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COMPACTOID AND COMPACT FILTERS

SZYMON DOLECKI, GABRIELE H. GRECO AND ALOJZY LECHICKI

We study compactoid and compact filters which generalize the
concepts of convergent filters and compact sets. In particular, we in-
vestigate their properties in subregular and regular spaces, their localiza-
tions, and their countable variants. Several classical results follow (e.g.,
theorems of Tychonoff, Kuratowski, Choquet). More recent results on
preservation of compactness (e.g., Smithson) and local compactness (e.g.
Lambrinos) are extended and refined.

0. Introduction. Several topological properties of relations may be
expressed in terms of some filters on the image space. Therefore, certain
investigations of relations may be reduced to the study of filters, thus
simplifying the arguments. There arise compactoid, compact, semiconver-
gent, locally compact, cocompact, subregular, regular and other filters.
Compactoid and compact filters generalize both convergent filters and
compact sets. Frequently they may be used where convergence or com-
pactness of sets is too strong an assumption (see, for instance, the classical
Theorem 7.10 of Kuratowski [15]). Compactoid filters find numerous
applications in optimization, generalized differentiation, differential equa-
tions, fixed point theory (see e.g. [20] and [2] where compactoid filters are
hidden under the guise of measure of noncompactness) and elsewhere,
primarily in the context of existence results.

To our knowledge, the concept of compactoid filter appeared for the
first time in [24] by Topsoe, formulated with the aid of nets in topological
spaces.1 Unfamiliar with this, two of us reintroduced compactoid filters in
[9]. The same idea occurred independently to Penot; in [20] he presents an
extensive collection of applications. Going back to the twenties one finds
compact sequences of Urysohn [25]. They constitute a sequential counter-
part of compactoid filters.

Compactoid and compact filters are also of considerable theoretical
interest. They provide a broader comprehension of the notion of compact-
ness and enable one to establish new and subtler results (for instance, on
preservation of compactness).

notion of compactoid filter appears also in M. P. Kac, Characterization of some
classes of pseudotopological linear spaces, in Convergence Structures and Applications to
Analysis, Akademie-Verlag, Berlin, 1980, 115-135.
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We found it natural to carry out our study of compactoid filters in

pseudotopological spaces. This enables us to better see their nature and to

distinguish topological properties from pretopological and pseudotopo-

logical ones. Later we discovered an intimate and essential relationship

between pseudotopologies and compactness [8].

A filter is compactoid if every ultrafilter of it converges. Compactoid

and compact sets are special cases of compactoid and compact filters. We

establish the relationship between compactoid and overcoverable filters. It

is demonstrated that if J^is compactoid (compact) in a pretopology TΓ,

then its neighborhood filter Jf(ϊF) is comopactoid (compact) in τr2.

A filter is subregular if its closure filter is compactoid. The adherence

of every subregular filter is compactoid. In subregular spaces every

compactoid filter is subregular. In regular spaces the closure of every

convergent filter converges. This paper discusses regular spaces primarily

in the context of compactness and compactoidness.

An extension of the Tychonoff theorem (given already in [20] in

topological spaces) says that a filter in a product pseudotopological space

is compactoid if and only if every projection of it is compactoid.

We refine and extend results of Smithson [23] on subcontinuous

relations, and relations mapping compact sets into compact sets. It is

shown that a relation is subcontinuous if and only if it maps every

compactoid filter into a compactoid filter.

A filter J^is pseudocompactoid if the lower limit along J^of every

lower semicontinuous function is greater than - oo. We show that every

countably compactoid filter is pseudocompactoid.

In Dieudonne complete topological spaces, J^is finer than the neigh-

borhood filter of a closed set A if and only if the trace of IF on the

complement of A is compactoid and the ̂ boundary of A is a subset of A.

An alternative result in metrizable spaces, but without the assumption

that A be closed, generalizes Choquet's [5, Thm 3].

1. Filters and Grills. This section has a preliminary character: its

aim is to recall a few facts that we shall use later on. The basic reference is

[4], from which we slightly differ in terminology and presentation.

For a nonvoid family of subsets of X, s/c 2X, we define its conjugate

s/* by

(1.1) ί e # , iff Bc£s/.

s#** = j^and for a collection of families,

(ικ)* = n-*?, (n •*;•)* = ικ*
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The grill9 s/\ of si is the family of all subsets of X intersecting every

element of J ^ .

A family s/ is called based if 0 £ j^and B e j / , B c A implies that

i G j / . A subfamily dί of a based family J^is a base ofs/(s/is generated

by ^ ) if for every A e j^there is B e ^ such that 5 c Λ. If j^is based,

then J ^ # = s/*. A based family is called countably based if it has a

countable base. We write ^<s/(s/is finer then #) if for every C e ^ 7

there is ̂ 4 e j/with A a C. The grill of a family is always based, sέ* c ##

if and only if j^is finer than ̂ .

A nonvoid family ^c 2* is & filter whenever 0 £ J^and

(1.2) Λ n ^ e j s - i f f 4̂ e J^andjB G J ,

A family ^is & filter grill (i.e. the grill of some filter) if and only if

(1.3) AKJB^dS iff ^ E ^ o r ΰ E ^ .

Denote by βX the collection of all ultrafilters on X, by βJ^that of all

ultrafliters finer thanJ^. A filter ^is an ultrafilter if and only if <%* = <%.

Two filters J^and 9meet if for every F e J^and G <Ξ &, F Π G Φ 0 .

Otherwise, they are disjoint. The supremum J^V ^ exists if and only if

and ^meet; J^V ^ = { F n G : f G ^ G G ^ } . The discrete filter

of a nonempty set 1̂ is composed of all sets that include A. We say that J^

meets A if J^and JfL{A) meet. Then their supremum is denoted by J^V 4̂

and called the trace of J^on A.

Let Γ be a relation i n l X 7. We also denote it Γ: X ^ Y. As usual

for A c ΛΓ, TA = {>>: (JC, y) e Γ, x e ^4}. For a filter J^"in X the family

ΓJ*"= {TF: F e J^} is a filter base if and only if T~ιY e J^#, where Γ" 1

denotes the inverse relation. The resulting image ///ter of Γ will also be

denoted ΓJ^. This is a slight abuse but will not cause confusion.

Mappings constitute special relations. Let /: X -> Y be a mapping
andlet j/c 2*. Then

(1.4) /(•*)**/(•*»)•

From this it is easily deduced that the image filter by a mapping of an

ultrafilter is an ultrafilter.

2. Pseudotopologies, pretopologies, topologies. We recall here some

basic facts from convergence theory. Most of them may be found in the

fundamental work [5], a few others are extracted from [7]. Convergence

theory is instrumental for the rest of this paper so we list useful facts, but
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do not try to display the underlying ideas. Several authors adopt a

different terminology than [5] (see the monograph of Gahler [12]).

A pseudotopology θ in a set X is a structure of X which may be defined

through a convergence relation Lim = Lim*9 that maps filters φX (defined

in X) to subsets of X and which satisfies:

(2.1) x e Limjr(x)

(where Λ (̂ t) = { B c X: x e B) is the discrete filter ofx);

(2.2) if J£"c ^ , then Lim J ^ c Lim ^

, v if x £ Lim Ĵ ", then there is ^ D J^such that for every

^ 3) JίfΏ&,χ<£ LimJίf.

Given pseudotopologies σ and θ we say that σ is //«er than θ (0 is

coarser than σ) if Limσ c Lin/. We have, as a result of (2.2) (2.3),

(2.4) LimJF= f| L i m * .

