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COUNTING SUBGROUPS
AND TOPOLOGICAL GROUP TOPOLOGIES

SHIFERAW BERHANU, W. W. COMFORT AND J. D. REID

Let G be an Abelian group with \G\ = a > ω, 6^{G) the set of
subgroups of G, 88 the set of totally bounded topological group topolo-
gies on G,J?(y) the set of topological group topologies£Γ for which the
character ( = local weight) of (G, <̂ ~) is equal to γ > ω, and &(y) =
£%CλJί(y). We prove algebraic results and topological results, as fol-
lows.

Algebra. Either | ^ ( G ) | = 2a or | ^ ( G ) | = a. If \S?(G)\ = a then
a = co. We describe and characterize those (countable) G such that
\S?(G)\ = ω, and we give several examples.

Topology. If γ < log(α) or γ > 2α, then &(y) = 0 ; otherwise
2 α γ . If γ > 2α then Jt(y) = 0 ; if log(α) < γ < 2α then

= 2α γ; and if ω < γ < a then K ( γ ) | = 2α.

0. Introduction and motivation. As a reading of the Synopsis may

suggest, this work originated with the authors' interest in the following
questions: Given an infinite Abelian group, how many topological group
topologies does G possess? Of these, how many may be chosen pairwise
non-homeomorphic? How many metrizable? How many totally bounded?
How many totally bounded and metrizable? We approached the latter
questions through a result from [6] which gives a one-to-one order-preserv-
ing correspondence between the set SS(G) of totally bounded topological
group topologies for G and the set of point-separating subgroups of the
homomorphism group Hom(G, T). Thus it became natural—indeed neces-
sary—to count the number of subgroups of a group of the form
Hom(G,T). In §§1 and 2, which we believe have algebraic interest quite
independent of their topological roots, we do a bit more: We show that
every uncountable Abelian group G has 2 | G | subgroups, and we describe in
some detail the fine algebraic structure of what we call ω-groups. These
are by definition the (necessarily countable) Abelian groups G with fewer
then 2 | G | subgroups; we show that each ω-group has exactly ω-many
subgroups, and we describe the relationship between the ω-groups and the
so-called q.d. groups of Beaumont and Pierce [2].

The algebraic analysis of §1, together with the result cited from [6],
allows us to describe some gross features of the partially ordered sets
£%(G). Here our work is sufficiently coarse that the various cardinal
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numbers we associate with the sets £#(G) are determined by |G| alone—that
is, they are unaffected by algebraic properties of the (Abelian) groups G.

Sections 1, 2 and 3 are algebraic in nature. Of these, only §1 is
required for the topological analysis of §§4, 5 and 6.

Some other authors have considered the question of the number of
topological group topologies on an Abelian group. For example Kiltinen
[19], [20], using methods from the theory of topological fields, showed that
the obvious upper bound 22l<?l is achieved; this result was corroborated by
Podewski [23], [24]. The papers [6], [7] and [8] (7.2) contain partial results
concerning totally bounded topologies; and Fuchs [11], [12] (47.6) has
noted that for every a > ω there is an Abelian group G with |G| = 2α and
with 2a pairwise non-homeomorphic compact topological group topolo-
gies. While the present work, some of whose results we announced in [3],
was being completed, we learned from Dieter Remus that in his forthcom-
ing doctoral dissertation [26] he will present, using methods quite different
from ours, results equivalent to our Corollary 5.7(a) and the case γ = ω of
Theorem 5.3(a), as well as other lattice-theoretic theorems unrelated to
those of this paper.

1. Concerning ^(G) when \G\> ω. Throughout this work we de-
note by £f(G) the set of subgroups of the Abelian group G.

The symbols Z, Q and R denote, respectively, the integers, the
rationals and the reals, and T and W denote, respectively, the circle and
its torsion subgroup.

Most of the groups we consider are Abelian. The identity or neutral
element is usually denoted 0. Occasionally when specificity is called for,
the identity of a group G (or Gi9 etc.) will be denoted by eG (or ei9 etc.). Of
course the identity of T is eΎ = 1.

The direct sum of a set {G(: i e /} of groups is denoted θ / e / G / ; if
all Gt are isomorphic to a fixed group G, we sometimes write ®fG in
place of 0 i€ΞίGi. Occasionally we identify ®.GfGi with the group

/€=/

1.1. THEOREM. Let G be an Abelian group with \G\ = a > ω. Then G

contains a subgroup of the form φ Ĝ  with each G^ cyclic, \G^\ > 1.

Proof. We recall first, perhaps from Fuchs [12] (28.2), a theorem of
Kulikov: If K is a pure subgroup of G such that G/K is the direct sum
θ . e /C J . with each C, cyclic, then K is a direct summand of G (and hence
we have the isomrphism G = K X θ i e / C J ).
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We denote by t(G) the torsion subgroup of G, and we consider two
cases.

Case 1. \G/t(G)\ = a. Let [A] be the subgroup of G/t(G) generated
by a maximal independent subset A of G/t(G). From \G/t(G)\ = a > ω
we have |[^4]| = \A\ = a and hence [A] ~ θ f t Z . There is H e Sf(G) such
that [̂ 4] = H/t(G), and since ί(G) is pure in H we have

G D / / = /(G) X φ Z

from Kulikov's theorem, as required.

Case 2. \G/t(G)\ < α. In this case \t(G)\ = a and we assume without
loss of generality that G = ί(G), i.e., G is a torsion group. For each prime
p let Gp denote the/>-primary subgroup of G, let Bp be a basic subgroup of
Gp, and set B = φ JB̂ . If |i?| = α, then since a > ω and 2? has the form
B = Θ. e / C / with each Ci cyclic we have |/| = a and the proof is com-
plete. If \B\ < a then the (divisible) quotient D = G/B satisfies \D\ = a
and again from a > ω we have, writing D[p]= {x + 5 e D: px G 5}
for /? prime and JE" = © D[p]9 that |£Ί = α. Since E has the form
E = φ C, with each Ct cyclic, from α > ω follows |/| = α. There is
H ^ Sf(G) such that E = i//5, and since B is pure in i/ we have again

from Kulikov's theorem, as required.
The following is an immediate consequence of 1.1.

1.2. COROLLARY. Let G be an Abelian group with \G\ = a > ω. Then
\S?(G)\ = 2a.

Theorem 1.1 allows us to analyze in some detail the structure of the
partially ordered set^(G). The following notation is useful.

