (A, i?)-bimod-
ule structure. Let HE denote the covariant functor HomR(E, - ) : Mod-R
-> Mod-A. UJ(A) is the Jacobson radical of A, set A = A/J(A). Recall
that for any right A -module N the reject of A in N is defined by
RcjN(A) = (Ί{ker A | h e Hom^(iV, ^4)}; it is the unique smallest sub-
module K of N such that N/K is cogenerated by A [1, §8]. Define
RE(N) = N/RejN(A), so that RE(N) is an object of Mod-Z If/: N -* P
is a homomorphism, /(Rej^(^4)) < RejP(^4), so that / induces a homo-
morphism RE(f): RE(N) ~* RE(P) Clearly RE is an additive functor
Mod-̂ 4 -> Mod-^4. Let FE = REHE: Mod-R -> Mod-̂ 4 denote the com-
posite functor. Note that FE(E) = A.

LEMMA 1. For every algebraically compact right R-module M, FE(M) is
a nonsingular injective right module over the regular, right self-injective ring
A=A/J(A).

Proof. The ring A = A/J(A) is regular and right self-injective by [22,
Thm. 9]. Since FE(M) = REHE(M) is cogenerated by A, FE(M) is a
nonsingular right A -module. In order to prove that FE{M) is injective, it is
sufficient to prove that R^A1) is injective for every power A1 of A,
because M is a direct summand of a power of E, HE respects direct
products and HE9 RE are additive functors. Note that A, and therefore A1,
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are a.c. [19, Prop. 7]. The proof that RE{A!) is an injective A -module is
modelled on the proof of [22, Thm. 9(2)]. Given a homomorphism / from
a right ideal K of A into RE(AT), we choose a family of idempotents
{ε, 11 G /} of A such that φ j e /ε /^4 is essential in K (possible, because A
is regular). Since RE(Ar) is nonsingular, it is enough to extend the
restriction/!: θ / e / M ~ - > RE(AT) of/to all of A. By [22, Thm. 9(1) and
Lemma 13] there are idempotents eι of A such that (1) et + J(A) = ει9 (2)
the sum of the etA is again direct, and (3) every finite subsum is a direct
summand of A. In particular, © . TetA is a pure, projective right ideal of
A. Using its projectivity we find a homomorphism f2: ®i&IetA -> A1

w i t h / ^ = 772/2, where πλ: ®ιefeiA -> © ίe/εI>4 and π2: A1 -> RE(Ar)
are the canonical projections. Since 0 e / β z v4 is pure in 4̂ and ^47 is
pure-injective, the homomorphism f2 can be extended to/ 3 : A -> A1. The
homomorphism RE(f3): A -» RE(A7) coincides with /on 0 e/εiv4.

DEFINITION. For any ring 5, we use ^ ( S ) and ^V(S) to denote the
full subcategories of Mod-S generated by all algebraically compact right
S-modules and all nonsingular injective right S-modules respectively.

Recall that Λ~(S) is a spectral category, that is an abelian category
with exact direct limits and a generator in which every exact sequence
splits [11, Prop. 1.13]. Conversely, a category is spectral if and only if it is
equivalent to the category Λ~(S) for some regular, right self-injective ring
S [11, Thm. 1.14]. Lemma 1 immediately yields the following

THEOREM 2. The functor FE: Mod-/? -> Mod-^4 induces a functor of the

categorys#{R) into the spectral category JV{ A).

The symbol FE will also denote the functor s/(R) -> Jf{A\ restric-
tion of the functor FE: Mod-R -> Mod-̂ 4. These functors FE\ s/(R) -»
JV{A) are the traits d*union between algebraically compact modules and
spectral categories. Note that for any fixed cardinal number α, we can
always choose the module E in such a way that every algebraically
compact module M of cardinality < a is a direct summand of E, and in
this case FE(M) is simply a direct summand of the regular, right self-in-
jective ring A. For these modules M of cardinality < a we do not lose any
information by applying the functor FE, as the next proposition shows.

PROPOSITION 1. Let E be an algebraically compact module such that

every algebraically compact module is a direct summand of a power of E. Let

M, N be direct summands of E. Then:
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(a) If e is an idempotent endomorphism of E with image M and e e A is
the image of e e A, then FE{M) = eA.