The adherence of a filter J^ is defined by

(2.5) AdhJF= U L i m * ,

and one observes that for ultrafliters convergence and adherence coincide:

if <% e /?X then Lim * = Adh * . Define the closure of a set A of X as

(2.6) QλA = A d h ^ ( ^ ) ,

where J^L{A) is the discrete filter of A, and define the pretopological

adherence of a filter J/on Xby

(2.7) C 1 J * = Π C M .

We always have that, for a filter J^,

(2.8) AdhJFc ClJF.

The c/αϊ«re //ter # o f a filter JΠs the filter generated by {Cl F:

The operation Cl: 2X -> 2 X satisfies the properties Cl 0 = 0 , i c

Cl Λ and C1(Λ U B) = Cl ^ U Cl B; hence for every x e Z the collec-

tion {^4:χeC1^4}isa filter grill and its filter Jf(x) = JfQ(x), called the

neighborhood filter of c (in 0), has the property that for every N e JΓ{x),

x ^ N. Note that the neighborhood filter of x is equal to the intersection

of all the filters convergent to x.

The interior of a set A is equal to

(2.9) I n t ^

where, as usual,c means complement.
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Observe the equivalences:

(i) 2^(4
(2.10) (ϋ) x G Int β,

(iii) x£C\Qc.

Given a subset A of X we say that β is a neighborhood of A if A a Int β.

The s e t ^ ) = { ρ c l : ^ c Int Q) is the neighborhood filter of t̂

(provided A is not empty), and for a family J ^ of subsets of X the

neighborhood of j / i s

(2.11) >r( j / )= U

One notes that

(2.12) QeJT(A), iff

LEMMA 2.1. An H belongs to JΓ{^)% if and only if Cl H is in

Proof. H G ^Γ(^")# whenever Hc <£ JΓ{&\ that is, if and only if

Int Hc <£ &, that is, Cl H G #

COROLLARY 2.2. Let &and tf be filters. 3? meets JT{&) if and only if

tf meets &.

A subset B of X is called open whenever Int B = B. A set is closed

provided it is the complement of an open set. The family of open subsets

of a pseudotopological space satisfies the axioms of the open subsets of a

topological space.

A pseudotopology m is called a pretopology if for every x the neighbor-

hood filter of x converges to x:

(2.13) x G UmvNv(x).

In other words, m is a pretopology if and on ly if x G Lim77 3Famounts to

4̂ pseudotopology π is a pretopology if and only if for every filter 3?,

(2.14) Adh*JF= C l ^ .

A pretopology is called Hausdorff if the neighborhood filters of each two

distinct points are disjoint.

A pretopology T is a topology if for every x and each Q G JΓΎ{X) there

is an open set B such that x ^ B <z Q. Given a pretopology π we define
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its square m1 as the pretopology in which the neighborhood filters are

(2.15) Λς2(x) = ΛC(ΛC(x)).

In this pretopology x e Lim^2 J^if and only if J^is finer than Λ^z(x). We
observe that for every set A,

A pretopology τ is a topology if and only ifτ2 = τ.

Let Z be a subset of a pseudotopological space X. The induced
pseudotopology on Z is defined by associating with every filter J^on Z,
Lim z J^= Lim J*"n Z.

Let X, Y be pseudotopological spaces and let A: X -> Γ be a
mapping. We say that 4̂ is continuous at x if for every filter # l n X such
that JC e Lim J^, Λ(x) e Lim

3. Compactoid and overcoverable filters. Compact filters. Let X be

a pseudotopological space. A filter J^ in X is said to be compactoid
whenever for every ultrafilter °il finer than J^, Lim °ll Φ &.

A nonvoid subset 4̂ of Xis compactoidϊl its discrete filterΛ[(A) = {B:
A cz B] is compactoid. In other words, A is compactoid if and only if for
each ultrafilter °U such that A e Φ, Lim Φ # 0 .

This definition of compactoid sets coincides with that given in [5].
The concept of compactoid set has been rediscovered by some authors in
the framework of topological spaces (see, e.g., "bounded sets" of [16]).
Compactoid filters were previously called "compact" ([9] [20]) but we
reserve the latter term for another notion.

We say that J^is H-compactoid, or compactoid with respect to a set H
provided that for each ultrafilter Φof J^\ H Π Lim % Φ 0.

The above notion is different from that of J^being compactoid on H
(which means that the restriction of ^"to H is compactoid in the pseudo-
topology induced on H. Indeed the latter means that for every °lί finer
than J^V H,H Π iλm^Φ 0).

A filter is compactoid if and only if it is compactoid with respect to
the whole space. A filter compactoid with respect to G is also compactoid
with respect to every H D G. If a filter is /ί-compactoid for a pseudo-
topology σ and θ is coarser than σ, then it is 7/-compactoid for θ. We
observe that the intersection of two compactoid (with respect to H) filters
is compactoid (with respect to H). Of course, if J^is i/-compactoid and
^ D ^ , then ^is //-compactoid. Therefore every locally compactoid filter
(that is, such that it contains a compactoid set) is compactoid.
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PROPOSITION 3.1. We note the equivalence of:
(i) ̂ is compactoid with respect to H.

(ii) For every <Sthat meets &, Adh &Γ) H Φ 0.
(iii) For every &that meets &', Adh ^ Π Adh J^Π H Φ 0.

Proof, (i) => (iii). Let ̂  meet &. Then there is an ultrafilter °ll finer
than ^VJ^". Thus

Lim 4T = Adh Φ c Adh(S? V J*") c Adh ̂  Π Adh ^ ,

and since Φ D J , Lim^Π /ί # 0 ; (iii) follows. Obviously (iii) => (ϋ).
To prove (ii) => (i) note that each ultrafilter finer

COROLLARY 3.2. 4̂ filter 3? is compactoid if and only if, for every filter &
it meets,

Adh J^Π A d h ^ # 0 .

We conclude that J^is compactoid if and only if it is compactoid with
respect to Adh &'. Moreover, if a space has the property that the limit of
every filter is at most a singleton, and if J^is compactoid with respect to a
set i/, then Adh J^c H.

A filter is Jίβcompactoid (compactoid with respect to (a family of sets)
JίT) if it is i/-compactoid for every H e J(T.

THEOREM 3.3. Let π be a pretopology and let&, ^, J^be filters. If 3?is
^compactoid and <& is Jfccompactoid (both in π), then !Fis Jfβcompactoid in
π2

Proof. Let JΓbe a filter that meets IF. Then by the ̂ -compactoidness
of J£\ ^ meets Adh X. In other words, the filter ^ V Adh Jfexists (and, of
course, meets <&). Since ^ is .^compactoid, Adh(^ V Adh Jf) belongs to
^ * (that is, meets 3f). We have

(3.1) 0 Φ Adh"(^V AdtfJf) c A d t t ^ n Cl^Adtf jr),

and since

(3.2) CUAdh*X) c Adh"2 JΓ,

we infer that Adh^Jf is i n ^ # and thus J^is J^compactoid in m1.

We infer that in topological spaces the property of being compactoid
with respect to another filter is transitive.
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We are now in a position to define compact filters. A filter is said to
be compact if it is compactoid with respect to itself. Accordingly, J^is
compact if and only if for every ultrafilter Φ D ^ , Lim°Ue J ^ . Every
compact filter is compactoid.

We observe that in pretopological spaces the neighborhood filter of
every point is compact.