DEFINITION. Let G be an Abelian group and let γ > ω. Then^(G, γ)

In the following result, crucial to our investigations in topology
below, the symbols si and ^ a r e chosen as mnemonics for "anti-chain"
and "well-ordered", respectively.

1.3. COROLLARY. Let G be an Abelian group with \G\ = a > ω, and let
ω < γ < a. Define γ = min{γ+, a}. Then
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(a) there isstfc S?(G, γ) with \s/\ = ay such that no two elements of si
are comparable {with respect to set-theoretic inclusion); and

(b) there are IT, >T* c <^(G, γ) with \W\ = γ and \W*\ = γ such that
Wis well-ordered and #"* is anti-well-ordered (with respect to set-theoretic
inclusion).

Proof. Using 1.1 we write G D ®^<a

Gξ w i t h 2 ^ \Gξ\ ^ ω f o r a 1 1

ξ < a.
(a) We note that for (every set of cardinality) a there is J^c £P(a)

such that IfF\ = αγ, each F e ^satisfies \F\ = γ, and J^is an antichain
with respect to set-theoretic inclusion. (Since |γ X α| = a, it is enough to
find such a family of subsets of γ X a; the family (Graph(/): / e αγ} is
as required.) Let & be such a family of subsets of a and for F e <F set

Since |G^| > 1 for all £ < α, it is clear that the family J / =
F E ^ } is as required.

(b) We write a = Uη<aAη with {Aη: η < a) a family of pairwise
disjoint sets and with each 1^1 = γ, and we set Hη = Θ>e/ ί G^ for η < a.
Then each |ifη| = γ, and G D φ /ίη. Now we set

Wζ= ®Hη fovξ <γ,

and ^ f

ϊ, fαrf<γ.

For ζ < γ we have γ = \H0\ < \Wς\ < γ \ζ\ = γ, and for ξ < γ we have

Thus the families iT= {Wζ: ζ<y) and iΓ* = [Wf: ζ < γ) are as
required.

The following result (which we need below) was apparently first
stated, and proved elegantly, by Kakutani [18]; see also Fuchs [12] (47.6).
Most of the proofs of this theorem known to the authors require separate
consideration of the two cases a = co, a > ω. As Lewis C. Robertson has
remarked in conversation, the case a > ω is immediate from 1.1 above.

1.4. THEOREM. Let G be an Abelian group with \G\ = a > ω. Then
|Hom(G,T)| = 2α.
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2. co-groups. We have seen that groups G of uncountable cardinal-
ity a have many subgroups—indeed contain within themselves direct
sums of α-many subgroups—and that if G has fewer than 2a subgroups,
then \G\ = a = ω. We now define an ω-group to be an Abelian group,
necessarily countable, that has fewer than 2ω subgroups. It is clear that
subgroups and homomorphic images of co-groups are co-groups, and that
such groups cannot contain direct sums of infinitely many non-trivial
subgroups. We will use these facts with little explicit reference in our
discussion.

2.1. LEMMA. Let G = A θ B be the direct sum of its subgroups A and B.
Then the complements of A in G are in one-to-one correspondence with the
elements ofHom(B, A).

This result is well-known. We merely remark that if /: i? —> 4̂ is a
homomorphism then the corresponding complement, B(f), of A in G is
the "graph" of/:

2.2. COROLLARY. Let H be a subgroup of the group G and let 3>(H) =
{K e 5?{G) :H ΠK=0}. Then

Proof. Define an equivalence relation in 2){H) by

K~K' if and only H + K = H + K'.

Clearly the number of equivalent classes does not exceed \Sf{G/H)\. Fix
Ko e 3(H). Then K0 = (H + Ko)/H = K <= S?(G/H) and Kr - Ko

means that Kr is a complement of H in H + Ko. Thus the equivalence
class of Ko has cardinality |Hom(ΛΓ0, H)\ = |Hom(AΓ, H)\9 and the result
follows.

It is clear now that the torsion subgroup of an co-group has only
finitely many primary components, each of which has a finite basic
subgroup, and the torsion-free quotient has finite rank. On the other hand
the torsion-free group, Q, of rational numbers has, as is well known, 2ω

subgroups; and since Hom(Z(/?oo),Z(/700)) is isomorphic to the /?-adic
integers, the lemma above implies that Z(/?°°) θ Z(/?°°) has 2ω subgroups
as well. Thus the situation is perhaps not completely trivial. We start with
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the following:

2.3. PROPOSITION. A torsion ω-group G has the form

where H is a finite group and F is a finite set of primes.

Proof. We have seen that G has but finitely many primary compo-
nents Gp, each having a finite basic subgroup Bp. Thus Gp = Bp Θ Dp with
Dp divisible. By 2.1, Dp is either 0 or Z(/?°°) so G = φ eF,(Bp θ Dp), with
F' a finite set of primes. Thus G has the form described, with H the direct
sum of the Bp and F the set of primes for which Dp Φ 0.

2.4. LEMMA. Lei H be a finite subgroup of an infinite Abelian group G.
If G/H is an ω-group then \S?(G)\ < \S?(G/H)\. In particular, G is an
ω-group.

Proof. We use induction on the order, A, of H. There being nothing to
prove if h = 1, assume first that h is not prime. Then H contains a proper
non-trivial subgroup L and H/L is a finite subgroup of the infinite
Abelian group G/L with quotient isomorphic to G/H, hence an ω-group.
By the induction hypothesis we conclude that

\Se(G/L)\ < \Se(G/L/H/L)\ = \S?{G/H)\ < 2ω.

Thus G/L is an ω-group. Applying the induction hypothesis once more we
obtain

as required.
Now suppose that h is prime. Then every subgroup of G either

contains H or is disjoint from it, and the set of those that contain H is in
one-to-one correspondence with the set of subgroups of G/H, so there are
\Sf(G/H)\ of these. If Wis a subgroup of G disjoint from H, then since
hH = 0 we have Hom(W, H) = Hom(W/hW, H). Now W/hW is
bounded, hence a direct sum of cyclic groups, and is an ω-group since it is
an image of W and W is isomorphic to a subgroup of the ω-group G/H.
Hence there can be but finitely many cyclic summands of W/hW so it,
and with it Hom( W, H), is finite.