(b) M = N if and only if FE{M) = FE(N).
(c) M = 0 if and only ifFE(M) = 0.
(d) M is indecomposable if and only if FE{M) is indecomposable.
(e) For every direct summand K of A there is a direct summand P of E

withFE(P) = K.

Proof, (a) Trivial.
(b) Suppose FE(M) = FE(N). Let e,/be idempotent endomorphisms

of E with eE = M and fE = N. Let e, /be their images in A. Then, by (a),
eA = fA, so that the projective covers eA and fA of the isomorphic
^4-modules eA and fA are isomorphic [1, Lemma 27.3]. Tensoring the
isomorphism eA = fA with the (A, i?)-bimodule 2?, we get that eA ®A E
= eE = M is isomorphic to/^4 ®AE=fE = N. The converse is obvious.

(c) Obvious by (b).
(e) Let K be a direct summand of 4̂. Then JSΓ = ê 4 for some

idempotent eofA. Since idempotents of A can be lifted to idempotents of
A, e is the image of an idempotent eofA. Then P = eE satisfies (e) by (a).

(d) If M = Mf Θ M" with AT, M" # 0, then FE(M) = FE{M') Θ
FE{M") because F £ is additive, and FE(M')> FE{M") Φ 0 by (c). There-
fore if FE(M) is indecomposable, Λf is indecomposable too. Conversely, if
FE(M) is a nontrivial direct sum, then, as in (e), the decomposition of
FE{M) can be lifted to a decomposition of M because two orthogonal
idempotents in A lift to two orthogonal idempotents of A.

COROLLARY 2. ([3], [6, Thm. 3.34] and [21, Lemma 6.6].) If M, N are
algebraically compact modules such that each is isomorphic to a pure

submodule of the other, then M = N.

Proof. We may suppose M, N isomorphic to direct summands of E by
Corollary 1. Since M and N are isomorphic to a direct summand of the
other, the same happens for FE(M) and FE(N). By [3], FE(M) s FE(N).
Then M = iV by Proposition l(b).

3. Direct sums. Recall that if M is a pure submodule of N, then N
is a pure-essential extension of M if there are no nonzero submodules
S c N with S Π M = 0 and the image of M pure in N/S [19]. A pure
extension N of M is a pure-injective envelope if TV is algebraically compact
(= pure-injective) and the extension is pure-essential. Pure-injective en-
velopes exist and are unique up to isomorphism [19, Prop. 6]. We will
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denote a pure-injective envelope of a module M by PE(M) and an
injective envelope of M by E(Λf).

The next theorem shows that FE "behaves well" with respect to direct
sums. Recall that if {Xλ | λ e Λ} is any set of objects of Jf(A), their
direct sum in J^{A) is E ( Φ λ e Λ Xλ), the injective envelope of the direct
sum in Mod-Λ~[ll, Prop. 1.12].

THEOREM 3. Let E be an algebraically compact R-module such that
every R-module is isomorphic to a pure submodule of a power of E and let
{ Mλ I λ G Λ } be a family of algebraically compact R-modules. Assume that
φ Mλ is isomorphic to a pure submodule of E. Then

Mλ\) = E( ®FE(Mλ)).