A nonempty subset A of a pseudotopological space is called compact
if its discrete filter is compact, that is, if every ultrafilter <% with A e ^has
a limit point in A. In other words, a subset of a pseudotopological space is
compact if and only if it is compactoid in the induced pseudotopology. A
space X is compact if and only if the filter {X} is compact (or com-
pactoid). A subset of a compact space is compactoid but not necessarily
compact. A compactoid closed subset of a pseudotopological space is
compact.

Our definition of compact filters is thus compatible with the usual
compactness of sets.

As a result of Proposition 3.1, we have

COROLLARY 3.4. A filter ^is compact if and only if for every filter <§
that meets J*\ Adh ^ G ^ # o r , equivalently, Adh ^ Π Adh J^e

Consequently every compactoid closed set is compact. We recall that
in the spaces with unicity of limits a filter which is //-compactoid satisfies
Adh J ^ c H. Therefore, if J*" is a compact filter in such a space then
A d h ^ c Γ\FGJΓ F. In a Hausdorff pretopological space every compact set
is closed.

Notice, as well, that the coarser the pseudotopology the more compact
filters it has. The intersection of two compact filters is compact.

A family is a cover of a set if the union of its elements includes this
set. We say that & c 2X is an overcover of a set A if

(3.3) Acz \J I n t β .

We single out two lemmas which constitute the core of many arguments
concerning compactness. Defined = {Qc: Q e«2).

LEMMA 3.5. A family Q is not an overcover of A if and only if

(3.4) A Π C\£c Φ 0 .

LEMMA 3.6. No finite subfamily ofΆ is a cover of A if and only ifΆc is (a
subbase of) a filter that meets A.
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We say that a filter J^is overcoverable with respect to a set A if for

every overcover of A there is a finite subfamily that covers an element of J^

(in other words, there is a finite subfamily a union of which belongs to

J ^ i s said to be overcoverable with respect to a family J f if it is

overcoverable with respect to every H in 34?.

THEOREM 3.7. If&is A-compactoid, then !Fis overcoverable with respect

to A.

Proof. Let ̂ "be ̂ ί-compactoid and consider a family J such that for

no finite subfamily Qx U Q2 U U Qn <£ &. By Lemma 3.6, <SC is a

subbase of a filter that meets 3F. In view of Proposition 3.1, A Π Adh Qc

Φ 0, and by (2.8) we have (3.4). Consequently i? is not an overcover of A.

THEOREM 3.8. //, in a pretopological space, 3P is overcoverable with

respect to A, then !Fis A-compactoid.

Proof. Let a filter 9 meet S?. By Lemma 3.6, &c has no finite

subfamily that covers an element of &. Since iF is overcoverable with

respect to A, <SC is not an overcover of A, hence, in view of Lemma 3.5, A

intersects the closure of 9 which, in pretopological spaces, is equal to the

adherence of SP.

Overcovers were called interior covers in [3, p. 285], and a special case

(for the filter { X), X being a pretopological space) of Theorems 3.7 and

3.8 was proved [3, p. 783].

We observe that in topological spaces, J^is overcoverable with respect

to A if and only if it is coverable with respect to A (for every open cover

of A there is a finite subcover of an element of

COROLLARY 3.9. A filter ^in a pretopological space is A-compactoid if

and only if IF is overcoverable with respect toAΠ Adh J^.

COROLLARY 3.10. A subset A of a pretopological space is compactoid if

and only if for every overcover of the whole space (or of Cl A) there is a finite

subfamily that cover A.

COROLLARY 3.11. A subset A of a pretopological space is compact if and

only if its every overcover has a finite subfamily that covers A.
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We call a set relatively compact if its closure is compact. It is
immediate that

PROPOSITION 3.12. Each relatively compact set is compactoid.

THEOREM 3.13. Let π be a pretopology. If a filter !Fis A-compactoid in
π, thenJfπ(tF) is A-compactoidin π2.

Proof. Let^meetΛς(JO. By Corollary 2.2, for every H e J>T, CX^H
meets &. Therefore the adherence in π of the filter generated by [CX^H:
H tΞJίT} fulfils

0 Φ A n Π c\m(c\mH) = A n

Recall now that Adh"2 JT= Π^e^Cl^i ̂ .

THEOREM 3.14. Let&be a filter in a pretopological space (X, π). If&is
Jfm{A)-compactoidin π, then &is A-compactoid in π2.

Proof. Let ^ b e an ultrafilter finer than Ĵ ". Since J^is compactoid with
respect to Λl(A)9 Linf <il e Jfm{A)K By virtue of Lemma 2.1, Clff Lim77 %
intersects A. Since ^ i s an ultrafilter in a pretopological space, Linf7 Φ =

l π ί/and thus

0 ΦAnCl^Lim^^czA Π f| Cl̂ t/,

"2that is, Lim"2 °Uintersects^.

COROLLARY 3.15. Let m be a pretopology. If IF is compact in π then
is compact in π2. IfjV^^) is compact in π, then 3^is compact in

7Γ 2 .

Therefore, in topological spaces (which are equal to their squares) &
is A -compactoid if and only if Jί{ &) is A -compactoid, and J^is compact
if and only if Λ^(^") is compact. A practical consequence of this fact, in
view of Corollary 2.2, is

COROLLARY 3.16. In topological spaces a filter !F is compactoid with
respect to a set A if and only if for every filter *& which has a base composed
of closed sets and meets &, Adh 9 Π A Φ 0 .

Filters with bases of closed sets will be encountered in the next
section.
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THEOREM 3.17. Let X be a pretopological space in which for every
ultra)liter <%, Lim<% is closed (in particular if X is a Hausdorff space). If
JΓ2(x) is compact for each x e Xthen the space is topological.2

Proof. It is enough to show that Jί2(x) D JΓ(X). Let <% be an
ultrafilter finer than <Λr2(x). Thus, by our assumption, Lim^ e jVt2(x)^
and, by Lemma 2.1, Cl L i m ^ = L i m ^ ^ Jί(xγ, and this means x e
Cl L i m ^ = Lim^or, equivalently, °U D ^(X). Since every filter is equal
to the intersection of its ultrafilters, Jf2(x) D JΓ(X).

We say that a filter 3Fsemiconverges to a set 4̂ if J*o Jf(A) (semicon-
verges to a family si if ^ " D ^ F ( J / ) ) . Previously we called a filter ^finer

adherent t o ^ " [9].

PROPOSITION 3.18. J/J*ϊ.s compactoid it semiconverges to Adh J*\

Proof. Q G Jί(A) if and only if 4̂ c Int β, so {β} is an overcover of
A. By Proposition 3.1, JΠs Adh J^compactoid and, by Theorem 3.7, JΠs
overcoverable with respect to Adh &. By setting A = Adh J^, we infer
that β e ^ .

4. Subregular and regular filters. A filter JΠn a pseudotopological
space is called subregular if its closure filter J^(i.e. the filter generated by
{Cl F: F <Ξ &}) is compactoid.

Every subregular filter is compactoid.
A filter ^"is said to be regular if J^= J^. In topological spaces this

definition is due to Penot [20], but the concept was known before in the
context of open filters (e.g. [21]).

PROPOSITION 4.1. Every regular compactoid filter is subregular and
compact.

Let X be a compact nonregular space (e.g. the natural numbers with
cofinite sets being an open base). Neighborhood filters in X are subregular
but not necessarily regular.