It now follows from Corollary 2.2 that the number of subgroups of G
disjoint from H does not exceed \S(G/H)\. Altogether then we clearly
have \S?(G)\ < \&{G/H)\ as required.
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2.5. THEOREM. A torsion group G is an ω-group if and only if

with H a finite group and F a finite set of primes.

Proof. By Proposition 2.3, a torsion co-group has the indicated form.

To establish the converse it suffices by Lemma 2.4 to show that

φ eFZ(/7°°), F finite, has but co-many subgroups. This is clear since a

subgroup of such a group has but countably many choices for each of its

(necessarily finitely many) primary components.

2.6. COROLLARY. IfGis a torsion ω-group then \S?(G)\ < ω.

Proof. This follows immediately from 2.4 and 2.5.

Now suppose that G is a torsion-free ω-group. We have already

observed that G must have finite rank. Let Xo be the subgroup of G

generated by a maximal independent set. Then G/Xo is a torsion co-group

so has the form H Θ D with H finite and D divisible, as in Theorem 2.5.

Let X be the subgroup of G satisfying X/Xo = H. Then G/X = D and

since H is finite and Xo is free, X is free. These remarks establish half of

the following statement.

2.7. THEOREM. A torsion-free group G is an ω-group if and only if there

is an exact sequence

with Xfree of finite rank and F a finite set of primes.

Proof. To complete the proof it suffices to show that if a sequence of

the form (*) exists for G then in fact G has only co-many subgroups. Let M

be any subgroup of G, and let X(M) = X n M\ then M/X(M) is a

torsion subgroup of G/X(M). Moreover, M is uniquely determined by

the pair (X(M)9 M/X(M)). It is clear that there are only countably many

subgroups of X. Thus it suffices to show that, for each subgroup Xλ of X,

the torsion subgroup t(G/Xλ) has at most countably many subgroups. Put

JTJ = { g e G : w g e A r , for some n Φ 0, n e Z},
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so Xf is the pure subgroup of G generated by Xv Then t{G/Xλ) = X*/Xv

Note that (X* Π X)/Xτ is finitely generated and torsion, hence is finite.
Moreover

XfAXf nX)s(Xί + X)/X

so X*/( X* Π X) is an co-group. Now by Lemma 2.4 we have

^{Xί/Xx)\ < | y ( * M * ί Π *))| < ω,
as required.

2.8. COROLLARY. Let Gbe a torsion-free ω-group. Then

Groups which have the general structure exhibited in Theorem
2.7—i.e. modulo some free subgroup the group is divisible—were first
studied by Beaumont and Pierce [2] and were called q.d. groups (quotient
divisible groups). It is perhaps of interest that any torsion-free group of
infinite rank is a q.d. group ([25]), but for groups of finite rank this is a
restriction. If G is torsion-free of finite rank n and Xo is a free subgroup of
G such that G/Xo is divisible, then for any free subgroup X of G of rank
«, G/X is the direct sum of a finite group and a divisible group, and the
structure of the divisible group is independent of the choice of X. These
results are not difficult to prove; we refer the reader to [2], [22] and [25]
for proofs and further discussion of q.d. groups. Our point here is that the
set F of primes arising for the torsion-free ω-group G in Theorem 2.7 is an
invariant of G; it does not depend on the choice of X. We write F(G) for
this set of primes.

Finally we consider the structure of an arbitrary ω-group G. Its
torsion subgroup, t(G), is an ω-group, so is described by Theorem 2.5. It
is well known [12] that in such a case t(G) is a direct summand, so that

G = t(G) Θ Go

with Go a torsion-free ω-group, hence described by Theorem 2.7. These

observations yield one half of:

2.9. THEOREM. An Abelian group G is an ω-group if and only if
G = t(G)θ Go, where

(i) t(G) = H Θ Π /, e FZ( jp
0 0) with H a finite group and F a finite set

of primes\
(ii) Go is a torsion-free ω-group; and

(iii) F(G0) Π F = 0 .
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Proof. The fact that an ω-group has the indicated form is immediate
from the remarks above together with the observation that, were p e
F(G0) Π F then Z(/?°°) Θ Z(p°°) would appear in G/X where X is a free
subgroup in Go as described in Theorem 2.7. But no image of an ω-group
can contain such a subgroup so F(G0) and F are indeed disjoint.

For the converse we show that any group G with the indicated
structure has at most countably many subgroups, so in particular is an
ω-group. Let Gr be a subgroup of G. Then the torsion subgroup t(G') of
G' is one of the countably many subgroups of t{G). Put t(G') = V. We
will count the number of subgroups of G with maximal torsion subgroup
equal to V. This is the same as counting the number of torsion-free
subgroups of G/V. Now t(G)/V is the torsion subgroup of G/V and
t(G)/V has the same form as t(G) itself—i.e. a finite group plus a direct
sum of finitely many Z(/?°°)'s, none repeated. The probem is clearly
equivalent then to counting the number of torsion-free subgroups of a
group G of the form G = t(G) θ Go as above. Finally, since \^{G/t(G))\
= | ^ ( G 0 ) | is countable it suffices by 2.2 to show that, for each subgroup
K of G09 Hom(ϋ:, ί(G)) is countable.

From the form of /(G) we have

Hom(#, t(G)) s Hom(K, H) θ Π H o m ^ Z t / ? 0 0 ) )
peF

and since H is finite, of order h say, Hom(ίΓ, H) = Hom(K/hK, H).
Since K is torsion-free of finite rank, K/hK is finite, so Hom(K, H) is
finite. From 2.7 we have an exact sequence

0-+X-*Go-+ Π

and if Xx = K Π X then K/Xλ = {K + X)/Z c G0/JT so K/Xλ

Πp€ΞF(Go)Z(pkp) with 0 < kp < oo. Now if px e i% the exact sequence

o -* x x -> # -
yields

O^Homί Π Z(pk>)MPΪ))

Since/?! ί ^(GQ), HomίΠZί/?^), Z(pf)) = 0 so we have the inclusion

0 -> Hom(A-,Z(/>f)) -
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and since Xx is free of finite rank, Hom(X1? Z(pco)) is countable. Thus
Hom(K,Z(p?)) is countable (cf. also [12] (47.1)). It follows that
Hom(ΛΓ, t(G)) is countable. This proves the theorem.

We may consolidate the previous three theorems in the following.

2.10. THEOREM. An Abelian group G is an ω-group if and only if there is
an exact sequence

Q-+W-+G-* Y\Z(p°°) -+0

with W a finitely generated group and S a finite set of primes.