Proof. Since Φ λ e Λ Mx is isomorphic to a pure submodule of E, we
may suppose that PE( Φ λ G Λ Afλ) is a direct summand of E [19, Prop. 6].
Let us fix a decomposition E = P E ( Φ λ e Λ M λ ) θ C and consider the
canonical projections of E onto the direct summands of this decomposi-
tion; we have idempotents e and eλ, λ e A , of End(ER) such that
eE = PE( φ χ Mλ), eλE = λfλ> eλe = eeλ = eλ for all A G A , and eλeμ = 0
for λ Φ μ. Then i^(PE(Φ λ Λfλ)) = ej[ and FE(Mλ) = έ λ Z b y Proposi-
tion l(a), and we must prove that eA = E(Φλ^λ>4). Observe that the
submodules eλA, λ G Λ, of eA are independent because the idempotents
eλ are pairwise orthogonal; therefore the sum Σ λ eλA < eA is direct. Since
A is self-injective, eA is injective and contains an injective envelope of
φ £ λ A Therefore we have eA = E( φ ex^4) θ S for some right 4̂ -mod-
ule S. Let 77 e End^&4) be the projection onto S with kernel E( φ λ eλA).
Since Έnά^eA) = eAe = e^4e//(e^ίe) [1, Cor. 17.13], the endomorphism
IT corresponds to an idempotent/of eAe/J(eAe). Now eAe = EndR(eE)
is the endomorphism ring of the a.c. module eE, so that idempotents can
be lifted modulo the Jacobson radical. Let / be an idempotent of eAe
whose image is/. Then/is an idempotent of A and ef = fe = /. Note that
E( φ χ eλA) = ker TΓ, SO π(eλ) = 0 for all λ, i.e. feλ = 0, that is,feλ e /(^4)
for all λ e A .

Consider the direct summand fE = efE of e£. Let us show that the
map ε: φ λ Mλ -> eE/fE induced by the inclusion φ χ Mλ -> eE is injec-
tive and that the image of ε is a pure submodule of eE/fE. We must prove
that ε 0 \M\ ( Φ λ G Λ Mλ) <8>Λ M -» (eE/fE) ΘΛ M is injective for every
left i?-module M9 i.e. we must prove that the image of the mapping
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( θ λ € i Λ A/λ) ® Af -> eis ® Af intersects the kernel of the mapping eE ®

M -> (eE/fE) ® M at zero. The kernel of this second mapping is the
image of the canonical embedding fE ® M -> eE Θ M. Therefore it is
sufficient to prove that for every finite subset {λ1?... ,λw} ofΛ the images
of the two canonical embeddings (Mλi θ θ MλJ ® M -> E <8> M and
fE®M->E®M intersect at zero. Since feλχ + •"• + feκ e J(A), the
mapping

is an automorphism of E ® Af. But if an element is in the image of
fE 0 M -> i? 0 Af, it is fixed by / 0 1M, and if an element is in the image
of (Λfλi θ θ Λfλ) 0 Af, it is fixed by {eXχ + + eλj 0 1M. There-
fore an element in the intersection of the two images is annihilated by the
previous automorphism, whence it is zero, as desired.

We have thus proved that ε is injective, so that fE is a submodule of
eE such that / B Π ( Φ λ Mλ) = 0, and the image of φ χ Mλ is pure in
eE/fE. Since φ χ Mλ is pure-essential in eE = PE( φ Afλ), we get/E = 0,
/ = 0, / = 0, 7r = 0, 5 = 0 and E ( φ χ e λ Z ) = eA. This concludes the
proof of the theorem.

As a corollary we get the decomposition into discrete and continuous
part analogous with [8, §3].

COROLLARY 3 [21, Thm. 6.1]. Every algebraically compact module has a
decomposition M = PE( Φ λ e Λ Λfλ) θ N, where the Mλ

9s are indecomposa-
ble and N has no indecomposable direct summands. If M = PE( φ λ , e Λ , Af^)
θ N' is another such decomposition, then N = N' and there is a bijection
Λ —> Λ' such that corresponding indecomposable modules Mλ and M'λ, are
isomorphic.

Proof. Proposition 1, Theorem 3 and [8, §3].

4. Algebraically compact modules as a category. In §2 we consid-
ered the full subcategory s?{R) of Mod-i? generated by all algebraically
compact 7?-modules, but the results of §§2 and 3 and the ones of [8] and
[20] lead us to consider another category whose objects are the algebrai-
cally compact modules.

Let /: M -» N be a homomorphism of i?-modules. It is easy to prove
that the following three conditions are equivalent: (i) fg e J(ΈndR(N))
for all g G HomR(N, Af); (ϋ) gf e J(EndR(M)) for all g e

(7V, Af); (iii) (°f0°) e /(EndΛ(M θ JV)). (Here/(5) is the Jacobson
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radical of the ring S, and homomorphisms of direct sums into direct sums
are denoted by matrices.) Therefore the set of all / e HomΛ(M, N)
satisfying these equivalent conditions is a subbimodule of the
(End(#), End(M))-bimodule Hom Λ (M, N). We denote it by
J(HomR(M, N)). Note that, when M = N, J(HomR(M, M)) is exactly
the Jacobson radical of the ring EndR(M).