One observes that every filter finer than a subregular filter is subregu-
lar; a finite intersection of filters is subregular if and only if all the filters
are subregular. A finite intersection of regular filters is regular.

2THEOREM. If, for every x e X, JV*(X) is compact and, for every ultrafilter <%, Lim °U is
closed, then X is pretopological.
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Let { J ^ } i e / be a collection of regular filters which are coarser than a

given filter ^ . Then the supremum V / e / ^ is regular.

THEOREM 4.2. Let&be a subregular filter. Then CX^is compactoid and

nonempty \ hence Adh ̂ is compactoid.

Proof. Let ^meet Cl J**, where J^is subregular. By (2.7), ^ meets # ,

thus Adh &Φ 0 because SF is compactoid. Consequently, Cl JΠs com-

pactoid.

A result of [20, Prop. 14] follows from

COROLLARY 4.3. The pretopological adherence of every regular com-

pactoid filter is compactoid. The adherence of a regular compactoid filter in a

topological space is compact and closed.

The pretopological adherence and adherence in the above statements

are, of course, nonempty.

A pseudotopological space is called subregular if every convergent

filter of it is subregular. Therefore a pretopological space is subregular if

and only if every neighborhood filter of it is subregular. Observe that

every compact space is subregular. A subspace of a subregular space need

not be subregular.

THEOREM 4.4. The following properties are equivalent:

(i) A space is subregular.

(ii) Every convergent ultrafilter is subregular.

(iii) Every compactoid filter is subregular.

Proof, (i) => (ii) is obvious, (ii) => (iii). Let ̂ "be a compactoid filter

and °U an ultrafilter finer than β. By Corollary 2.2, Jίiβl) meets SF. An

ultrafilter ^finer than Jfiβί) V ̂ "is convergent because #"is compactoid.

On the other hand, ^ meets JΓ(βl) and, by Corollary 2.2, ^ meets ^ ,

thus f 3 f". By (ii), o^is compactoid, hence lλm<%Φ 0 , which proves

the subregularity of &. (iii) => (i). Every convergent filter is compactoid.

As a consequence of Theorems 4.2 and 4.4, we have

COROLLARY 4.5. The pretopological adherence of every compactoid filter

in a subregular space is compactoid.

COROLLARY 4.6. The closure of each compactoid subset of a subregular

space is compactoid.
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We complement now Proposition 3.12 by

COROLLARY 4.7. Each compactoid subset of a subregular topological
space is relatively compact.

Proof. Let A be a compactoid set; then J^L{A) is compactoid and, by
subregularity, Cl A is (closed and) compactoid, hence compact.

We conclude that in subregular topological spaces, compactoid and
relatively compact sets coincide.

In subregular spaces we have a reinforcement of Proposition 3.18 that
generalizes [20, Thm 15]

PROPOSITION 4.8. A compactoid filter in a subregular pretopological
space semiconverges to a compactoid set. If a filter in a topological space
semiconverges to a compactoid set, then it is compactoid.

There are examples that the second part of the above proposition
need not be true in pretopological spaces.

A pseudotopological space is called regular if for every filter J*",
Lim J^= Lim J*\ Accordingly a pretopological space is regular if and
only if its every neighborhood filter is regular. A subspace of a regular
space is regular.

Our definition does not require that the space be Hausdorff (or 7^).
It is immediate that

PROPOSITION 4.9. Every regular space is subregular.

An example of a subregular space which is neither regular nor
compact is given by the topological infinite sum of copies of the space of
natural numbers with the cofinite topology (open sets are the comple-
ments of finite sets).

THEOREM 4.10. For a pretopological space X the following are equiva-
lent:

(i) X is regular.
(ii) For every A c X and x £ Cl A, JV(A) andJf(x) are disjoint.

(iii) Cl JT(A) = Cl A for each A c X.
(iv) Cl JΓ{s/) = Cl s/for eachs/o 2X.
(v) For each A a X and each filter &'semiconvergent to A, Adh J^=

ClJ^c C\A.
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Proof, (i) => (ϋ) Let x ί C M . By (2.10), Ac e J\Γ{x) and, in view of
regularity, there is M e Jf(x) such that Cl M c Ac. In other words,
A c Int Mc or, equivalently, Mc e Jf{A). (ii) => (iii). We always have
Cl A c Cl JT{A). Assume (ii) and let x <£ Cl Λ; then ^T(χ) and Λ^Λ)
are disjoint (there is Q e >f(4) such that β c e Jf{x) and, by (2.10),
x € Clβ), thus x £ C\JΓ(A\ (iii) => (iv) In view of (2.11) and (2.7),
Cl JT(J*) = Π ^ ^ C l JT{A\ which, by (iii), is equal to Cl j * . (iv) => (v)
If J ^ D ̂ Γ(yί) then Cl J^c Cl ^T(^) = C\{A) by (iv). (v) => (iii) We have
JT(A) ^ JT(A)\ thus Cl ^ = Cl ^ ( ^ ) c Cl JT(A) c Cl ^ . (iii) => (ii)
Let j c ί Q i l , thus, by (iii), x ί Cl JΓ{A\ that is, ^Γ(x) and JΓ{A) are
disjoint, (ii) => (i) Let Q e ^Γ(x), i.e., Λ: € Clβ c . By (ii) there ί s M e
^Γ(x) such that Mc e ^Γ(β c), hence β c c Int Λfc or, equivalently, Cl M
c Q, proving that Q JP

The implication (i) => (v) entails [9, Thm 5].
As in (v) of Theorem 4.10, in the case of Hausdorff topological

spaces, Adh J^c A whenever J^is semiconvergent to A and A is a compact
set ([20; Proposition 13, a]). However, unlike (v), this need not be true for
pretopological spaces.

EXAMPLE 4.11. Let X= R, A = {-1/n: n e N) U {0} and let
{<%n}™=0 be a collection of free ultrafilters such that (w + 1, Λ + 2) e ΦΛ

for all n. Take a free ultrafilter * w D ( Π Λ > 0 ^ J V ^ ( { ( Π + 1, +oo):
Λ > 0}) and define

jrr(o)cΛ<%0 ifjc = o,

where T denotes the standard topology of R. Observe that π is a Hausdorff
pretopology, A is compact and Λl(A) is semiconvergent to A but 4̂C Π

0.

THEOREM 4.12. //* α filter 3?in a regular pretopological space is A-com-

pactoid, then Adh ίFis A-compactoid.

Proof. We show first that the assumption implies that JΠs 4̂-com-
pactoid. Let ^be a filter that meets # . By Corollary 2.2, */Γ(SP) meets &
and thus AdhJf(&) nA Φ 0 . By Theorem 4.10, A d h ^ n Λ Φ 0 . If
now a filter ^ meets Adh ^", then it meets J^, hence, by the first part of
the proof, Adh <g Cλ A Φ 0 .
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This Theorem generalizes [9, Thm 1] [20, Prop. 14].

COROLLARY 4.13. The adherence of a compactoid filter in a regular
pretopological space is compact. In particular, a compactoid set in a regular
pretopological space is relatively compact?

COROLLARY 4.14. A filter in a regular topological space is Jficompactoid
if and only if it semiconυerges to an Jficompactoid set.

A pretopological space is called completely Hausdorff if for all ele-
ments x Φ y, the filters JV*(X) and ^(y) are disjoint. Clearly every
Hausdorff regular pretopological space is completely Hausdorff (and
subregular). The converse is also valid.

THEOREM 4.15. Every completely Hausdorff subregular pretopological
space is regular.