From our discussion, we also have

2.11. COROLLARY. IfGis an infinite ω-group then \S?(G)\ = ω.

3. Torsion-free co-groups. EXAMPLES. There is an interesting exam-
ple (see Arnold [1] (Example 2.7)) of a torsion-free group of finite rank n
which is strongly indecomposable, homogeneous with type the type of Z
and in which every subgroup of rank less than n is free. Indeed such a
group is constructed for each n and Pierce [1] (Exercise 2.5) has shown
that, even when n = 2, there are 2ω such groups, no two isomorphic with
each other. It follows from Theorem 2.7 that these groups are co-groups,
for, by construction, each has a full free subgroup with quotient isomor-
phic to Z(/?°°), p a selected but essentially arbitrary prime. Thus the
ω-groups have perhaps surprisingly complicated structure.

On the other hand, Arnold's examples lie in the simplest class of
ω-groups, beyond the free groups, in the sense that the divisible quotient
G/X (cf. 2.7) is a single Z(p°°). We pause here to consider an arbitrary
group of this kind, so that we have an exact sequence

0 -+ X-* G-+ Zip00) -> 0

with X free of rank n. Let B be a pure subgroup of G of rank n — 1. Then
(B + X)/X c G/X ^ Z(p°°), and it follows that either B + X = G or
pk(B + X) a X for some k. In the latter case, B is free; in the former,

G/B = (B + X)/X = X/(XΠ B)

is finitely generated and torsion-free, hence free; thus we have G = B Θ C
with C = Z. Thus if G is indecomposable then B must be free. Note that
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in this case G is homogeneous of type the type of Z. These remarks follow

Arnold's discussion quite closely.

In the general case, however, we put W = Π{ker/: / e Hom(G, Z)},

so W is a pure (and fully invariant) subgroup of G. Since G is of finite

rank we can represent W as an intersection of the kernels of a finite

number of maps/: G -> Z and this leads to an imbedding of G/W'mto a

finite product of copies of Z—i.e., into a free Abelian group. Hence G/W

is free so G = W Θ F with Ffree and, evidently, Hom(fF, Z) = 0. Now it

is clear that W is an ω-group with the same property as G, namely

W/Y= Z(p°°) for some free subgroup Y of W. Since W has no free

summand we conclude by the remarks above that every subgroup of W of

smaller rank than that of W is free and, since Hom( W9 Z) = 0, that W is

strongly indecomposable. Finally if B is pure in G and has rank n — 1,

say, then either W c B (in which case B = W ® C with C free), or W is

not contained in B. In the latter case we have B/(B Π W) = (B + W)/W

is free and 5 Π W is a proper pure subgroup of W, so B (Ί W is free.

Hence B is free. We summarize these remarks as follows.

3.1. THEOREM. Suppose 0 -> X -> G -» Z(/?°°) -> 0 ώ exαcί, wzYΛ ^

n.PutW= Π{ker/: / e Hom(G, Z)}.

(ii) PF w strongly indecomposable, #« J every subgroup of Wof smaller

rank is free; and

(in) every subgroup of G of rank less than n that does not contain W is

free.

These examples suggest the following result, which gives an alterna-

tive description of the torsion-free ω-groups. See [1] for background on

types.

3.2. THEOREM. A torsion-free Abelian group G is an ω-group if and only

if there is an exact sequence

0 -* B -> G-> A -* 0

where B is a free Abelian group of finite rank and A is a rank 1 ω-group.

The rank 1 ω-groups are exactly those with idempotent type, zero at almost

all primes.

Proof. The remark on rank 1 ω-groups is clear from Theorem 2.7.

Moreover, if a sequence of the kind described exists for G, we may choose
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C a A, C = Z, such that A/C = Π ^ ^ / ? 0 0 ) with F a finite set of
primes. Then with X chosen so that i c I c G and X/B = C we have

and G is an co-group by 2.7.
Conversely, if G is a torsion-free ω-group then it follows from

Theorem 2.7 that the type set of G is finite. In fact, if T is the type with
value oo at all/? e i^G), 0 otherwise, then it is clear that each non-zero
element of G has type less than or equal to T. Let g e G and write t(g) for
the type of g. Since G is an ω-group, t{g) is zero at almost all primes, so if
t(g) is not the zero type then t{g) is infinite at some prime. Clearly such
primes lie in F(G). Thus there are but finitely many possibilities for types
of elements of G.

We assume now that G has rank at least 2. Then if x and y are
independent elements of G, the infimum of their types is the zero type:
otherwise, as is clear, (x)* 4- ( j ) * is not an ω-group. Thus the inner type
of G is the zero type and since the type set is finite, the inner type is
realized ([1] (1.7)). We conclude that G has a pure free subgroup, other
than 0. Now choose B to be a maximal proper pure free subgroup of G.
By maximality of B, G/B has rank 1 and is of course an ω-group. This
gives the desired exact sequence and completes the proof of the theorem.

We note that if G is an ω-group then the structure of the group A in
3.1 is independent of the choice of the pure free subgroup B. Indeed the
type of A is the idempotent type which is oo at all/? e F(G), 0 otherwise.

As remarked earlier, Beaumont and Pierce have studied quotient-
divisible groups in some detail [2] and in particular have constructed
invariants, δ(G), for such groups G. These are sequences, indexed by the
primes, of vector spaces δ(G)p over the/?-adic numbers. The ω-groups are
the q.d. groups of finite rank with 8p(G) = 0 for almost all /?, and
one-dimensional when non-zero. Accordingly, Corollary 5.27 [2] gives a
method of constructing strongly indecomposable ω-groups in great variety
and for any finite rank. We refer the interested reader to §5 of [2] for
details.

4. Topological notation, definitions, and results from the literature.
Here we describe our set-theoretic and topological terminology and con-
ventions, and we quote from the literature several results needed in §5 and
§6.

For X a set we write &(X) ={A:Aa X).
For a cardinal number a > ω we set log(α) = min{ β: 2β > a).
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For G an Abelian group and 5^a topology for G, the statement that

G = (G, 3Γ} is a topological group means that (G, SΓ) satisfies the

Hausdorff separation property and the function (a, b) -> ab'1 from

G X G to G is continuous. As is well known (see for example [13] (8.4)),

the requirement that ZΓis a Hausdorff topology guarantees that (G, ̂ ) is

a completely regular space, i.e., a Tychonoff space.

