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TOPOLOGIES ON THE QUOTIENT FIELD
OF A DEDEKIND DOMAIN

JO-ANN COHEN

It is well known that if D is a Dedekind domain with quotient field
K and if T is any Hausdorff nondiscrete field topology on K for which
the open D-submodules of K form a fundamental system of neighbor-
hoods of zero, then T is the supremum of a family of /?-adic topologies.
We show that if the class number of K over D is finite and if T is any
Hausdorff nondiscrete field topology on K for which D is a bounded set,
then T is the supremum of a family of /?-adic topologies. We then
investigate the problem of extending a locally bounded topology from D
to a locally bounded topology on K. The extendable topologies on D for
which there exists a nonzero topological nilpotent and for which D is a
bounded set are characterized. Moreover it is shown that the topology of
a locally compact principal ideal domain A extends to a ring topology on
the quotient field of A if and only if A is compact.

1. Introduction and basic definitions. Let Λ be a commutative ring

and let T be a ring topology on R, that is, T is a topology on R making
(JC, y) -* x — y and (x, y) -> xy continuous from R X R to R. A subset A
of R is bounded for T if given any neighborhood U of zero, there exists a
neighborhood V of zero such that A V c U. T is a locally bounded topology
on R if there exists a fundamental system of neighborhoods of zero for T
consisting of bounded sets. As every compact set is bounded [4, Exercise
12, p. 119], if T is a ring topology on R and (R, T) is locally compact,
then Tis a locally bounded topology on R.

Each norm N on a ring R defines a locally bounded topology TN on R
in a natural way. Obviously, each norm-bounded subset of R is also
bounded for TN. Furthermore, if N is a nontrivial norm on a field K, that
is, 7^ is nondiscrete, then a subset A of K is bounded in norm if and only
if A is bounded for TN.

Let D be a Dedekind domain that is not a field, let K be the quotient
field of D and let !P be the set of nonzero proper prime ideals of D. We
assume familiarity with the definitions and basic properties of the func-
tions np defined on the set of nonzero fractionary ideals of K and the
valuations υp defined on K for each p in 0*. (See for example [3, pp.
25-26].) If / i s a field and x is a transcendental element over i% we denote
the valuation on F(x) defined by the prime ideal (Λ:"1) of F[x~ι] by v^.
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In [9], Correl proved that if T is any nondiscrete Hausdorff field
topology on the quotient field K of a principal ideal domain D for which
the open D-submodules of K form a fundamental system of neighbor-
hoods of zero, then T is the supremum of a family of /?-adic topologies.
Jebli showed that this characterization also holds if D is a Dedekind
domain [14]. Heine and Warner gave a further generalization in [13]. In
§2, we show that if K is the quotient field of a Dedekind domain D such
that the class number of K over D is finite and if T is any nondiscrete
Hausdorff field topology on K for which D is a bounded set, then T is the
supremum of a family of /?-adic topologies. This result also yields known
results concerning norms on algebraic function fields [6, Theorems 1, 2
and 18, Theorem 2.11].

The problem of extending ring topologies from an integral domain /
to its quotient field F has been widely considered. Gelbaum, Kalisch and
Olmsted gave sufficient conditions for which F possesses a field topology
whose restriction to / is weaker than the original topology [11]. These
results were extended by Endo in [10], but again the restriction to / of the
topology on F is in general weaker than the given topology. In [1],
Anthony gave necessary and sufficient conditions for the topology on / to
be the restriction of a certain topology defined on F. However, the
topology on F is not necessarily compatible with the ring structure of F.
Other general results on the extension problem can be found in [2].

In §3 of this paper, we give criteria for which there exists a locally
bounded topology on the quotient field K of a Dedekind domain D whose
restriction to D is a given locally bounded topology. We also characterize
all Hausdorff, nondiscrete, extendable locally bounded topologies on D
for which D is a bounded set and for which there exists a nonzero
topological nilpotent in D (that is, a nonzero element c in D such that
cn -* 0) when the class number of K over D is finite. Then in §4 we
consider the problem of extending locally compact topologies from a
Dedekind domain to its quotient field.

2. Field topologies on the quotient field of a Dedekind domain.
Throughout this section let D be a Dedekind domain which is not a field,
let K be the quotient field of D, let & denote the set of nonzero proper
prime ideals of D and for each p in ^ , let Tp denote the locally bounded
topology on K defined by the valuation υp.

LEMMA. Suppose the class number a of K over D is finite. Let

yl9 y29 - >ya be nonzero elements of K, let pv p2,... ,pn be distinct elements
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of0) and let M be any positive integer. If vp(yj) > M for all i in [1, n] and
all j in [1, α], then there exist nonzero elements a and b in D such that

ya = a/b a^d υPt(a), vPi(b - 1) > M for all i in [1, ή\.