Proof. Let % D ^(X). Since Jf{x) is compactoid, Lim WΦ 0. If for
some j> Φ x, y were in Lim ̂ , then °Uwould be finer than Jf{y), which is
impossible, because the space is completely Hausdorff. Thus Jf{x) c <%.
Taking the intersection of all ultrafilters of J^(x), we getJ^(x) c J^(x),
proving regularity.

THEOREM 4.16. Every subregular Hausdorff topological space is regular.

Proof. Since the space is topological, AdhJ^(x) = Adh ^(x), which
is equal to {x} because the space is Hausdorff. By subregularity J^(x) is
compactoid, and in view of Proposition 3.18 ^(x) D ̂ Γ(Adh Λ*(x)) =

We observe that

PROPOSITION 4.17. A product of pseudotopological spaces is subregular
if and only if every space is subregular.

This is a simple consequence of Theorem 5.1 and Corollary 5.8 of the
next section.

3 It follows from Corollary 4.13 that a Hausdorff regular compact pretopology is a
topology. On the other hand, a Hausdorff regular compact pseudotopology is a pre-
topology thus a topology. The above is also a result of Theorem 1 of G. D. Richardson
and D. C. Kent, Regular compactifications on convergence spaces, Proc. Amer. Math. Soc,
31 (1972), 571-573.
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Finally, the set of regular topologies with the usual order is inductive,
but the set of subregular topologies is not.

EXAMPLE 4.18. Let J^be the cocountable filter in R (i.e. the filter
composed of the complements of countable sets). Define the following
sequence of topologies {τn} by giving their neighborhood filters

j ix) foτx<n,

forx^n.

These topologies are subregular because they are compact. They form a
chain and their supremum is the topology with the neighborhood filters

which is not subregular: Jf{x) = {R} and R is not compact.

5. Tychonoff theorem and subcontinuous relations. Let { Xι9 ^ } z e /

be a collection of pseudotopological spaces. The product pseudotopology
θ = ΠiGTθι is the coarsest pseudotopology on X = Π i€Ξ/X; for which all
projection mappings pi are continuous. Accordingly, for each filter J^in X

(5.1) x e Umθ^ iff p.(x) e Umθi pt{^) for each / e J.

THEOREM 5.1. Let ^ be a filter in the product space X and let
H = Π i e / Hr If for every i e /, p^^) is H^compactoid, then &is H-com-
pactoid.

Proof. Let ̂ b e an ultrafilter of &. Then for each i G /, pX^) is an
ultrafilter finer than/?,.( J^), hence there is xt in Lim '̂ p^W) Π Hi and, by
(5.1), x = ΠieIXi belonts to Lim^ <% Π H.

Accordingly, a filter is compactoid, if its every projection is com-
pactoid. However, this is not in general true about compact filters.

THEOREM 5.2. Let J^ be a compact filter in XJor i e /. Then ΓίiGl^is
compact.

Proof. Let F G Π / 6 Λ thus F includes a set of the form ΠιeIFi9

where JF) e JΓ. Since / ^ ( n / e / ^ ) = ̂  is compactoid with respect to
Pj(F) D i^ for every j EL /, Π / e / ^ is compactoid with respect to F. As i 7

was an arbitrary element of the product filter, the latter is compact.

COROLLARY 5.3. {Tychonoff theorem) The product of topological spaces
is compact if every of those spaces is compact.
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Let X and Y be pseudotopological spaces. A relation Γ: X =£ Y is
called subcontinuous at x if for every ultrafilter ^such that x e Lim ̂ , the
filter Γ^is compactoid. Γ is subcontinuous if it is subcontinuous at every x
of the closure of Γ " 1 ^ If X is a pretopological space, then Γ: X z | y is
subcontinuous at x whenever TJ^(x) is compactoid.

Since every convergent filter is compactoid, every continuous map-
ping is a subcontinuous relation. If Y is a compact space, then for every X
and every Γ: X =t 7, Γ is subcontinuous. A finite union and an arbitrary
product of subcontinuous (at x) relations are subcontinuous (at x). A
subrelation of a subcontinuous relation is subcontinuous.

The original definitions of subcontinuous relations [14] [23] were
expressed in terms of nets in topological spaces. We shall evoke them by

PROPOSITION 5.4. Let X and Y be topological spaces. A relation Γ:

X z% Y is subcontinuous at x if and only if for every net { xa}a<ΞA convergent

to x and every net {ya}aeA such that ya e Tx there is a convergent subnet of

Proof. Suppose that Γ is subcontinuous at x. Then the section filter of
{ya}a€ΞA is finer than T{xa}a€ΞA (the image of the section filter of
{xa}aGA) and thus is finer than YJf(x). Thus {ya}aGA has nonvoid
adherence (admits a cluster point) so it has a convergent subnet.

Vice versa, let ^meet Γ^Γ(Λ ). Then for every G e ^and Q e Jf(x)
there is yG Q e G Π TQ and thus there is xG Q e Γ~Vc?,ρ ^ Q- The net
{XG,Q}(G,Q)<=&XJT(X) (usually ordered) converges to x, so that there is a
convergent subnet such that its section filter is finer than ^. Conse-
quently, Adh ^ Φ 0.

THEOREM 5.5. A relation Γ: X z> Y is subcontinuous if and only if for
every compactoid filter ̂ (that meets Γ" 1^), T^is a compactoid filter.

Proof. The sufficiency is obvious. Let JΠ)e compactoid and let ^be a
filter that meets ΓJ^. Equivalently, Γ" 1 ^ meets J^and thus for each
ultrafilter ^ finer than Γ ^ V ^ , Lim ̂  is nonempty. In particular, ^
meets Γ" 1 ^, thus Γ ^ meets ^ and, moreover, Γ^V ^ D Γ^. We con-
clude that

0 Φ Adh(Γ<^ V 9) c Adh^,

which proves that Γ^ϊs a compactoid filter.

It is rather exciting that Theorem 4.4 is a corollary of Theorem 5.5;
this fact will be discussed in a future paper.
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COROLLARY 5.6. The image of every compactoid set by a subcontinuous

relation is compactoid.

On recalling Proposition 3.12 and Corollary 4.7, we obtain a rein-

forcement of [23, Thm. 2.1].

COROLLARY 5.7. Let Γ be a subcontinuous relation from a pseudotopo-

logical space to a subregular topological space. If K is relatively compact,

then TK is relatively compact.

For projections one gets stronger results than those for general

subcontinuous relations, in particular, generalizing the converse of the

Tychonoff theorem.

THEOREM 5.8. Let H be a subset of a product pseudotopological space

TΊiGlXt and & a filter therein. If ^is H-compactoid, then for each i e /,

ispi(H)'compactoid.

Proof. Let ^meet p^). Let Wbe an ultrafilter of p~\&) V &. By
assumption, H Π Lim <% Φ 0, thus/?z(Lim <%) Π p^H) Φ 0. On the other
hand^^Lim ^ ) c Lim1 />,.(#) c Adft 9.

COROLLARY 5.9. Every projection of a compact filter is compact.

A relation is compact-to-compact if it maps every compact set into a

compact set. Similarly a relation is compact-to-closed if the image of every

compact set is closed.

Let A be a nonempty subset of a pseudological space. The cocompact

filter oίA, >| (A) is the filter for which

{KC:KΓ\A= 0 , ϋ:compact}

constitutes a base. A filter ^cocompactly semiconverges to A provided that

J£"D )\(A). Consequently,

&cocompactly semiconverges to A if and only if for each compact set K

in J^*, KCλAΦ 0.