A topological group G is said to be totally bounded (by some authors:

pre-compact) if for every non-empty open subset U of G there is a finite

subset F of G such that G = FU. It is clear that a compact topological

group, and each of its subgroups, is totally bounded. It is a theorem of

Weil [27] that, conversely, every totally bounded topological group G is a

dense subgroup of a compact group G. (The two natural uniform struc-

tures on such a group G are identical; as a space, G may be realized as the

completion of G with respect to this uniformity.) The compact group G is

unique in the sense that if K is a compact topological group in which G is

dense then there is a topological isomorphism ξ from G onto K such that

ζ(x) = x for all x e G. We refer to G as the Weil completion of the

(totally bounded) topological group G.

In what follows we denote by £8(G) the set of totally bounded

topological group topologies for the group G. That is, we write ^ e £%{G)

if and only if (G, $~) is a totally bounded topological group.

For an Abelian topological group G = (G, ̂ " ) , we denote by G or by

(G, ^) the set of continuous homomorphisms from G to T. It is

well-known (see for example [13] (22.12, 22.17)) that G separates points of

G whenever G is compact (hence also, whenever G is totally bounded).

For G an Abelian group and / a point-separating subgroup of

Hom(G, J^), we denote by ^ the topology induced on G by /. The

following result establishes an order-isomorphism between 3#(G) and the

set of point-separating subgroups of Hom(G,

4.1. THEOREM [6]. Let G be an Abelian group and let /, / be point-sep-

arating subgroups 6>/Hom(G, T). Then

(a) / = / if and only if^τ = ^};

(b) $~j e 38(G)\ and

(c) i / J e #(G) fl/κ/J = (G, Λ

For a topological space X = (X9 &~) we de.±ne the density character

d(X), the weight w(X), the local character χ(;c, X) at x, the character

χ( X), and the compact-covering number κ( X), by the relations

rf(-SΓ) = min{ \A\: A c X9A dense in X},

ιv(ΛΓ) =
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χ(jt, X) = min{ \s/\: s/a &,si is a local base at x),

κ( X) = min{ |Jf |: J f c ^ ( X), X = U Jf, each F e Jf* is compact}.
Of course when X is homogeneous the function x -> χ(jc, X) is

constant. In particular, for a topological group G we have χ(G) = χ(e, G).
Here in 4.2-4.4 we list those results concerning these cardinal in-

variants which we need below, together with references which the inter-
ested reader may consult for proofs, generalizations, or related results.

4.2. THEOREM. Let G be an infinite compact topological group. Then
(a) \G\ = 2^G>;
(b)d(G) = log( w(G)).

Proof. Kakutani [18]; Kuz'minov [21]; Itzkowitz [16]; Hewitt and
Ross [14] (28.2, 28.58); Comfort [5].

4.3. THEOREM. Let G = (G, ̂ ) be an infinite, totally bounded topo-
logical group. Then

(a)χ(G) = H>(G).
(b) If in addition G is Abelian, then χ(G) = |G|.

Proof, (a) Of course χ(G) < w(G). Now let [U^. ξ < β} be a local
base for (G, F) at e, and for ξ < β choose ̂ open V% such that e ^ Vξa
VfιVξ c Uj: and choose finite F^cG such that G = Fξ Vξ. For every
(basic) neighborhoodpUς of p e G there is x e i7^ such that

It follows that the family {xVf ξ < β, x e Fξ}9 whose cardinality is
β ω = jβ, is a base for (G, ̂ > . Hence w(G) < χ(G).

(b) Since G induces on G the topology y, the function /: G -> T^
defined by i(x)f = f(x) is a homeomoφhism of (G, y> into TG. Hence
w(G, ^ ) < w(Tό) = |G|. Suppose now that χ(G) = β < \G\ and let
{U(fξ9 Sξ): ξ < β} be a local base at e of sets of the form

with/^ e G, ε̂  > 0. Let /be the subgroup of G generated by {ff £ < β}.
From β > ω we have |/| = /?, but since / itself induces on G the topology
5"we have / = G from 4.1(c). This contradiction shows χ(G) > |G|, as
required.

(We note in passing that each of the three functions χ, w, | | assumes
the same value on G as on G, so that 4.3 as stated follows from the special
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case in which G is assumed compact. In this case G is discrete in the
Pontrjagin topology, so that \G\ = κ(G). The relation χ(G) = κ(G), from
which 4.3(b) now follows, is given for locally compact Abelian groups by
Hewitt and Stromberg [15] (the case K = ω), by Hewitt and Ross [13]
(24.48), and Comfort [5] (3.14(ii)).)

4.4. THEOREM. Let G be an Abelian group with \G\ = a > ω. Then there
is a point-separating subgroup S o/Hom((7, T) such that \S\ = log(α).

Proof. Let G have the discrete topology, so that G is compact
(Pontrjagin topology). Applying 4.3 and 4.2(b) to G, we have

w(G)=\G\ = \G\ = a

and then d(G) = log(α). Let D be dense in G with \D\ = log(α) and let S
be the subgroup of Hom(G,T) generated by D. Then \S\ = log(α), and S
separates points: If e Φ x e G there is h e Hom(G, T) such that

|Λ(JC) - A(e)| = |Λ(JC) - 1| = β > 0,

and since (with G discrete) the Pontqagin topology of G is the topology of
pointwise convergence there is / e S such that \f(x) — h(x)\ < ε and
hence

\f(x)-f(e)\ = \f(x)-l\>\h(x)-l\-\f(x)-h(x)\>0.

For use in 5.4 and 5.7 we note in 4.6 a refinement of Theorem 4.4.
We recall that W denotes 0 Z(/?°°), the torsion subgroup of T.

p

4.5. LEMMA. There is a countable, point-separating subset F of
Hom(T,W).

Proof. Since W is divisible and |Q| = ω, there is a countable, point-
separating subset / of Hom(Q, W). Now it is well-known (see for example
[13] (A.14) or [11] (23.1)) that T is isomorphic to W X Qω. For

with w e W, each q(n) e Q, define πo(t) = w and ττn(/) = q(n) for
1 < n < ω. The family

F = {v0} U{joirn: j ej9l ^ n < ω}

is as required.