Proof. For each j in [1, α], let Aj and Bj be nonzero ideals of D such
that Dyj = AjBj~ι and Aj + B} = D. Clearly nPt(Aj) > M for all / in [1, n]
and ally in [1, a]. Let 4̂ = Σy=1 4,- and let B = h " = 1 J5y. Then A and J? are
nonzero ideals of D such that A + B = D. Indeed, suppose p in 0* is such
that ^ ( 4 ) > 1. Then w/Λ,.) > 1 for ally and hence np(Bj) = 0 for ally.
Thus np(B) = 0 and so .4 + 5 = D. Therefore, Aa + Ba = D as well.
Since a is the class number of K over Z>, there exist nonzero elements c
and din D such that Λα = Dc and £ α = Dd. We note that for all i in
[1, w], vp(c) = Λ Λ ( ^ Λ ) = αmin{ΛΛ(y4y.): 1 <j < a] > aM > M. In par-
ticular, c is a nonunit of D. As ̂ 4α + Ba = Z), there exist elements s and ί
in D such that 1 = sc + &/. By the above remarks, ί # 0 and vp(td — 1) >
M for all i in [1, n]. Therefore in order to complete the proof of the
lemma, it suffices to show that there exists a nonzero element x in D such
t h a t j ^ ••• ya = xc/td.

By the definitions of A and B, Aj c A and B c Bj for ally in [1, a].
Hence

So there exists a nonzero j> in D with j ^ * ya

 == Jc/J. T h e n ^ ^ ya

= xc/td where x = (y.

THEOREM 1. Let D be a Dedekind domain which is not a field, let K be
the quotient field of D and let 0 be the set of nonzero proper prime ideals of
D. Suppose the class number a of K over D is finite. If T is a nondiscrete
Hausdorff field topology on K for which D is a bounded set, then T is the
supremum of a family ofp-adic topologies.

Proof. For each p in 0, let Bp = {y e K: vp(y) > 0}. Let A be any
Γ-neighborhood of zero. We first show that there exists a nonzero proper
ideal I of D such that / c A and Bp is a Γ-neighborhood of zero for each/?
in 0* with np(I) > 0. As T is Hausdorff, we may assume that D is not a
subset of A. Furthermore, we may assume that A is a closed Γ-neighbor-
hood of zero. Let W = {y e K: yD c A). Clearly, W c A and WD c ^ .
Moreover as D is a Γ-bounded set, W is a Γ-neighborhood of zero. Since
T is nondiscrete, there exist nonzero elements a and 6 in D such that
<z/6 G W. By the above remarks, Da = Db(a/b) Q A. As D is not a
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subset of A, a is a nonunit of D. Thus A contains a nonzero proper ideal /
of D which we may assume is closed for Γ. Let ρl9 /?2,... ,Pn be distinct
elements of & and let ava2,...,an be positive integers such that / =
ΠJLx/*?1. Suppose that there exists an i such that Bp is not a Γ-neighbor-
hood of zero. Without loss of generality, assume that / = 1. As / is
Γ-closed, / = Π{V + /: V is a Γ-neighborhood of zero). Let V be any
Γ-neighborhood of zero and let Vλ = {y e K: yD c F}. As before Fx is
a Γ-neighborhood of zero, Fx c F and Z>FX c F. By assumption, there
exist nonzero elements c and dinD such that vpi(c/d) < 0 and c/J e Fx.
Let x be a nonzero element of D such that vpi(x) = —υpi(c/d) and
^(JC) = -υp(c/d) for all/? in ̂  with υp(c/d) < o! (The existence of x is
guaranteed by [3, Proposition 9, p. 12].) Then xc/d is a nonzero ele-
ment of D, Dxc/dQ V and vpi(xc/d) = 0. Hence npi(Dxc/d) = 0.
Consequently, if /? e ^ \ {/?2,. . . ,/?„}, then np(Dxc/d + /) =
minlw^Zλxc/d), w^ί/)} = 0. Moreover, if ^ e {/?2,.. .,/?„}, then 0 <
np(Dxc/d + /) < π / I ) . So Z)xc/ί/ + / = Π?=2/?f< where 0 < βt < at

for ϊ' = 2,3,...,/i. Consequently for each Γ-neighborhood F of zero,
Πf=2 /?f' c V + /. Then Πf=2 /?f' c / = Πf=1 /?fs a contradiction. There-
fore Bp is a Γ-neighborhood of zero for each/? in 0>such that np(I) > 0.

Let A be any Γ-neighborhood of zero. We next show that there exist
pl9 p2->... ->pn in & and a neighborhood 5 of zero for supx <z<n Tpi such that
B Q A and for all / in [1, n], Bp is a Γ-neighborhood of zero. As Γ is a
field topology on K, there exists a Γ-neighborhood V of zero such that
V(l + F ) " 1 c yl. By the above, there exist distinct elementspl9 p2,...,pn

of 0> and positive integers al9 α 2 , . . . ,αM such that i?̂  is a Γ-neighborhood
of zero for / = l,2,...,w and TlLiP"' = ̂  τ h e n Π?=1/?Z

M c F where
M = maxfα,.: 1 < / < « } . Let ί 1 = {}/e K: vp(y) > M for all / in
[1, n]} and lety l9 y2,...,ya-ι be fixed nonzero elements of Bv If y is any
nonzero element of Bv then by the preceding lemma, there exist nonzero
elements a and b in D such that yxy2 ya-Xy = <z/Z> and α, ft - 1 e
ΠjLx/^ c F. S o ^ j 2 ya_λy e F(l + F ) " 1 c ^ and hence

Therefore the elements pl9 p2,...->pn of ^ and the set B defined by,
B = ^1^2 * * * ya-i^v satisfy the desired properties.