PROPOSITION 5.10.

(i) If in a pretopological space Adh J ^ c A9 then ̂ cocompactly semi-

converges to A.

(ii) If a space is hereditary locally compact {see §8) and &is cocompactly

semiconvergent to a closed set A, then Adh ^ " c A.
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Proof, (i) Let K be a compact set disjoint from A and let x ^ K.

Hence Jf(x) and J^are disjoint: there is Qx such that x e Int β^ and

gc e ^ r y ^ c o u e c t i o n { 2 x } ^ e ^ of so chosen sets is an overcover of K

thus there is a finite cover Qv.. .,Qn of Kby elements of that collection.

The element Q{ Π n βj; of J^is thus disjoint from K and J ^ D ^{A).

(ii) Let x £ A. Since A is closed there is a compact neighborhood K of

JC disjoint from A. By assumption, JFis disjoint from K, hence x <£ Adh fF.

The assumption of local compactness in (ii) is essential. Indeed, the

above considerations relate to the topologizability problems for upper

limits (see e.g. [1] [5]) and cocompact semiconvergence amounts to the

convergence in the compact-open topology.

Let Γ: Y =£ X be a relation in pretopological spaces. Call Γ cocom-

pactly stable at y if TJf(y) D X(Γy), and cocompactly stable if the above

holds for each y (equivalently, for each y e Cl Γ " 1 ^ ) .

Using a duality argument we establish

PROPOSITION 5.11. A relation Γ is cocompactly stable at y if and only if

for every compact subset K of X,y e Cl Γ~ ιK implies that J G Γ " ι K .

COROLLARY 5.12. A relation is compact-to-closed if and only if its

inverse is cocompactly stable.

COROLLARY 5.13. Let Γ be a a relation from a pretopological space to a

subregular topological space. If Γ is subcontinuous and Γ " 1 is cocompactly

stable, then Γ is compact-to-compact.

A relation Γ: Y z% X (from a pretopological space to another) is

graph-closed at y if Adh YjV(y) c Ty. Γ is (everywhere) graph-closed if

and only if Γ is a closed subset of Y X X. A relation is graph-closed if and

only if its inverse is graph-closed. By Proposition 5.10 every graph-closed

(at y) relation is cocompactly stable (at y) and the converse holds if X

locally compact and the relation has closed values. These remarks and

Corollary 5.13 entail [23, Prop. 3.2].

A relation Γ: X =| Y is pretopological spaces is called upper semicon-

tinuous at x if TJV(X) semiconverges to Tx. This notion coincides with the

classical concepts of upper semicontinuity in topological spaces ([5] [15]).

In view of Proposition 4.8 every subcontinuous graph-closed relation

is upper semicontinuous [23, Thm. 3.1]. Theorem 4.10 ((i) <=» (v)) entails

that every closed-valued upper semicontinuous relation into a space Y is

graph-closed if and only if Y is regular (extension of a classical result of
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Kuratowski). In §7 we explore subtler interdependences between upper

semicontinuity and subcontinuity.

6. Countably compactoid and pseudocompactoid filters. A filter J^in

a pseudotopological space X is called countably compactoid with respect to

a set H {countably H-compactoid) if for every countably based filter ^ t h a t

meets ^", H Π A d h 9 Φ 0. It is called countably compactoid if it is

countably Jf-compactoid, and countably Jftcompactoid for a family J ^ c 2X

if it is countably /f-compactoid for every H &Jf. Finally, J^is called

countably compact if it is countably J^compactoid.

Every ^compactoid filter is countably J^compactoid.

A filter is called countably oυercoυerable with respect to Jtfiί for every

H G: Jfand every countable overcoveri? of H there is a finite subfamily of

i? that covers an element of !F.

Using Lemmas 3.5 and 3.6, as we have done in connection with

compactoid filters, we get

THEOREM 6.1. // & is countably A-compactoid, then IF is countably

oυercoυerable with respect to A.

In pretopological spaces the conυerse is true.

Several facts about countably compactoid filters are analogous to

those concerning compactoid filters. It seems not very interesting to write

them down systematically. Let us mention that a subset of a pseudotopo-

logical space is countably compactoid (compact) if and only if its discrete

filter is countably compactoid (compact). Some results analogous to those

of §4 may be obtained by introducing the notion of countably subregular

filters which are those filters the closure filters of which are countably

compactoid.

THEOREM 6.2. The pretopological adherence of eυery countably subregu-

lar filter is countably compactoid.

THEOREM 6.3. Eυery regular countably compactoid filter is countably

subregular and countably compact.

What is more intriguing about countably compactoid filters is where

the analogy with compactoid filters fails.

Already for two countably compact topological spaces X, Y the

product X X Y need not be countably compact ([11, 3.10.19]).

We shall see that there is no analogue of Proposition 3.1.
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A filter J**is called countably quasi A-compactoid if for every countably
based filter Jt finer than .F, A Π Adh JtΦ 0.

PROPOSITION 6.4. A filter 3^ is countably quasi A-compactoid if and only
if for every elementary filter £ finer than ̂ 9A Π Adh £ Φ 0.

Countably compactoid filters are countably quasi compactoid. For
countably based filters the two notions coincide. In particular, they
coincide for discrete filters, hence for sets and spaces. One notes that a
countably based filter J^is countably compactoid (or, equivalently, coun-
tably quasi compactoid) if and only if it is countably Adh J^-compactoid.

In general, countable and countable quasi compactoidness differ.

EXAMPLE 6.5. Let (R, ι) be the space of reals with the discrete
topology. Consider the cocountable filter <$ in R, that is, the filter com-
posed of those sets the complements of which are countable, ^is counta-
bly quasi compactoid, since no elementary filter is finer than cβ. ^is not
countably compactoid, because the countably based filter generated by
{(— i»)\{0}}πeN meets ^but its adherence is empty.

An extended-real-valued function / on a pseudotopological space is
lower semicontinuous at x if for every filter ^"with x e Lim &

(6.1) lW=sup inf f(x')>f(x).

The epitopology of f (epi / -topology), τ(epi /) is defined as the
coarsest topology on X for which / is lower semicontinuous (everywhere).
The open sets of the epitopology of/are precisely

{*:/(*) > r } , r e R ,

the empty set and the whole space.
Notice that for a filter^*, (6.1) holds if and only if ̂ "converges to x in

the epitopology of /. Consequently, a function / is lower semicontinuous
for a pseudotopology θ if and only if τ(epi /) c θ. Therefore, the coarsest
pseudotopology for which all lower ^-semicontinuous functions are lower
semicontinuous functions is a topology (coarser than the associated topol-
ogy of 0).

A filter 9 is said pseudocompactoid if and only if for each lower
semicontinuous function/: X-*RU{-t-oo},

(6.2) ϋ j r / = S UP %m^ /(* ') > ~°°

LEMMA 6.6. Letf: I - ^ R U { + oo}. If{x:f(x) < inf(/)} Φ 0,then
each filter is countably compactoid for τ(epi / ) . // {x: f(x) < inf(/)} = 0,
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then a filter & is countably compactoid for τ(epi/), if and only if li^f >

inf(/)

We infer that

THEOREM 6.7. Every countably compactoid filter is pseudocompactoid.