4.6. COROLLARY. Let G be an Abelian group with \G\ = a > ω. Then
there is a point-separating subgroup S' 6>/Hom(G, W) such that \S'\ = log(α).
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Proof. Let S and F be as in 4.4 and 4.5, respectively, with |5Ί = log(α)

and |JF| = co, and let S' be the subgroup of Hom(G,W) generated by

5. On the partially ordered set 98(G}. For G a group we denote by

), or simply by 98 if there is no chance of ambiguity, the set of totally

bounded (Hausdorff) topological group topologies for G. And for each

cardinal γ we define 98(G, γ), or simply 98{y), by the rule

Clearly 98 = U{ 98{y): γ is a cardinal}.

The following statement is available, implicitly or directly, in [6], [9]

or [7]. We record it here in passing because it provides some qualitative

information about the partially ordered set 98{G)\ our principal interest,

however, is quantitative (see 5.3).

5.1. THEOREM. Let G be an Abelian group and let ^ , ^ c 98 = 98(G)

with <gφ 0 . Then

(a) Ήhas a least upper bound in 98\ and

(b) if Si has a lower bound in 98 then 3) has a greatest lower bound in 98.

Proof. For every^e # u 2there is (by 4.1 above) / e ^(Yίom(G, T))

such that ^ " = 3~j\ and since 3) is bounded below there is M e

^(Hom(G, T)) such that M e / whenever &Ί e 2.

Let / be the subgroup of Hom(G, T) generated by U{ /: SΓj e # } , and

set If = Π{ /: $Ί e ^ } . We have ί D M , s o that # separates points of G.

It is now clear, with ^ = ^} and >^= «^, that ^ , ^<Ξ ^ and ^ = V^7,

7^= A®.

We turn now to computing various cardinal numbers associated with

the partially ordered sets 98{y). We show first that for γ too small or too

large, the sets ^ ( γ ) collapse to 0 .

5.2. THEOREM. Let G be an Abelian group such that \G\ = a > ω, and

let γ > ω. Ify < log(α) or y > 2α, then 98{G,y)= 0 .

Proof. To show the contrapositive, let &~<^ 98(G,y) and denote by G

the Weil completion (defined as in §4) of (G,3Γ). We have from 4.2(a)

and 4.3(a) that

a = |G| < \G\ = 2W(^> = 2X(^> = 2^G> = 2\

so that log(α) < γ. Further from 4.3(b) and 1.4 we have

y = X(G) = \{G,ΓY\ < |Hom(G,T)| = 2«.

The proof is complete.
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(Alternatively, the inequality γ < 2a may be derived from an argu-
ment which does not invoke Hom((j, T). See 6.2(a) below.)

As in §1, the expressions "anti-chain", "well-ordered set" and "anti-
well-ordered set", when applied to families of subsets of a fixed set, refer
to the partial order given by set-theoretic inclusion. We introduce now the
following (quite standard) terminology.

DEFINITION. Let P be a partially ordered set. Then

width(P) = sup{ \A\: A c P9 A is an anti-chain}

height(P) = sup{|fF|: Wa P, Wis well-ordered}; and

depth(P) = sup{|W*|: W* c P9 W* is anti-well-ordered}.

5.3. THEOREM. Let G be an Abelian group with \G\ = a > ω, and let
log(α) < γ < 2α. Define γ = min{γ+,2α}. Then

(b) The width of^(y) is 2ay and there is an anti-chain J^ <z &(y) such
that\j*\ = 2a'\

(c) The height of 33(y) is γ and there is a well-ordered ^ c £§(y) such
that\iT\ = y.

(d) The depth ofSS{y) is y and there is an anti-well-ordered ΊV* c 38(y)
such that \Ψ**\ = γ.

Proof. Throughout this proof we write H = Hom(G, T).
According to 4.1 and 4.3(b), the elements of £#(y) are in one-to-one

order-preserving correspondence with the point-separating elements of
^(H,y). From this follows easily the equality | # ( γ ) | < 2a γ of (a),
together with the fact that width(^(γ)), height(^(γ)), and depth(^(γ))
are bounded above respectively by 2a γ, γ and γ. (In detail: We have
\H\ = 2tt, and a set of cardinality 2a has exactly 2ay subsets of cardinality
γ if 1 < γ < 2a.) Thus

The inequality width(^(γ)) < | ^ ( γ ) | is clear from the definition. Sup-
pose now that {Uf £ < σ} and {î η: η < r} are subsets of 3#{y) such that
the functions ξ -> Φ€ and η -> y^ are an isomoφhism and an anti-isomor-
phism respectively from σ and T into ^ ( γ ) , and for | < σ, η < T set
Iς = (G, ̂ > Λ and /η = (G, ̂ > " . Then the functions £ -> Iζ9 η -» /η are
an isomorphism and an anti-isomorphism respectively from σ and r into

f, γ). If σ > γ + then since /^+1 \I^ 0 for £ < γ+we have |/γ+| > γ+;
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this contradiction shows σ < γ+. The inequality σ < \H\ = 2a being obvi-
ous, we conclude that σ < γ. Finally since Jη\Jη+ι Φ 0 for η < τ and

\Jo\ = Y> w e ^ a v e τ ^ Y
Since the inequality > of (a) follows from (b), to complete the proof

it is enough to show that the upper bounds 2a *γ, γ and γ are assumed as
asserted in (b), (c) and (d) respectively.

We have from 4.4 that there is S ^Sf(H) such that S separates
points of G and

|S| = l o g ( α ) < α < 2 « ;

clearly we have \H/S\ = 2a > ω. It then follows from 1.3, with G and a
replaced by H/S and 2α, respectively, that there ares/(H/S)9 ifr{H/S\
1T*(H/S) c S?(H/S, γ) such that

(i) \s/(H/S)\ = 2"'Y and the elements of si {H/S) are pairwise
incomparable;

(ii) \iΓ(H/S)\ = γ and iT(H/S) is well-ordered; and
(iii) |τr*(ΛΓ/S)| = γ and iT*(H/S) is anti-well-ordered.
For every A ε Sf (H/S) there is A e ^(ff) such that ,4 = ^ί/S. We

define

iT(H) = {iί: ^ e iT(H/S)}9 and

{A: A e τT

We note that for Λ e S?(H/S, γ) we have | i | = γ |*S| = γ; thus
i^(H\ iΓ*(H) c S?(H9 γ). Further, these three families retain the cardi-
nality and set-theoretic properties given in (i), (ii) and (iii), respectively.