Now let S = { /? e ^ : B is a Γ-neighborhood of zero}. By the above
remarks, Γ c sup j G 5 Γ5. Moreover sup ί G 5 Ts c Γ. Indeed, if
{Pv Pi> - - >Pn) £ ^ and M is any nonnegative integer, then Πf=1 J?^ is a
Γ-neighborhood of zero contained in { j e ί : vp(y)>M for / =
1,2,...,«}.
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COROLLARY. Let A be a principal ideal domain which is not a field and

let K be the quotient field of A. If T is a nondiscrete Hausdorff field topology

on K for which A is bounded, then T is the supremum of a family of p-adic

topologies.

COROLLARY 2 (Correl [9]). Let D be a Dedekind domain which is not a

field and let K be the quotient field of D. Suppose that the class number of K

over D is finite. If T is any nondiscrete Hausdorff field topology on K for

which the open D-submodules of K form a fundamental system of neighbor-

hoods of zero, then T is the supremum of a family of p-adic topologies.

THEOREM 2. Let D be a Dedekind domain which is not a field, let K be

the quotient field of D and let & be the set of nonzero proper prime ideals of

D. Suppose that the class number of K over D is finite. If T is a Hausdorff

ring topology on K, then the following are equivalent.

1° T is a field topology on K, D is a bounded set for T and there exists a

nonzero topological nilpotent for T.

2° There exists a finite subset {pv p2,. - >,Pn} of & such that T =

3° T is a locally bounded topology on K, there exists a nonzero topological

nilpotent for T and D is a bounded set for T.

4° D is a bounded set for T and there exists a nontrivial norm on K which

defines T.

Proof. Suppose T is a field topology on K, D is a bounded set for T

and y is a nonzero topological nilpotent for T. By Theorem 1 there exists a

nonempty subset S oi & such that T = sup 5 e 5 Ts. If S is infinite, let p e S

be such that vp(y) = 0. Then {z e K: vp(z) > 0} is a Γ-neighborhood of

zero but ym £ {z e K: vp(z) > 0} for any m, a contradiction. Hence S is

finite and so 1° => 2°. Clearly 2° => 3°. By [8, Theorem 6.1], 3° => 4°.

The proof that 4° => 1° is the same as that for normed algebras found on

page 75 of [5].

COROLLARY 1. Let F be a field, let x be a transcendental element over F

and let T be a Hausdorff locally bounded topology on F(x) for which F is a

bounded set. If there exists a nonzero topological nilpotent f(x) in F[x], then

T is the supremum of a finite family of p-adic topologies.

Proof. By [8, Theorem 6.1], there exists a nontrivial norm N on F(x)

such that T = 7^. As F is a Γ-bounded set, there exists M' > 0 such that
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N(a) < Mf for all a in F. We note that as T is Hausdorff and F is a
Γ-bounded set, f(x) £ F. Let m > 0 be such that N(/ m ) < 1 and let
g = fm. By the above remarks, N(g) < 1, g £ F and there exists M > 0
such that N(h) < M for all h in {t e F[x]: ί = 0 or deg ί < deg g}. For j
in F[x], lety0, yl9...9yn be elements of F[x] such thaty = E^o
for all i, ̂  = 0 or deg yi < deg g. Then

*r(y)* Σ l

Hence F[x] is bounded in norm and so the corollary follows from
Theorem 2.

COROLLARY 2 [6, 18]. Let F be a field and let x be a transcendental
element over F. If T is a Hausdorff locally bounded topology on F(x) for
which F is bounded and for which there exists a nonzero topological nilpotent,
then there exists a finite subset {pv p2,...,pn} of ̂ U {oo} such that

Proof. As before, there exists a nontrivial norm N on K such that
T = TN. Lety be a nonzero element of F(x) such that N(y) < 1. As Fis a
Γ-bounded set, y £ F. So y is a transcendental element over F, F(x) is a
finite algebraic extension of .F(>0 and 7ΊF ( > ; ) is defined by N\F(y).
Consequently, .Fis a bounded subset for T\F(yy So by Corollary 1, there
exist nontrivial valuations υl9 υ2,...,υn on F{ y), each of which is trivial on
F, and corresponding valuation topologies Tυί> 7^,...,7^ on F(y) such
that T\F{y) = sup^^,, Tυ. Let Ko be a maximal subfield of F(x) contain-
ing F(y) such that there exist nontrivial valuations υ'l9 υ'2,...,υ

f

t on Ko

each of which is trivial on F, with T\κ = sup^,^, Tv,. By Theorem 5 of
[21], Ko = Kλ where Kλ = [z e F(x): z is separable over jfiΓ0}. If chari7

= 0, then F(x) = ̂ . We may therefore assume that chari7 = p Φ 0 and
F(JC) is a purely inseparable extension of ̂ Γo. So there exists m > 0 such
that JC "̂1 e Ko. By Theorem 4 of [21] and its proof, for each ι, 1 < i < t,
there exists a Hausdorff locally bounded topology Tt on F(x) such that
7)1^ = T&i and Γ = sup1^ l ̂ Λ7).. Consequently for each /, there exists a
nonzero topological nilpotent for Tt. Thus each Tt normable [8, Theorem
6.1]. As each nontrivial valuation on F(x) which is trivial on F is
equivalent to vs for some s in & U {oo} [3, Corollary 2, p. 94], it suffices to
show that each Tt is the supremum of finitely many nondiscrete valuation
topologies, each of which is discrete on F.