Define the category #(i?) whose objects are all the algebraically
compact right i?-modules with morphism groups

, N) = HomR(M, N)/J(HomR(M9 N)).

THEOREM 4. ^(R) is an additive category. The direct sum of a finite
number of objects in ^(R) is their direct sum as R-modules. Objects of
^(R) are isomorphic in &(R) if and only if they are isomorphic as modules.
Every full small subcategory of ^(R) is equivalent to a full subcategory of a
spectral category.

Proof. Most of the proof consists of trivial verifications which we
omit. Let us prove the last statement. Given a full small subcategory 3) of
&(R) there is a cardinal a such that every module in the subcategory has
cardinality < a. Let E be a module as in Corollary 1. Let us prove that
the functor FE\ s/(R) -* Jf(A) of Theorem 2 induces a faithful full
functor 3 -> JV(A). We must show that if M, N are summands of E, the
mapping FE(M, N): HomΛ(M, N) -> Hom^i^(M), FE(N)) induced by
FE is surjective with kernel J(HomR(M, N)). But if e, f are i?-endomor-
phism of E with M = eE and N = fE, then HomR(M, N) = fAe and
Hom^FE(M), FE(N)) = Kom/eA,fA) s fAe canonically.

5. Decompositions of algebraically compact modules. The last result

of §3 was that any algebraically compact module is the direct sum of a
discrete part (the pure-injective envelope of a direct sum of indecomposa-
ble algebraically compact modules) and a continuous part (an algebrai-
cally compact module with no indecomposable direct summands). There
is an extensive classification of the objects of a spectral category [11] and
the results that hold for any set of objects of a spectral category can be
interpreted into the category ^(R) via Theorem 4. In this section we
classify and decompose algebraically compact modules into types. All our
results easily follow from our previous theory and [11].

Note that for any algebraically compact module M and for any
algebraically compact module E containing M a s a direct summand,
E n d ^ i ^ M ) ) = EndR(M)/J(EndR(M)) (proof of Theorem 4), and
therefore Endj(FE(M)) depends only on M and not on E or A.
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We say that an algebraically compact right i?-module M is abelian if
the ring EndR(M)/J(EndR(M)) is abelian [11, Ch. 2], i.e. all its idempo-
tents are central. This happens if and only if the yί-module FE(M) is
abelian for any module E containing M as a direct summand and with the
properties of Corollary 1. An algebraically compact i?-module M is
abelian if and only if for every direct sum decomposition M = Mx Θ M2

one has Hom^(M l5 M2) = J(ΆomR(Ml9 M2)) [11, Thm. 2.1].
In analogy with [11, Ch. 3], we say that an algebraically compact

module M is directly finite if the ring EndR(M)/J(EndR(M)) is directly
finite, i.e. all its one-sided inverses are two-sided. If E is any algebraically
compact module with the properties of Corollary 1 and "big enough",
that is, containing M as a direct summand, then M is directly finite if and
only if the ^4-module FE(M) is directly finite. It is easy to see as in [11,
Thm. 3.1] that an algebraically compact i?-module M is directly finite if
and only if M is not isomorphic to any proper direct summand of itself,
or, equivalently, if M has no nonzero direct summands N with N Θ N = N.

Let M be an algebraically compact module. Then we say that:
(i) M is Type I if every nonzero direct summand of M has a nonzero

abelian direct summand;
(ii) M is Type II if every nonzero direct summand of M has a nonzero

directly finite summand but M has no nonzero abelian direct summands;
(in) M is Type III if it has no nonzero directly finite direct summands;
(iv) M is purely infinite if M θ M = M [11, Ch. 5 and 6].
Then an algebraically compact module M is Type I, II, III or purely

infinite if and only if EndR(M)/J(EndR(M)) is Type I, II, III or purely
infinite, or, equivalently, if and only if the nonsingular injective A -module
FE{M) is Type I, II, III or purely infinite (E,A and A as above).