Finally we set

, and

It follows from 4.1 that the families sf, ^ a n d ^ * are as required in (b),
(c) and (d) respectively.

The proof is complete.

In 5.4-5.8, we offer some comments and corollaries deriving from 5.3.
5.4. (Here we pursue a remark suggested in conversation by Lewis C.

Robertson.) All of the totally bounded topologies considered and described
in Theorem 5.3 may be chosen to be totally disconnected in the sense that
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no connected subset has more than one point. We now describe how to
alter the proof of 5.3, using 4.6, so as to show this.

Given G and γ as in the statement of 5.3, there is by 4.6 a point-sep-
arating subgroup S' of HomίG, W) such that |S"| = log(α). For s e 5", the
group s[G] is a countable subgroup of T, hence is totally disconnected
(indeed, zero-dimensional in the sense that there is a basis of open-and-
closed sets). The group Π s e 5/^[G] is then also totally disconnected, and
hence the topology &~s, on G, which is characterized by the property that
the embedding i: G -> Πje5>s[G] defined by i(x)s = s(x) is a homeo-
morphism, is totally disconnected (indeed, zero-dimensional).

In the proof of Theorem 5.3, all of the topologies constructed (in si,
IT and IT*) are of the form 9~λ with S c i e ST{H\ H = Hom(G,T).
For present purposes it is enough throughout that argument to replace S
by S" as above; we have S" e ^(Hom(G, W)) c S?(H). Since the topolo-
gies &Ά so defined on G contain the totally disconnected topology 3~s,,
each such topology^- is itself totally disconnected.

Let 3&'(G, γ) denote the set of totally bounded, totally disconnected
topological group topologies ^"on G such that χ(G, &) = γ. The upshot
of the preceding two paragraphs is that (b), (c) and (d) of 5.3 can be
strengthened to (b')> (c') and (d') We state (b') only, leaving (c') and (d')
to the reader.

(b') The width of $#{G,y) is 2Λ γ and there is an anti-chain J / C
3S\G, γ) such that \st\ = 2αy.

5.5. If 2y > 2α (in particular, if γ = 2α), then the family j^of 5.3(b)
may be chosen so that \s/\ = 2α*γ = 2γ and the topologies in si are both
non-comparable and non-homeomorphic. (The following simple argument
applies in a very broad context.) For SΓ^ °U e si write y~ °U if the spaces
(G, $~) and (G, <%) are homeomoφhic, and for^"e j/set

A homeomorphism of the kind here considered is, among other things, a
function from G to G. Since there are only 2α such functions, we have
\E(&~)\ < 2α for each J G si. Since \sf\ = 2γ > 2α there are 2γ distinct
classes of the form E(^); it is then immediate that there is si* c j/such
that \j&*\ = 2Ύ and the elements of s/* are pairwise non-homeomoφhic.

5.6. When γ = 2α we have 2αy = 22" and γ = 2α. Since α = Λ(G) c
^ ( ^ ( G ) ) we have | ^ | < 22α, and Theorem 5.3 (together with 5.4 and 5.5)
yields the following information concerning the set 3$ = &8(G) of all
totally bounded topological group topologies on G and the set di' of
totally disconnected topologies in 36.
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5.7. COROLLARY. Let G be an Abelian group with \G\ = a > co. Then

(a) \a\ = 22";
(b) width(^) = 21" and there is an anti-chain s# c 3&r such that \s/\ =

22<x and the elements ofs/are pairwise non-homeomorphic;

(c) height(^) = 2a and there is well-ordered ?Γc 38' such that \iT\ =

2a; and

(d) depth(^) = 2a and there is anti-well-ordered i^* c 98' such that

5.8. The present paper originated with the authors' desire, given an

infinite Abelian group G, to determine (among all topological group

topologies for G) the number which are totally bounded, the number

which are metrizable, and the number which are both totally bounded and

metrizable. Corollary 5.6(a) responds to the first of these, and 6.2 below is

devoted to (generalizations of) the second. As to the third, let us recall

first a non-trivial result proved independently by Kakutani [17] and

Birkhoff [4], recorded also by Hewitt and Ross [13] (Theorem 8.3): A

topological group G is metrizable if and only if χ(G) < ω—that is, if and

only if G is first countable. In the notation introduced above, then, the

totally bounded metrizable topological group topologies for an infinite

Abelian group G are exactly the elements of ^?(G, co). Theorem 5.2 and

5.3(a) for γ = ω reduce to the statements that 3B(G, ω) = 0 if a > 2ω,

and \3S{G, ω)| = 2a if ω < a < 2ω. We leave to the interested reader the

task of interpreting the statements of 5.3(b), (c), (d) and 5.4 concerning

width, height and depth into this (metrizable) context.

6. How many metrizable topologies? Given an (infinite) Abelian

group G, we determine here the number of metrizable topological group

topologies which G admits. The theorem cited above of Kakutani [17] and

Birkhoff [4], to the effect that (G, F) is metrizable if and only if

χ(G, 3Γ) < co, suggests as a natural generalization the project of counting,

for fixed γ > co, the number of & for which χ(G, 1Γ) = γ. This we achieve

in Theorem 6.2 below. The following notation is helpful.

DEFINITION. Let G be a group and let γ > co. The set ^#(G, γ), also

denoted J?(γ) when confusion is impossible, is the set of topological

group topologies 3Γ for G such that χ(G, &) = γ.

In the notation of §5 above we have

for all groups G and all cardinals γ > co.
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We begin by showing that under appropriate circumstances a topol-
ogy Fin Jί{G, γ) can be chosen with a local basis at e of subgroups.

6.1. LEMMA. Let γ > ω and let G be an Abelian group of the form
G = θ / e / G ί

/ with \I\ = γ and with 2 < \Gt\ < ωfor each i e /. Then there
is a topological group topology SΓ for G such that χ(G, &~) = γ and (G, &~)
has a local base at e whose elements are subgroups of G.

Proof. If each G, is given the discrete topology, the topology &"
induced on G by the product topology of Π^/G, is as required. Indeed
for finite F c / set

H{F) = {x e G: i e F implies x, = e,.}.

