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UNIVERSAL APPROXIMATION BY REGULAR
WEIGHTED MEANS

B. THORPE AND L. TOMM

In this paper we shall improve upon the results by K. Faulstich, W.
Luh and L. Tomm by (i) considering power series representing other
meromorphic functions /, (ii) using a regular weighted means method D
to obtain the overconvergence property and (iii) showing that D has a
universal property with respect to analytic continuation i.e. for every
simply connected region G which contains the open disc of convergence
of the Maclaurin series of / but no pole of /, there is a subsequence of
the D- transform of the nth partial sums of the Maclaurin series of/that
converges to / uniformly on compact subsets of G.

1. Introduction. The behaviour of partial sums of power series
outside their circle of convergence has been studied by various authors c.f.
[4], [9]. Power series that have subsequences of partial sums which
converge at points outside their circle of convergence are said to be
overconvergent. In [1], Chui and Parnes proved the existence of a power
series Π, convergent in the open unit disc and with the following universal
property with respect to overconvergence:

Given any compact set L which does not separate the plane and does not
intersect the closed unit disc Δ, and given any function g that is continuous on
L and holomorphic in the interior of L (i.e. g e A(L)), there exists a
subsequence of the partial sums ofH that converges to g uniformly on L.

More recently, it was shown in [12], that a power series exists that is
absolutely convergent in Δ and overconverges almost everywhere outside
Δ to any given measurable function /. Moreover such power series are
dense in the Banach space A(Δ) (with the uniform norm). On the other
hand, not all power series are overconvergent. For instance, the geometric
series has the property that no subsequence of its partial sums converges
at any point outside Δ. However, even in this case, if we consider a
summability transform of its sequence of nth partial sums (as in [5], [7])
then it is possible to obtain overconvergence properties. More precisely, in
[6] Luh proved the existence of a summability method A such that the
A -transform of the nth partial sums of the geometric series (Φn)n>o
converges on the interior of Δ to 1/(1 — z) and has the following
universal overconvergence property:
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Given any compact set L which does not separate the plane and does not

intersect Δ, and given any function g e A(L), there exists a subsequence

(Ψλ*)°/(Ψw) that converges to g uniformly on L.

Using a summability approximation theorem obtained in [10], it was
shown in [3] that the method A constructed by Luh could be chosen to be
regular and in fact it could be a regular 'generalised weighted means
method' or 'generalised Riesz method' previously introduced by Faultstich
(see [2]). Furthermore, as a consequence of the results in [3], the sequence
(Ψ«) provides an analytic continuation of the geometric series into a fixed
simply connected region G containing the open unit disc but not the point
1.

NOTATION. For every set S c C , let S denote the interior, S the
closure and Sc the complement of S. A sequence of functions (/„) will be
called compactly convergent to a function / on S if it converges to /
uniformly on every compact subset of S. We use the following abbrevia-
tions throughout: Δr = {z e C: \z\ < r} for r > 0, Δ = Δ1? No for the set
of non-negative integers and C^ = C U {oo}. If K is a compact subset of
C then A(K) denotes the Banach space of all functions that are continu-
ous on K and holomorphic on K.

A matrix D = (dnk) defining a sequence to sequence summability
method is called a weighted means method if there is a sequence (dk)k>0

such that Dn = do + dλ+ + dn Φ 0 for n = 0,1,2,... and

(i) dnk l
10 if k > n.

Cf. [9] where the notation Jί(d) is used and [4] where (N, d) is used.
It is well known that D is regular (i.e. finite limit preserving) if and

only if the following two conditions hold

(2) l im/) l i =oo,
n-* oo

(3) Σ\dk\=0(\Dn\).
k = 0

2. Statement of the results. First we describe the class of functions
to which our results apply. Throughout this paper let / denote a function
that is meromorphic in C and has a Maclaurin series expansion

(4) /(*) = £ V m
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whose radius of convergence, r, is positive. Furthermore we also require

that the coefficients cm satisfy the condition

(C) lim Rmcm = oc for every R > r.

It was proved in [11] that (C) holds if

(C) /has exactly one pole on the circle \z\ = r, or if

(C) lim Rmcm= oo for every R > r
m-* oo

where f(z) = Σ™=ocmzm is any rational function which has the same

poles and the same singular parts as / o n Δ r. It is clear that not every

meromorphic function satisfies (C) (for instance, if / is even then it does

not satisfy (C)).

We use P to denote the set of poles of/.

If A = (an k) is a row finite summability method then (σw

4(z)) will

denote the sequence of A -transforms of the nth partial sums of the series

in (4), that is, for all z e C and n = 0,1,...

(5) σ^(z)= Σ X J £cmzA.
fc = O \m = 0 /

We now establish the existence of 'a regular universal weighted means

method' D for the function/.

THEOREM. There exists a regular weighted means method D with the

following property:

For every triple (G, L, g), where

(i) G is any simply connected region that contains Kr but no pole off,

(ii) L is any compact set which does not separate the plane and contains

no point of P U G U Δr,

(iii) g is any function in A(L),

there exists a subsequence (σ®) of(σ^) such that

(6) l ί m « z ) (
«-»oo " l£v z ) uniformly on L.