Let 1 < i < t. Since uj may be extended to a valuation on F(x) [3,
Proposition 5, p. 105], we may assume that υ\ = VS\KQ for some s in
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& U {oo}. Suppose s e &m Then s = (q(x)) for some monic prime poly-

nomial q of F[x]. As xpm e 7Γ0, ^ m e A^ and so ^ ' ( t fO = υs(qpm) > 0.

Therefore there exists a nonzero 7^-topological nilpotent contained in

F[x], Moreover, F is a ΓΓbounded set. Indeed, if B is any ΓΓbounded

neighborhood of zero, then there exists k > 0 such that qkF <z B Π Ko &s

Fis bounded for Tv,. Then F c f ^ , a ^-bounded set. Thus by Corollary

1, Tt is the supremum of a finite family of valuation topologies, each of

which is discrete on F.

Suppose s = oo. The above argument with q replaced by JC" 1 yields

that Tt is a Hausdorff, locally bounded topology on F(x~ι) for which

there exists a nonzero topological nilpotent/in ^ [ J C " 1 ] and for which F i s

a ΓΓbounded set. Therefore Tt is the supremum of a finite family of

valuation topologies having the desired properties.

COROLLARY 3. Let F be afield, let x be a transcendental element over F

and let L be a separable finite algebraic extension of F(x). If T is a

Hausdorff locally bounded topology on Lfor which F is a bounded set and for

which there exists a nonzero topological nilpotent, then there exists a finite

family { vl9 v2,... ,vn} of nontriυial valuations on L, each of which is trivial

on F, such that T = supx <,<„ Tυ.

Proof. Let y be a nonzero topological nilpotent for T. By Lemma 3 of

[7], y is a transcendental element over F and hence L is a finite algebraic

extension of F(y). The proof of Corollary 2 yields that there exists a

nonzero T-topological nilpotent contained in F(x). Indeed, with the

terminology of that proof, let Ko be a maximal subfield of L containing

F(y) such that T\κ has the desired properties and for each /, 1 < i < t9

let vi be a nontrivial valuation on L such that Tt\KQ = Tυ \κ. Then v^^ is a

nontrivial valuation [3, Corollary 2, p. 140] and so there exists a nonzero z

in F(x) such that t> (z) > 1 for i = 1,2,...,/. If m > 0 is any integer such

that xpm e AΓ0, then z ^ e AΓ0 and z^w is a 7J-topological nilpotent for

each ί. Consequently zpm is a Γ-topological nilpotent. Hence by Corollary

2, T\F(x) is the supremum of finitely many valuation topologies, each of

which is discrete on F. Corollary 3 then follows from Theorem 5 of [21].

We note that Corollaries 2 and 3 also follow from a result of Weber

[27, Folgerung 4.4].

COROLLARY 4. Let Fq be a finite field, let x be a transcendental element

over F and let L be a finite algebraic extension of F (x). If T is a Hausdorff
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locally bounded topology on L for which there exists a nonzero topological
nilpotent, then T is the supremum of a finite family of valuation topologies.

Proof. By Theorem 31:9 of [20], there exists a transcendental element
y over Fq such that L is a finite separable extension of Fq(y). The corollary
then follows from Corollary 3.

3. Extensions of topologies. Throughout this section, if p is a
nonzero proper prime ideal of a Dedekind domain Z>, we denote the
locally bounded topologies defined on D and on the quotient field K of D
(by the/7-adic valuation) by Tp and tp respectively.

THEOREM 3. Let D be a Dedekind domain with quotient field K. Let T
be a Hausdorff locally bounded topology on D for which there exists a
nonzero topological nilpotent x in D satisfying:

1. For each neighborhood V of zero, xV is a neighborhood of zero.
2. If y is any nonzero element of D with Dx + Dy = D and V is any

T-neighborhood of zero, then there exists a z in D such that yz — 1 e V.
Then there exists a Hausdorff locally bounded topology t on K such that
t\D= T. Moreover if T is any Hausdorff locally bounded topology on Kfor
which Γ\DQ T^thenT c t.

Proof. By [25, Theorem 4], there exists a nontrivial norm N on D with
T = TN. For each ε > 0, let Bε = {y e D: N(y) < ε}. By induction on «,
xnBλ is a Γ-neighborhood of zero for all n > 0. Replacing x by xm if
necessary, we may assume that N(x) < 1.