A space X is pseudocompact if the filter {X} is pseudocompactoid,
that is, whenever for every lower semicontinuous function /: I - > R U
{oo}, inΐx(ΞXf(x) > — oo. In the case of topological pseudocompact spaces
this infimum is attained [11, p. 263]. This is not the case of pseudocom-
pactoid filters where neither supremum nor infimum in (6.2) need be
attained.

However,

PROPOSITION 6.8. If & is a countably compactoid filter and f is a lower
semicontinuous function, then there is JC0 e Adh Φsuch that f(x0) = li^/

Proof. Let { rn }π e N be a sequence strictly decreasing to li^/. The filter
generated by {{x:f(x) < rn}}n^N meets 3?and, Adh{{x:f(x) < rn}}nξΞN

meets Adh^. Thus f\ilw {x: f(x)<rn) Γ)Adh&Φ 0, hence {x:
f(x) < li^/} Π Adh^# 0.

On the other hand,

THEOREM 6.9. Let IF be a countably compact filter and f a lower
semicontinuous function. If there is Fo Ξ ^such that infFo/ = lijr/, then f
attains its infimum on Fo.

Proof. By assumption, FQ c [x: f(χ) > Xi^f). If the infimum were
not attained, Fo would be a subset oί {x: f(x) > li^f}. Let {rn}n<=N

decrease to li^/• Then {{x: f(x) > r J } n e N is an overcover of Fo and, by
countable compactness, there is n e N such that {x: f(x) > rn) belongs
to 3F. This is a contradiction.

7. Totally bounded and semiconvergent filters. Let (X, U) be a
uniform space. A filter ^"in X is said to be totally bounded if for every
U <E U there exist a finite set M c X and F <Ξ J^such that F c U(M). If
we consider the topology associated with the uniformity, then

PROPOSITION 7.1. Every compactoid filter is totally bounded. In com-
plete uniform spaces every totally bounded filter is compactoid.
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Proof. The first statement is obvious. Suppose that J^"is a totally
bounded filter in a complete uniform space. Let °U be an ultrafilter finer
than J£". By total boundedness for each U G U there is a finite set M such
that

U U(m) = U(M)

thus for some m G M, f/(ra) belongs to the ultrafilter 45f. Therefore ^
contains arbitrary small sets and converges in view of completeness. This
proves that J*"is a compactoid filter.

THEOREM 7.2. In Dieudonne complete (topological) space every counta-
bly based countably compactoid filter is compactoid.

Proof. Let U be a complete uniformity of the space and let J^be a
countably compactoid filter admitting a base [Fn}n€ΞN. By Proposition
7.1, it is enough to show that J^is totally bounded. Suppose not: there is
ί / e U such that for every finite set M and each F G J*", F\U(M) Φ 0.
Let jq be any element of Fv Suppose we have selected a set {xv... 9xn}
such that X, G Fι and (xf, JCΛ) € ϊ/for / ̂  A:. Put

Obviously, (JCΛ + 1, JCJ £ Uΐor i < n. The sequence {x«}«eN has no cluster
point, which, in view of Proposition 6.4, is a contradiction.

THEOREM 7.3. If a countably based filter & in a Dieudonne complete
space semiconverges to a set from which it is disjoint, then &'is compactoid.

Proof. Let J^be a countably based filter semiconvergent to A. In view
of §6 and Theorem 7.2, it is enough to show that J^is countably quasi
compactoid. Suppose that, on the contrary, there is a sequence {^π}πeN

the elementary filter of which is finer than J^but with empty adherence.
Consequently, {xn}n(Ξn is a closed set disjoint from A but intersecting
every element of J*\ Consequently, the open set ({xn}rϊ€Ξ-N)c is not inJ^,
contradicting the semiconvergence of Jno A.

We complement Theorem 4.10 by

THEOREM 7.4. Let X be a first countable space. If a countably based
filter J£* in X semiconverges to a set A from which it is disjoint, then



92 SZYMON DOLECKI, GABRIELE H. GRECO AND ALOJZY LECHICKI

Proof. Let x e Adh#\A. Let { β π } π e N be a base of Jί(x) and

{ Fn)n^N a base of J^of sets disjoint from A. For every « e N there exists

xn in <2M Π Fn. The set { JC15 JC2,. ..} U {x} is closed, disjoint from A and

meeting^". Therefore J^does not semiconverge to A.

Let y4 be a subset of a pseudotopological space X and J^a filter in X.

The ^-boundary of 4̂ is the adherence of the filter ^"V >4C if it exists and

the empty set otherwise. It is denoted by Fτ^A.

A subset K of a set A is called the ̂ -kernel of 4̂ if J^V ^4C semi-

converges to K.

THEOREM 7.5.

(i) /« a regular topological space Yx^A is a subset of every closed

^-kernel ofA.

(ϋ) In a first countable (topological) space Fr^A is a subset of every

^•kernel of A provided that &"is countably based.

Proof. If J^is disjoint from Ac, then Fr^A is empty and the proof

completed. If J^meets Ac thenJ^V Ac semiconverges to every J^kernel K

of A. If the space is regular, then by Theorem 4.10(v) we get (i). Part (ϋ)

follows from Theorem 7.4 as

Fτ^A = Adh(jFv Ac) c K.

COROLLARY 7.6. Let 3?be a countably based filter in X, semiconvergent

to a set A. Assume that X is metrizable. Then the ̂ -boundary of A is the

minimal (and compact) ^-kernel of A. If X is Dieudonne complete and A is

closed, then Fτ^A is the minimal closed ̂ kernel of A.

Proof. By Theorem 7.3, !FV Ac is compactoid and by Proposition 4.8,

!FV Ac semiconverges to Ft^A. By Theorem 7.5 the ̂ boundary of A is a

subset of A, hence an J^kernel. By the same theorem it is the minimal

J^kernel of A. Under any of the assumptions, X is regular thus by

Corollary 4.3 the kernel is compact.

COROLLARY 7.7. Let &be a countably based filter in X and A c X.

Assume that either X is metrizable or X is Dieudonne complete and A is

closed.

3?semiconverges to A if and only if IF \/ Ac is compactoid and FT^ A c A.

Corollary 7.6 applied to relations yields [10, Thm. 4] being a generali-

zation of Choquet's [5, Thm. 3].
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COROLLARY 7.8. Let Γ: X^XY. Let Y be metrizable (Y Dieudonne

complete and Tx closed). Let X be first countable at x. Then the active

boundary of Γ at x (that is, YJf(x)-boundary of Tx) is the least TJ/t(x)-

kernel, (the least closed TJf(x)'kernel) ofTx.

As a consequence of Proposition 7.1, Corollary 4.13 and Proposition

3.18, we quote

PROPOSITION 7.9. ([19, Thm. 2.2]) Let [At}t^τbe a downward directed

totally bounded family of nonempty closed subsets of a complete uniform

space. Then A = ΠtGTAt is nonempty and compact and {At}t&τ converges

to A in the uniform space of nonempty closed subsets.

The Kuratowski measure of noncompactness a(A) of a subset A of a

metric space is the infimum of those r e R + for which there is a finite

partition of A into subsets of diameter less than r [15]. It is clear that a

filter J^"in a metric space is totally bounded if and only if infF e J Γ OL(F) = 0.

As a corollary of Proposition 7.9 one gets the classical

THEOREM 7.10 [15]. Let { An } π e N be a sequence of nonempty decreasing

closed subsets of a complete metric space. If limn_^O0a(An) = 0, then

Π ^ = 1 An is nonempty and compact.