REMARK. The weighted means (σ^) converge to / compactly on Ar.

This follows directly from the fact that D is regular (see [6]).

Before proving the theorem we draw two corollaries that give further

properties of D (cf. Theorems 4 and 5 of [11]).

COROLLARY 1. There exists a subsequence of(σ®) which converges to f

on all ofC\ P.
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Proof. Let E = {λz\z e P9 λ > 1} and G = C \ E9 the Mittag-Leffler

star of /. The set E\P consists of countably many open line segments.

Let Kn be the set of all points in G whose moduli do not exceed n + 1 and

whose distance to the complement of G is at least l/(w + 1) and let Ln be

the set of all points in E\P whose moduli do not exceed n + 1 and

whose distance to P is at least \/{n + 1).

In view of the theorem we can find for every « > 0 a subsequence of

(σ^) tending to/uniformly on KnVJ Ln. By choosing a suitable diagonal

sequence we obtain a subsequence (σj^) such that

(7) | < ( z ) - / ( z ) | < l / ( « + l) forallzeJ^uL,,.

Since every point of C \ P belongs to Kn U Ln for large n the sequence

(σm) does the job.

COROLLARY 2. The method D of the theorem has the following property:

If (i) Ar c Go and Go, Gv... is a finite or infinite sequence of disjoint

simply connected regions that do not contain a pole of'/, (ii) fQ=f and, for

each v > 1, fv is holomorphic on Gv, then there exists a subsequence (o®) of

(σn

D) such that for every v > 0

(8) lim Op (z) = fp(z) compactly on Gv.
n-* oo

Proof. We define a holomorphic function g: Uv^1 Gv -> C by setting

g(z)=fv(z) iίz^Gv,v>l.

For every fixed v > 0 and n > 0, let Knv be the compact set consisting of

all points in Gv whose moduli do not exceed (n + 1) and whose distance

to the complement of Gv is at least l/(n + 1). It is easy to see that Knv

has a connected complement and the sets
n

Kn

 = Kn,o> Ln = \j Knv

v = l

do not separate the plane. Applying the theorem to the triples (Go, Ln, g)

we obtain from (6) that, for every fixed n > 0, there are infinitely many

indices/? > 0 such that

σp

D(z)-f(z)\<en for all z e Kn

and

ap

D(z)-g(z)\<εn for all z ^ Ln
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where (εn) is an arbitrary sequence of positive numbers tending to zero.
We can rewrite the last two inequalities in the form

< εn for all z e Kn .whereO < v < n.

Thus we can choose an index p0 such that

< ( z ) - / 0 ( z ) | < ε 0 fαrallzetfO ϊ O

and then inductively determine indices pn such that pn> pn-λ for n > 1
and

(9) | σ ^ ( z ) - / ί / ( z ) | < ε w for all z e i ^ „ where 0 <*><«.

Since, for each v > 0, every compact subset of G,, is contained in Kn U Lrt

for large n the result follows from (9).

3. Proof of the theorem. The weights (dk) of the method D will be
constructed from the coeffients of a sequence of polynomials whose
existence is guaranteed by the following result in [11].

THEOREM A. Let G be a simply connected region which contains Kr but
no pole of f (where /, r are as defined in §2). Suppose that K is a compact
subset of G and that L is a compact set which does not separate the plane and
contains no point o / G U P ϋ A r Then, for every g & A(L) and for every
ε > 0, there exists a polynomial p(z) = Σ£L0 cιkz

k with the following proper-
ties:

(a)\ak\<efork = 0,1,...,N9

(δ) Ef = o^(Σi-oV m ) ~fω\ < e for all z G K,
(ε) P£_o**G£-o V " ) ~ Sω\ < e for allz e L.

We need the following topological result as well as Theorem A to
prove the theorem.

LEMMA. There exists a non-empty, countable collection <€ of pairs of
compact sets (K, L) with the following properties:

(a) For every (K, L) e ^ , L does not separate the plane and contains
no pole off.

(b) For every (K, L) e ^ , there exists a simply connected region H that
does not contain a pole of f and satisfies the conditions K U Kr c H and
LΠ (HU Δ r ) = 0 .
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(c) Given (i) any simply connected region G containing Ar but no pole

off,
(ii) any compact set Λ that does not separate the plane and contains

no point ofGL)ΔrUP, and
(iii) any compact subset Ψ of G,

then there exists a pair (K, L) e ^ such that Ψ c K c G and Λ c L.

Proof. Let JΓ be the collection of all sets of the form Sx U S2 U U
Sp where Sl9...9Sp are compact squares with complex rational1 vertices
and horizontal sides. Let ££ be the collection of all sets that do not
separate the plane, contain no pole of/, and can be written in the form

(5ΊU •• U S j \ ( i ? 1 U - UBn)

where J91? ...,!?„ are open discs with complex rational centres and rational
radii. Clearly the product JΓx Jέ? is countable. Hence we obtain an at most
countable set by defining ^ t o be the set of all pairs (K, L) in JΓx 3?for
which there exists a simply connected region H that does not contain a
pole of/and for which the conditions K U Δr c H and L Π (H U Δr) =
0 hold.