For each ε > 0, let Bε = {y e K\ there exist a and b in D with α,
/ ) - l G 5 ε a n d j = a/b). Clearly, 0 e Bε, -Bε = Bε and B^^y c Bε

Π B8 for all ε, 8 > 0. So in order to show that {Bε: ε > 0} is a fundamen-
tal system of neighborhoods of zero for a ring topology t on K, it suffices
to show that given ε > 0 and>> e K, there exist positive numbers δ, η and
γ such that Bδ + Bδ c 2?ε, j ? ^ c l?ε andj5 γ c Bε [4, p. 75].

Let ε > 0 and let 8 > 0 be such that (fiβ + l)Bδ + (£ δ + l )£ δ + Bδ

c 5 ε . I f a , b , c , d ^ D w i t h b , d Φ 0 a n d a , c , b - l , d - l < E B δ , t h e n
W - 1 = 6(rf - 1) + (Z> - 1) e (# g + l)Bδ + BδQ Bε. Furthermore, ad
+ be e J?a(£δ + 1) + (£ δ + l )5 δ c Bε. So α/ό + c/d e 5 ε and hence
5 δ + 5 δ c 5 ε.

Let ε > 0 and choose 8 > 0 such that £ δ £ δ + (Bδ + l )£ δ + 5 δ c Bε.
If α/ό, c/ί/ ^ 5 δ where a,c,b — l,d—l^Bδ, then by the above argu-
ment, M - I G 5 ε. Moreover, αc e BδBδ c £ ε. Hence 5 δ 5 δ c 5 ε.
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Finally let ε > 0 and let f/g e K where f,g<=D and g Φ 0. It
suffices to show that for/ Φ 0 and 0 < ε < 1, there exists δ > 0 such that
(f/g)Bδ £ K Choose n > 0 such that nvp(x) - υp(g) > 0 for all p in &
with tjp(x), ϋp(g) > 0. Let c be a nonzero element of Z> such that
vp(c) = 0 for all nonzero proper prime ideals which divide Dx and
υp(c) > vp(g) for all p in & with Όp(xn/g) < 0. (The existence of c is
guaranteed by [3, Proposition 9, p. 12].) Clearly Dc + Z>JC = Z>. Further-
more c cVg e 2). Indeed, if υp{x) > 0 or if vp(g) = 0, then υp(cxn/g) =
υp(c) + υp(xn/g) > 0. Moreover, if vp(x) = 0 and υp(g) > 0, then
vp(cxn/g) = ^(c) - ^(g) > 0. So cxn = gd for some nonzero d in Zλ As
Z)c 4- Dx = Z>, there exists a nonzero z in D with cz — 1 e l?ε/2. Let
Λf > « be such that JCM/ZJ e J5ε and let 8 > 0 be such that Bδ(Bε/2 + 1)
c Bε/2 and 5 δ c x2MBv Let Λ and ό be elements of D such that b Φ 0
and α, ft — 1 e Bδ. Then α = x2Mb1 for some Ẑ  e JBX and so

/ a _ x2MbJzd _ xMxsbJzd
g b gbzd bzc

for some s > 0. As N(xsb1) < 1, xMxsb1fzd e 5 ε. Furthermore by a
previous argument, ftzc - l e i e as well. Thus (f/g)BB c 5 ε. Conse-
quently, { 5 ε: ε > 0} is a fundamental system of neighborhoods of zero for
a ring topology t on A\

In order to show that t is a locally bounded topology on K, it suffices
to show that B1/2 is a Γ-bounded set. First observe that if d is any element
of D with d - l e 5 1 / 2 , then Dd + Dx = D. Indeed, suppose that υp(d),
vp(x) > 0 for some p in ^ . Then vp(d - 1) = 0. But d - 1 is a Γ-topo-
logical nilpotent of Z> and so (d — l ) m e x5 x for some m > 0. Hence
^ ( J - 1) > 0, a contradiction. Therefore, Dd + Dx = D. Now let 0 < ε
< 1 and let 8 > 0 be such that (Bε/2 + l)Bδ c £ ε / 2 and ^ ( ^ ( 1 ) + e / 2 ) c
5 ε. Let a, b, c, d ^ D where ft and J are nonzero, ΰ , ί - l G f i δ and
c, ?̂ — 1 e 5 1 / 2 . By the above remark, there exists a nonzero y in D with
rf-le Λe/2. Hence, iV(j ) < iV(l - d)N(y) + iV(j J) < ^( jμ) +

(JV(1) + ε/2) and so N(y) < 2(N(l) + ε/2). Consequently acy G
*«(**(i)+e/2) £ 5 ε Moreover, bdy - 1 = (dy)(b - 1) + ( φ - 1) e
( 5 e / 2 + 1) Bδ 4- 5 ε / 2 c Be. So βc/ftrf e 5 ε and hence B1/2 is a T-
bounded neighborhood of zero.

We next show that f\D= T. Obviously for any ε > 0 , ΰ e c f i ε n l )
and so t\D c T. To prove the reverse inclusion, let ε > 0, let 8 > 0 be
such that δ < min{ ε/2,1/2} and let a/b e Bδ Π D where fl,i-lEβδ.
Denote tf/ft by a P As aλ = β^l - ft) + a, NiaJ < NiaJS + 8 < jNiaJ
+ 8. Consequently, N(aλ) < 28 < ε. Therefore Bδ Π D Q Bε and hence
f 1̂  = Γ. (We note that as Γis Hausdorff, t is Hausdorff as well.)
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Finally let Tf be any Hausdorff locally bounded topology on K for

which T'\D c T. Then xn -> 0 for T and hence by [8, Theorem 6.1], T is

normable. Therefore the mapping y -> y~ι is continuous on K* for V.