For instance every ring R has algebraically compact modules of Type
I: if S is a simple JR-module, then E(S) is an indecomposable injective
iϊ-module, and a fortiori an algebraically compact abelian module.

Finally, we say that a module M is Type I f if M is Type I and directly
finite; Type 1^ if M is Type I and purely infinite; Type Π f if M is Type II
and directly finite; Type II^ if M is Type II and purely infinite.

THEOREM 5 [11, Cor. 7.6]. Any algebraically compact right R-module is

a direct sum of five modules of Types I f , 1^, I I f , I I ^ III, respectively,

uniquely up to isomorphism of the direct summands.

6. Dimension theories and other applications. In the mathematical
literature many cardinal invariants have been defined for algebraically
compact modules: Ziegler defined the dimensions dim^, where U is a
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module with local endomorphism ring [21, §6]; Los and Kaplansky's
complete description of the algebraically compact abelian groups ([12] and
[13]) leads to a natural definition of a family of cardinals α0, ap, βp n and
γ , where p ranges in the prime numbers and n in the natural numbers,
and these cardinals form a complete set of invariants [16, Ch. IV, 1.6];
Warfield constructed complete sets of invariants for particular algebrai-
cally compact modules over Pfύfer domains [19].

On the other hand there is a complete dimension theory for the
objects of a spectral category [11]. In this section we are going to examine
the relations between these various dimension theories. The bridge that
allows us to pass from one dimension theory to the others is constituted
by the functors FE.

Let us begin by studying the relation between the dimension theory
constructed by Goodearl and Boyle and that of Ziegler.

Let C, U be algebraically compact modules and suppose U indecom-
posable. By Corollary 3, C has a decomposition C = PE( (Bλ€_AUλ) Θ Z>,
where each Uλ is indecomposable and algebraically compact, and D has
no indecomposable direct summands. Ziegler [21, §6] defined the dimen-
sion of C relative to U as dim a(C) = |{ λ e Λ | Uλ = U} |. If we apply the
functor FE to the above decomposition, where E is an algebraically
compact module containing C and U as direct summands and with the
property that every module is isomoφhic to a pure submodule of a power
of E, we get that FE{C) = E( Θ λ e Λ FE(Uλ)) θ FE(D) (Theorem 3). Since
U is an indecomposable direct summand of E, U = uE for some primitive
idempotent u of A = End(£), and if ΰ e A = A/J(A) is its image, then ΰ
is primitive because idempotents lift modulo J(A). Therefore the set of all
central idempotents e of A that annihilate ΰ (i.e. eu = 0) is a maximal
ideal M of the Boolean algebra B(A) of all central idempotents in A.
(Notations as in [11, Ch. IV].) Moreover, if cc(ϊί) denotes the central cover
of ΰ, i.e. the smallest central idempotent in A which acts as the identity on
w, then M is the ideal of B(A) generated by l-cc(w). Note that M is an
isolated point in the Boolean spectrum BS(A) of A, that is, the space of all
maximal ideals in B(A) (notations as in [11, Ch. IX]). Therefore the
^4-module FE(C)cc(ΰ) is the injective envelope, as an A -module, of the
direct sum of all the FE(UλYs with Uλ= U, λ e Λ. It is now clear that
GoodearΓs and Boyle's invariant dM(FE(C): FE(U)) indexed in the point
M of the compact, totally disconnected Hausdorff space BS(̂ 4) is equal to
Ziegler's invariant dim^C), if this is finite, and equal to oo, otherwise.
Similarly GoodearΓs and Boyle's invariant μM(C) is 0 if Ziegler's in-
variant d im^C) is 0, and is the smallest infinite cardinal greater than
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dim^C), otherwise. This is the connection between GoodearΓs and
Boyle's dimension theory and Ziegler's dimension theory.