It is then clear (and it follows also from [13] (4.5, 4.21(a))) that the family

( ) : finite Fcj}

has the property that {x -h H(F): x e G, H(F) e j / } is a base
(G, ^") is a topological group. From \s/\ = γ we have χ(G, ̂ ") < γ. If
i ' c i with I ja/'l < γ there is

so since IGJ > 2 there is JC e Π J^ r such that x Φ e (indeed, with xt Φ et).
This shows that {e} is not the intersection of fewer than γ many elements
of si. It follows that χ(G, !Γ) > γ, as required.

We turn now to the computation of \Jί{G, γ)|.

6.2. THEOREM. Let a and γ be infinite cardinal numbers and let G be an
Abelian group such that \G\ = a. Then

( a ) ^ ( G , γ ) = 0 if y>2Λ;
(b) K ( G , γ) | = 2*'γ //log(α) < γ < 2"; and
(c) μT(G, γ) | = 2βι/ω < γ < log(α).

Proof. Throughout this proof we write^(γ) = ̂ #(G, γ).
Set Φ = {^"c ^ ( G ) : | ^ | = γ}. For e v e r y ^ G ^ ( γ ) there is

e Φ such t h a t ^ ( y ) is a base at e for (G, y > . The function^>
is one-to-one from^#(γ) into Φ. For γ > 2a we have Φ = 0 and hence
Jΐ(y) = 0 this is (a). For 1 < γ < 2a we have |Φ| = (2α)γ and hence

yaγ
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When log(α) < γ < 2", relation (*) and the equality ^ ( γ ) = Ji(y) Π 9S
and Theorem 5.3(a) combine to yield

2-r = |jf(γ)| = | ^ ( γ ) Π 0| < μ#(γ)| < 2«Λ

which is (b). And when ω < γ < log(α) (indeed, when ω < γ < α), rela-
tion (*) becomes \Jί{y)\ < 2a. Thus to complete the proof it is enough to
verify the inequality > of (c); the following argument is valid for all cases
co < γ < a with a > ω.

To show \Jt(y)\ > 2a it is clearly enough to show there is a subgroup
H of G such that \Jΐ(H9 γ) | > 2α. (Indeed for ^^Jί{H, γ) the topology
^{tfί) for G generated by the requirement that (H,<%) is an open
topological subgroup of (G, ̂ (βl)) satisfies F(βl) eΛίT(γ), and the
function Φ-> ̂ ( ^ ) is one-to-one from <^(i7, γ) into Jί{y).) Thus we
assume without loss of generality, using 1.1, that G has the form G =

®η<aGv w i t h 2 ~ 1̂ 1 ~ ω f o r a 1 1 ^ < α Choosing a family {Afξ< a}
of pairwise disjoint subsets of a such that each \Aξ\ = γ and U^<α^ί^ = α,
and writing G% = 0 €^ G ,̂ we have G = θ><(χG^; further, each group
Gξ has the form Ĝ  = Oi&rGi with 2 < |GJ < ω and |/| = γ, so there is
by Lemma 6.1 for ξ < a an element^ oίJί(G^ γ) such that (Gξ, &£) has
a local base { H^(η): η < γ} at eζ whose elements are subgroups of G .̂

Now let 0 Φ A c. a and set GA = φ G .̂ We will associate with A
an element ̂ (A) oΐJΐ(y) (and we will show that the function A -> &*{A)
is one-to-one).

We note that G= GAX GaχA. To define ^(A) we will define °ll(A)
e Jί(GA, γ), we will denote by ^(Λ) the discrete topology for Ga^A, and
we will define (G, ̂ (A)) to be the product of the two topological groups

We set HA(η) = ΦξeAH^η) for η < γ, and we define <%(A) by the
requirement that [HA(η): η < γ} is a local neighborhood base at e^. (In
detail: A subset U of GA is ^(^4)-open if and only if for each x e U there
is η < γ such that x + HA(η) c {/.) As in the proof of 6.1, that ^(^4) is a
(Hausdorff) topological group topology for GA may be seen directly or by
appeal to [13] (4.5 and 4.2 (a)). Further it is clear, given 0 Φ A c. a and
choosing ξ e A, that (G^, ̂ ) is (naturally homeomorphic with) a topo-
logical subgroup of (GA, <%(A)); this shows

γ = χ(G^, ̂ ) < χ(G,, 4r(^)) < | { ^ ( η ) : η < y}\ = γ,

so that χ(G4, ̂ ( ^ ) ) = γ. It then follows, with ^(A) and 3Γ(A) defined
as indicated above, that χ(G, ̂ {A)) = γ, i . e . , ^ ^ ) G Λf(γ).

It remains to show that if A and 4̂* are different non-empty, proper
subsets of a then ^(A) Φ ̂ (A*). We assume without loss of generality
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that there is ζ e A \A* and we define a netp = (p(η): TJ < γ) in G by
choosingp(η)ξ e Ĝ  so that

(The set which indexes the net/? = (p(η)) is the set D = {TJ: η < γ}; D
is directed by the relation -< defined by the rule η < η' if Hς(η') c
We write

G , X G A , , and

It is clear that for every basic 3^(^-neighborhood HA(η) of eA we have
#(τj') e HA(η) whenever η < η'; further, r(η') = ea^A. This shows that
p(η) -> e = eG in the topology ^"(^4). But {̂ αχ̂ *} is a y(^-neighbor-
hood of ea\A*, and t(η) tf {̂ α\̂ *} since

^ and f e

Thus /(17) -̂> ea^A* in the (discrete) topology i^(A*) on GaXy4*, sop(η) -t*
e = eGin the topology^"(^4*).

The proof is complete.

6.3. Much as in 5.3, the topologies of Theorem 6.2 may be (indeed,
are) chosen to be totally disconnected. In fact for 0 Φ A c a the family
{HA(η): η < γ} is a basis for <%(A) at the identity consisting of open-
and-closed subgroups. Thus (G, ̂ ~(A)) is zero-dimensional and, writing

Jf\G, γ) = {^e ̂ #(G, γ ) : <G, ̂ ") is zero-dimensional}

we have the following adjunct to 6.2.

6.4. THEOREM. Let a and γ Z>e infinite cardinal numbers and let G be an
Abelian group such that \G\ = α. Then \Jί(G, γ) | = \Jt\G, γ)|.

Since the metrizable topological group topologies on G are exactly the
elements of Jί(G, ω) = ̂ #(ω), the case γ = ω of Theorem 6.2 assumes the
following form.

6.3. COROLLARY. Let G be an infinite Abelian group and Jl the set of
metrizable topological group topologies for G. Then \Jί\ =
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