(The proof of this assertion is the same as that for normed algebras found

on p. 75 of [5].) Let F b e any ^-neighborhood of zero. As (y, z) -> y~ιz

is continuous at (1,0) for T\ there exists a Γ'-neighborhood U of zero

such that - 1 € U and (1 + U)~ιU c K Let δ > 0 be such that B8QU

Π D. If <z/& e Bδ where a, b - 1 <Ξ Bδ, then β E {/ and ft e ί/ + 1. So

a/b e F and hence Γ' c f.

We note that the topology t defined in Theorem 3 is normable as

x n -> 0 for t and consequently t is compatible with the field structure of

K.

COROLLARY. Let A be a principal ideal domain with quotient field K and

let T be a Hausdorff locally bounded topology on A for which A is a bounded

set. If there exists a nonzero topological nilpotent x in A such that xV is a

T-neighborhood of zero whenever V is a T-neighborhood of zero, then there

exists a locally bounded topology T on K with T\A = T.

Proof. Let y be any nonzero element of A such that Ay 4- Ax = A, let

V be any Γ-neighborhood of zero and let n > 0 be such that Axn c V.

Then Ay + Axn = A and so there exists g in A with gy — 1 e Axn c F.

The corollary then follows from Theorem 3.

THEOREM 4. Let D be a Dedekind domain with quotient field K such

that the class number of K over D is finite and K Φ D. Let T be a

Hausdorff, nondiscrete, locally bounded topology on D. The following are

equivalent.

1° D is a T-bounded set and there exists a nonzero topological nilpotent x

in D such that xV is a T-neighborhood of zero for each T-neighborhood

V of zero.

2° There exists a sequence pl9 p2>... ,pn of nonzero proper prime ideals of

D such that T=suPl^nTpr

3° D is a T-bounded set, there exists a nonzero topological nilpotent x in

D and there exists a locally bounded topology t on K such that

4° There exists a normable topology t on K such that f\D=T and D is

a t-bounded set.
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Proof. 1° => 2°. First notice that as T is Hausdorff and as D is a
Γ-bounded set, x is a nonunit of D. So Dx = Πf=1 pfJ where Pi, p2>> >Pn

are nonzero proper prime ideals of D and α, > 1 for i e [1, h\. As before,
an inductive argument establishes that Dxm is a Γ-neighborhood of zero
for m > 0. Consequently, {Dxm: m > 0} is a fundamental system of
neighborhoods of zero for T and for supx <,-<„ Tpr

2° => 3° is obvious.

3° =» 4°. As T is Hausdorff, Γ is Hausdorff as well. Also, since
xn -* 0 for Γ, xn -> 0 for f and so f is normable [8, Theorem 6.1]. Let V
be any Γ-bounded neighborhood of zero and let n > 0 be such that
xnD c VΠ D. Then 2) c x~nV, a f-bounded set. Thus D is a f-bounded
set.

4° ==> 1°. By Theorem 2, Γ = s u p ^ ^ ί ^ for some sequence
pl9 p2> - >Pn °ί nonzero proper prime ideals of D. Clearly, D is a Γ-
bounded set. As the class number of JRΓ over D is finite, there exists a
nonzero element x in D with PA(X) > 0 for i = 1,2,...,n and t^(jc) = 0
for p in ^ \ {ρ l9 p2,...,pn). Then Λ: is a Γ-topological nilpotent and
hence a Γ-topological nilpotent. Moreover for any m > 0 , x({y & K:
vpi(y) > m for i e [1, «]} n £>) 2 { j e D: vp(y) > m + ^ ( x ) for
/e[ l ,/ ι ] } . So xFis a Γ-neighborhood of zero for each Γ-neighborhood
V of zero.

COROLLARY 1. If A is- a principal ideal domain which is not a field and
if T is a nondiscrete normable topology on A for which A is a bounded set,
then there exists a locally bounded topology on the quotient field of A whose
restriction to A is T if and only if T is the supremum of a finite family of
p-adic topologies.

In [7] we characterized the nondiscrete normable topologies on the
ring of integers Z as follows. For any prime ideal p and for any positive
integer n, { pn) is a fundamental system of neighborhoods of zero for a
locally bounded topology Tpn on Z. If T is a nondiscrete normable
topology on Z, then there exist disjoint finite subsets 9*x and ^ 2 of & and
positive integers n(p) for each p in ^ 2 such that Γ = snp(svφpG0>ιTp,
s uPpe^2 T^n{p)). (See also [17] and [19].) The analogous characterization of
the nondiscrete normable topologies on the polynomial ring F[x] for
which F is bounded was also given in [7]. The next two corollaries describe
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the extendable nondiscrete normable topologies on Z and on F[x] for

which F is bounded.

COROLLARY 2. If N is a nontrivial norm on Z and T is the topology

defined by N, then there exists a locally bounded topology t on the rational

field with t\z = T if and only if T is the supremum of a finite family of

p-adic topologies.