8. Localization of compactness properties. With every subset A of a

set X we associate a property ?$(A) of subsets of X in other words 9β(A) is a

family of subsets of X(B has the property ^3(^4) if and only if B e 9$(A)).

We assume that for every A <z X, ^(A) (z 2A and A c B implies

We say that a filter Λ n Z i s locally φ if J^Π φ(X) Φ 0 . We say that

hereditary locally % if for every F e &9 J^Π ^(F) Φ 0. The latter

also means that for every F e J^there is F ' c F such that i 7 ' e J^Π ^ ( i 7 ) .

If JRs hereditary locally $ , then it is locally 5J3.

Call a topological space locally ty (hereditary locally ^3), if all its

neighborhood filters are locally ^ (hereditary locally $β).

THEOREM 8.1. A space is hereditary locally ^ if and only if its every

open subset is locally ^ in the induced topology.

If 9β is the property relation "is compact in" (B e 9β(A) means B is a

compact subset of A), then JΠs locally compact (locally ^ ) whenever it

contains a compact element and J^is hereditary locally compact (hereditary

locally $ ) , whenever it admits a base composed of compact sets.



94 SZYMON DOLECKI, GABRIELE H. GRECO AND ALOJZY LECHICKI

The following example (much simpler than [13, Ex. 2.2]) shows that a

locally compact space need not be hereditary locally compact.

EXAMPLE 8.2. L e t J be the space of rationals. The topology is given by

){
I usual, otherwise

The space is compact (every filter converges to 0) thus locally compact. It

is not hereditary locally compact because J2\ {0} is an open subset for

which the induced topology is not locally compact.

If 5$ is the property relation "is compactoid in", then JΠs locally ^

(locally compactoid) if and only if there is a compactoid set in ^(equiva-

lently, there is a base of & composed of compactoid sets). Locally

compactoid spaces [5] are precisely "locally bounded spaces" of [16].
For the same property relation, J^is hereditary locally 3̂ (hereditary

locally compactoid) if for every F e J^there is F' ^ J^which is compactoid

in F. Hereditary locally compactoid spaces called "quasi locally compact

spaces" by Ward are equivalently defined (see [16]) by:

for every point x and every neighborhood A ofx there is a neighborhood

B a A of x such that every open cover of A has a finite subfamily

that covers B.

Example 8.2 shows that a locally compactoid space need not be

hereditary locally compactoid.

A locally compact space is locally compactoid; an hereditary locally

compact space is hereditary locally compactoid.

Locally compactoid filters are compactoid. The following generalizes

[20, Prop. 12].

PROPOSITION 8.3. Every compactoid filter in a locally compactoid space

is locally compactoid.

Proof. Follows from Theorem 3.7, since the whole space is overcover-

able by compactoid sets.

Local compactness and local compactoidness coincide in subregular

spaces. Hereditary local compactness and hereditary local compactoidness
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coincide in regular spaces. More precisely,

PROPOSITION 8.4. The following properties of a topological space X are

equivalent:

(i) Every point of X has a compact closed neighborhood.

(ϋ) X is locally compact and subregular.

(in) X is locally compactoid and subregular.

Proof, (i) => (ϋ). Every J^(x) contains a compact set, thus is a

compactoid filter. Thus X is subregular. (iii) => (i). Every neighborhood

filter JV*(X) contains a compactoid set Ax. By Corollary 4.7 the closure of

Ax is compact and closed.

PROPOSITION 8.5. The following properties of a topological space X are

equivalent:

(i) Every neighborhood filter of X has a base composed of closed

compact sets.

(ii) X is hereditary locally compact and regular.

(iii) X is hereditary locally compactoid and regular.

Proof. A consequence of Theorem 8.1 and Propositions 8.4 and 4.9.

Subregularity in Proposition 8.4 may be replaced by the condition

(8.1) the closure of every compactoid set is compact.

Schnare [22] shows that the following similar condition,

(8.2) the closure of every compact set is compact,

amounts to (i) of Proposition 8.4 in locally compact spaces. However,

in general, in locally compactoid space, (8.2) does not imply (i) (of

Proposition 8.4), since in [16, Ex. 1] there is a Hausdorff locally com-

pactoid space which is not locally compact.

It is important to note that in regular spaces all properties of Propo-

sitions 8.4 and 8.5 are equivalent. Indeed, one has

PROPOSITION 8.6. If a regular space is locally compactoid, then it is

hereditary locally compactoid.

To this we add information on regular spaces.

PROPOSITION 8.7. If a Hausdorff space is either locally compact or

hereditary locally compactoid, then it is regular.
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[16, Ex. 2] shows that in Proposition 8,7 hereditary local compactoid-
ness must not be replaced by local compactoidness.

9. Closure of composed relations. As an example of applications
consider topological spaces X, 7, Z and relations T: X ^ Y and Δ:
7 4 Z . Their composition is the relation ΔΓ: X ^t Z defined by

Δ Γ J C = U Δy>
y<=Tx

The composition of graph-closed relations need not be graph-closed.
However, we have

PROPOSITION 9.1. Let Γ, Δ be graph-closed. If for every (x, z) in the
closure of ΔT the filter Δ~ι*Λr(z) V T*Λr(x) has nonempty adherence, then
ΔΓ is graph-closed.

Proof. If (JC, z) e Cl(ΔΓ), then for every ^ G / ( X ) and W
we have Q X W Π ΔΓ Φ 0 ; in other words, Δ'λW Π TQ Φ 0 . Conse-
quently, the filter Δ~1JV{Z) V ΓJ^(x) exists and, by assumption,

0 Φ Adh(Δ~lyr(z) V TJr(χ)) c Adh Δ~ιjr(z) n Adh R/Γ(x)

c Δ" 1* Π Γx.

It follows that (x, z) e ΔΓ.

COROLLARY 9.2. Le/ Γ and Δ />e graph-closed. If either Γ or Δ'1 is
subcontinuous, then ΔΓ is graph-closed.

Consider the special case in which Δ is the epigraph of an extended
real-valued function/: Y —> R (Δ = epi/). The composition (epi/) ° Γ is
graph-closed if and only if the marginal function fT (fT(x) =
mfγ<ΞΞTxf(y)) is lower semicontinuous and/attains its infimum on every
Tx (see [6]). The epigraph of / is graph-closed if and only if / is lower
semicontinuous.

COROLLARY 9.3. Let f: Y —> R be a lower semicontinuous function and
Γ: X zX Y a graph-closed subcontinuous relation. Then the marginal function
fT is lower semicontinuous and f attains its infimum on every Tx.

Note that we know that Γ is upper semicontinuous and closed-valued,
but for nonsubregular spaces we may not have compact values of Γ.

A function / is well-conditioned if it is lower semicontinuous and its
level relation (epi/)" 1 is subcontinuous. This definition is equivalent to
[20, Def. 16] and is less stringent than that of well-posedness.
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COROLLARY 9.4. If f is well-conditioned and Γ is graph-closed, then / Γ

is lower semicontinuous and f attains its infimum on every Tx.

The above is not surprising, since a well-conditioned function attains
its infimum on every closed set. For other conditions on lower semicon-
tinuity of marginal function see [10].

Another special case is that of linear (graph-) closed operations Γ, Δ
in topological vector spaces. Then the subcontinuity of Δ" 1 implies that
Δ""1 is an operator.

COROLLARY 9.5. Let Γ, Δ be graph-closed linear operators. ΔΓ is

graph-closed if either Γ is continuous or Δ has the continuous inverse.
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