Let us pass to consider algebraically compact abelian groups. (Here
abelian group means Z-module as usual and there is no connection with
abelian algebraically compact modules as defined in the previous section.)
An abelian group is algebraically compact if and only if it is the direct
sum of a divisible group and a group complete in the Z-adic topology [7,
Thm. 39.1]. The indecomposable algebraically compact groups up to
isomorphism are Z(pn) (the cyclic group of order pn

9 p a. prime), Z(p°°)
(Prϋfer's quasicyclic group), Q (the group of rationals) and Jp (the group
of /?-adic integers,/? a prime) [7, Cor. 40.4].

PROPOSITION 2. Let S = {Z(pn), Z(p°°), Q, Jp\ p prime, n > 1} be
an irredundant set of representatives of all indecomposable algebraically
compact groups. Let E be any algebraically compact group such that every
element of S is isomorphic to a direct summand of E. Then the Boolean
algebra B(Έnd(E)/J(Έnd(E))) of all central idempotents in
End(i?)//(End(£)) is isomorphic to the Boolean algebra of all subsets of
the set S.

Proof. Set A = End(i?) and A = A/J(A)9 and consider the ^4-mod-
ules FE(G), G ^ S. By Proposition l(d) they are indecomposable injective
summands of A, and therefore they are simple pairwise nonisomorphic
modules. Since every a.c. group has a direct summand isomorphic to an
element of S [7, Cor. 40.4], the set { FE(G) \ G e S] generates the category
JV(A). In particular, the center of A and the center of
E n d ^ ^ί ΦGeSFE(G))9 where the direct sum is in JV(A)9 are isomorphic.
But the FE(G)9s are simple and pairwise nonisomorphic, so that the
endomorphism ring of their direct sum is a direct product of division rings
indexed in S. Therefore B(A) is isomorphic to the Boolean algebra of all
subsets of the set S.

It follows that the spectrum of B(Έnd(E)/J(Έnd(E))) is homeomor-
phic to the Stone-Cech compactification of the set S with the discrete
topology. In particular, suppose E = PE(0^ G). Then for each alge-
braically compact group C, GoodearΓs and Boyle's continuous function
d_(C: E) from the Stone-Cech compactification of the set S into the
extended interval [0, -I- oo] is determined by its restriction to the set S.
This restriction to S is the map S -> [0, + oo] which assigns to each group
G e S the corresponding invariant of the group C as defined in Orsatti's
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book [16, Cap. IV, §1.6]. Here "corresponding" means the invariant ao(C)
if G = β, ap(C) if G = Z(p«), βpJC) if G = Z{pn\ and yp(C) if
G = Jp (and if these invariants are infinite cardinals, we assign them oo).
Similarly GoodearΓs and Boyle's invariant μ_(C) is the "continuous" (in
the sense of [5, §7]) extension of the map of S into the class Card of all
cardinal numbers, which assigns to each group G & S either the smallest
infinite cardinal greater than the corresponding invariant of the group C
as defined in Orsatti's book, or zero (if Orsatti's invariant is zero.)

Let us conclude with some remarks concerning Warfield's decomposi-
tion of algebraically compact modules over Prufer domains. The module E
of the proof of Theorem 1 (and all its powers Ea) are duals of direct sums
of finitely generated modules. If R is a Prufer domain every finitely
generated module is the direct sum of its torsion part and a projective
module [19, Prop. 5]. From this it follows that Ea is the direct sum of a
module Mx with no elements of infinite height (that is, no nonzero
element divisible by all nonzero elements of R) and an injective module
M2. Since M2 is divisible, HomR(M2, Mλ) = 0, so that HomR(Mv M2) =
J(HomR(Mv M2)) (§4). It follows that the Boolean spectrum of Ea is the
disjoint union of two clopen sets, the first corresponding to the algebrai-
cally compact modules with no elements of infinite height and the second
corresponding to the injective modules. This is the decomposition of [19,
Prop. 11].

Let us keep the same notation, but let us suppose that the Prufer
domain R is A-local. Then a torsion module is the direct sum of its
localizations [15]. Thus Mv dual of a torsion module, is the direct product
of its localizations. Therefore in the Boolean spectrum of Ea the clopen
set corresponding to the algebraically compact modules with no elements
of infinite height is the Stone-Cech compactification of a disjoint union of
clopen sets, one for each maximal ideal of R. This corresponds to the
decomposition of [19, Prop. 12].
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