Proof. If N is a nontrivial norm on Z, then there exists m > 1 such

that N(m) < 1. Let M = max{iV(/): -m < i < m] and let x e Z. Then

x = Σ " = o a^m1 where —m<ai<m for /' e [0, π]. Hence

)] = M

Therefore Z is bounded in norm and so the corollary follows from

Corollary 1.

COROLLARY 3. Let F be a field and let x be a transcendental element

over F. If N is a nontrivial norm on F[x] for which F is norm-bounded, then

there exists a locally bounded topology t on F(x) whose restriction to F[x]is

the topology T defined by N if and only if T is the supremum of a finite

family of p-adic topologies.

Proof. We observe that as T is Hausdorff and F is bounded in norm,

for each nonzero y in F[x] with N(y) < 1, deg y > 1. Corollary 3 follows

from this observation and an argument similar to the one used in the

proof of Corollary 2.

We conclude this section by observing that an appropriate modifica-

tion of the proof of Theorem 3 yields the following result.

THEOREM 5. Let I be a unique factorization domain and let K be the

quotient field of I. Let T be a Hausdorff, locally bounded topology on I for

which there exists a nonzero topological nilpotent x in I satisfying:

1. For each neighborhood V of zero, xV is a neighborhood of zero.

2. If y is any nonzero element of I with (JC, y) = 1 and V is any

neighborhood of zero, then there exists a z in I withyz - I G F .

Then there exists a Hausdorff, locally bounded topology t on K whose

restriction to I is T.

4. Locally compact Dedekind domains. In [23] Warner raised the

question of whether the topology of a compact integral domain / can be
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extended to the quotient field of /. In [22] he showed that a compact

Dedekind domain D is a local principal ideal domain for which [mn:

n > 0} is a fundamental system of neighborhoods of zero where m is the

unique maximal ideal of D (Theorems 1 and 3). Thus a compact Dedekind

domain D is a locally compact bounded ring whose given topology is the

restriction to D of the m-adic topology defined on the quotient field of D.

We show conversely that if D is a locally compact bounded Dedekind

domain and if there exists a ring topology on the quotient field of D

whose restriction to D is the given topology, then D is a compact principal

ideal domain. Moreover, if D is a Dedekind domain with quotient field K

such that the class number of K over D is finite, then D is locally compact

and its given topology extends to a ring topology on K if and only if D is a

compact principal ideal domain.

THEOREM 6. Let D be a Dedekind domain which is not a field', let K be

the quotient field of D and let T be a nondiscrete Hausdorff ring topology on

D. The following are equivalent.

1° (Z>, 7") is locally compact, there exists a nonzero proper prime ideal p

of D such that pn is a T-neighborhood of zero for all n > 0 and

there exists a ring topology t on Kwith t\D = T.

2° D is a compact principal ideal domain.

Proof, by the previous remarks, it suffices to show that 1° implies 2°.

As D is not a field, D is totally disconnected [24, Theorem 2] and hence

there exists a compact open subring B of D such that Rad B is a compact

open subring of D contained in p [16, Lemma 4 and 24, Theorem 3]. As

Π™=1p" = (0), {B Πpn: n > 0} is a fundamental system of neighbor-

hoods of zero for a Hausdorff topology V on B weaker than T\B. Hence

T' = T\B and so {B (Ί pn: n > 0} is & fundamental system of neighbor-

hoods of zero for T.

Let a be a nonzero element of Rad B. Then Da = />α°Π"=1/??' where

pl9 p2,-.. ,pn are nonzero proper prime ideals of D and α 0 , al9... ,an are

positive integers. We first show thatpΓ[ίl=1pi ^s a TMopologically nil ideal

of A that is, if b e pΠ^i Pn t h e n bm -> 0 for T.

Let b G pΠi^xPi, let m > 1 be such that bm/a e D and let ί > 1 be

such that (bm/a)(B Π p') c J?. Then (bm/a)(B Π p<) G B Π p< and so

for all 5 > 1, {bm/a)\B Π />') (ZBCλp*. In particular, f>w' = (bm/aya'

<Ξ B Γ) p*. Consequently for any ΛΓ0 > 1 and any JV > NQ, (bmί)N <Ξ B Π

ptN Q B Π pN°. Therefore, bmt is a Γ-topological nilpotent. As {br: 1 < r

< mt} is a Γ-bounded set, it follows that 6 is a Γ-topological nilpotent. So
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pTl?=ιpi is a Γ-topologically nil ideal of D. By [15, Corollary to Theorem

12], pΐlΊ^iPi c Rad D. Hence if q is any nonzero proper prime ideal of

Z>, then pYl?=lPi Q q and so ί e { ; , ; l v . . , p j . Therefore, Z) is a

principal ideal domain [28, Theorem 16, p. 278]. As ρn is a Γ-neighbor-

hood of zero for all n > 0, the proof of Theorem 6 of [24] yields that Z)

has only one maximal ideal Dc, all the nonzero ideals of D are Γ-open and

Dc is a Γ-topologically nil ideal.

We next show that if V is any Γ-neighborhood of zero, then cV is a

Γ-neighborhood of zero. As p = Dc is a Γ-neighborhood of zero, we may

assume that V Q p. Let V and W be Γ-neighborhoods of zero with

V Π D Q V and W U cW Q V. Suppose y ^ W and ςy e Zλ Then ςy e

V Π D Q p and so ^(ςy) > 1. Hence 1^(7) > 0, that is, y <E D. Conse-

quently (cW) Π D Q c(W Π D) Q cV. Therefore c F i s a Γ-neighborhood

of zero whenever V is a Γ-neighborhood of zero. It follows by induction

that for any n > 0 and any Γ-neighborhood V of zero, cnV is a Γ-neigh-

borhood of zero.

Now let a be any nonzero element of D and let V be any Γ-neighbor-

hood of zero. Then a = bcn for some n > 0 and some unit /? of Zλ By the

above remarks, aV = bcnV is a Γ-neighborhood of zero. Hence by [16,
Theorems 8 and 23, Theorems 5 and 7], Z> is a compact ring.

THEOREM 7. Le/ D be a Dedekind domain which is not a field, let K be

the quotient field of D and let T be a nondiscrete Hausdorff ring topology on

D. If(D, Γ) is locally compact, then the following are equivalent.

1° D is a T-bounded set and there exists a locally bounded ring topology T

on Ksuch that f\D = Γ.

2° D is a T-bounded set and there exists a field topology T on K such that

f\D = τ.
3° D is a T-bounded set and there exists a ring topology T on K such that

t\D=τ.
4° D is a compact principal ideal domain.

Proof. Clearly 2° implies 3° and as before, 4° implies 1° follows from

Theorems 1 and 3 of [22]. By [15, Theorem 14], if B is any compact open

subring of Z), then Rad B is a Γ-topologically nil ideal of B and hence is a

Γ-topologically nil ideal of B for any ring topology t on K with t\D= T.

Thus if 1° holds, then Γis normable [8, Theorem 6.1]. Consequently Γis a

field topology on K. So 1° implies 2°.

By Theorem 6, in order to show that 3° implies 4°, it suffices to show

that there exists a nonzero proper prime ideal p of D such that pn is a
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Γ-neighborhood of zero for all n > 0. By [12, Lemma 4.5], D contains a
proper Γ-open ideal and hence a nonzero, proper, Γ-open prime ideal/?.

First observe that D is a Γ-bounded set. Indeed, if B is any compact
Γ-open subring of D, then there exists a nonzero binB such that Db c B.
As t\D = Γ, Bb~x is a f-compact subset of JSΓ. Therefore D is a f -bounded
subset of K. Now let F and W be Γ-neighborhoods of zero such that
VΠ D Qp and Z>ϊFc F. Suppose there exists ay in Wwith vp(y) < 0.
Let x be a nonzero element of D such that x y G ΰ and vp(x) = — ^ ( j ) .
Then xy e V Π D Q p but ί^(xy) = 0, a contradiction. Thus for all 7 in
W, vp(y) > 0. Consequently if c is any nonzero element of D with
vp(c) > 1, then (cW) Π D Q pn for all « > 0. So/?" is a Γ-neighborhood
of zero for all n > 0.

THEOREM 8. Ler D be a Dedekind domain which is not a field, let K be
the quotient field of D and let T be a Hausdorff, nondiscrete ring topology on
D such that (D, T) is locally compact. If the class number a of K over D if
finite\ then the following statements are equivalent.

1° There exists a locally bounded ring topology T on K such that

2° There exists afield topology Ton Ksuch that f\D= T.
3° There exists a ring topology ton Ksuch that T\D = T.
4° D is a compact principal ideal domain.

Proof. We show that 3° implies 4°. Let p be a nonzero, proper,
Γ-open, prime ideal of D and let c be a nonzero element of D with

pa = Dc. We first show that cV is a Γ-neighborhood of zero for any
Γ-neighborhood V of zero. As before, we may assume that V Q p. Let F,
W and U be f-neighborhoods of zero such that V Π D Q F, WU (W)a

c V and cϋ c W. Suppose y e W Π U and cy e D. Then for all q in
^\{ P}> vq(y) ^ 0. Suppose that y $ 2), that is, ^(>>) < 0. As cy e D,
α = vp(c) = - ί^(^) + « for some « > 0. Then c"-V>yα = (cy)~vp(y)yn

G (ΪF) α c F. Furthermore as ^(c~^(^Vα) = 0. c~vp{y)ya e D. So

c-vP{y)ya e ΫΠDQp, a contradiction. Therefore c ( t n J7) n ΰ
c c(ΪF Π C> Π D) c c(FΠ Z>) c cF and so cF is a Γ-neighborhood
of zero. Consequently for all n > 0, /?* contains Z)cw, a Γ-neighborhood of
zero. Thus by Theorem 6, 3° implies 4°.

In [24], Warner proved that there exists a locally compact principal
ideal domain which is not compact (Theorems 15 and 21). Thus by



66 JO-ANN COHEN

Theorem 8, there exists a locally compact prinicpal ideal domain A whose
given topology does not extend to a ring topology on the quotient field of
A.
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