From the definitions of JSPand ^it's clear that ^satisfies (a) and (b).
To prove that (c) is also satisfied, suppose that G, Λ, Ψ are as in (i), (ii),
(iii). It is easy to see that there is a K G Jfsatisfying Ψ c ί c G and the
most intricate part of the proof is to find an L such that A c L and

)
We first construct a simply connected region H such that K U Δr c

H a G and A Π H = 0. It can be shown by the Riemann mapping
theorem that there is a connected compact subset F oΐ G that contains
{0} U iΓ. (In fact, if φ: A -> G is a conformal mapping then we can
choose F = Φ(Δp) for some p < 1.) From (ii), it follows that Λ is a
positive distance, e, from F ϋ Δ r and so the set B = {w + z: Z G Λ ,
|w| < e/2} does not meet F u A r . Since G is a simply connected region,
C^ \ G is connected and so B U (C^ \ G) is a connected closed set. Its
complement is G\B, an open set, the components of which have con-
nected complements in C^ and hence are simply connected. Since F u A r

is a connected subset of G\B, we can pick H to be that component of
G\B which contains F Ό kr and so ensure that KVJ Δr c H c G and
Λ Π // = 0 (since Λ c j?).

We now construct an L e j£? such that A c L and L n ( # u Δ r ) = 0
which will show that (K, L) belongs to ^and thus prove that (c) holds.

^.e., complex numbers whose real and imaginary parts are rational.
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We know that Λ is a positive distance 8 from P U H. Consider a grid on

C made up of squares with horizontal and vertical sides such that the

corners of the squares are complex rational numbers and the length of the

sides is less than 8/ yjϊ. We can pick four vertices of this grid to obtain a

rectangle R with horizontal and vertical sides containing Λ. Let

Sl9 S2,... 9Sm be all the compact squares of the grid that intersect Λ. Thus

A C S J U S J U U Sm and (S1 U S2 U Sm) Π (P U Ή) = 0 be-

cause of the size of the squares.

(Sλ U S2 U - U Sm)c may be disconnected, but it consists of the

union of Rc and finitely many line segments and interiors of squares and

so has finitely many components. We pick one point from each of these

open components and join it to a fixed arbitrary point of Rc by a path

which lies entirely in the complement of Λ. Denoting the union of these

paths by Γ, we see that (Sx U S2 U U Sm)c U Γ is connected and does

not intersect Λ. Since Γ is compact, it is a positive distance from Λ, and

so can be covered by finitely many open discs Bv B2,...,Bn that have

complex rational centres, rational radii and do not intersect Λ. Thus,

defining!, = (Sι U S2 U U Sm)\(Bι U B2 U U Bn), we find that

Lc = (SXU S2U U Sm)c U (Bλ U B2 U U Bn) is connected and

L Π(P U H)= 0. Hence we have that L e &, A c L and L Π (H U

Δ r ) = 0 , which shows that (K, L) e ^ a n d completes the proof of the

lemma.

We come now to the proof of the theorem.

Proof. Let ^ b e a countable collection of pairs of compact sets which

satisfies the conditions (a), (b), (c) of the lemma. Denote by £ the set of all

polynomials with complex rational coefficients. Since 2, is countable, the

set eg X ^ is also countable and so the elements of & X Ή can be enu-

merated by an infinite sequence (Ω r t)M>0, say, in such a way that every

element of i? X ^occurs infinitely often among the ΩM.

Let ( ε n ) Λ > o b e a sequence of positive numbers, and define for every

n > 0

, / / ( * ) for zeKH9

g Λ Z ) \qn{z) for z*Ln.

Let h: N o -> N o be a function (to be specified later). Since, for every

m > 0, (ΛΓm, Lm) e if, it follows from condition (a) and (b) of the lemma

that Km and Lm satisfy the topological hypotheses of Theorem A. Thus we

obtain polynomials pn{z) = Σ(£=oankz
k where ank = 0 for k > /n, say,
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such that the following conditions hold for every n > 0:

(10) \anj<en for* = 0,1,. . . ,

(11)

(12)

(13)

Σ *„,* = 1>
k = 0

Σ Wn,k\ < 1 + <

k

Σ <εn

For reasons that will become apparent later we define the sequence
(εn)n>o a n d the function h inductively as follows. Let ε0 = 1, h(0) = 0 and
supposing that ε0, ε 1 ?... 9εn and λ(0), Λ(l),. ..,h(n) have been defined set

(14)

where

= 1 +

ε,

max

= 2-»- +

()
|cmz-|: z e {0} U U (Kv U

and

for some z G Kh{n)U Lh(n),(15) Λ(n + 1) =

[h(n) + 1 otherwise,

where, in the notation of (5), An(z) = Σn

μ=0(o*(z) — gh(rί)(z)).

It is important to note that h: No -> No is a non-decreasing surjection.
To see this, since Λ(0) = 0 and h(n + 1) G {h{n\ h(n) + 1), if Λ is not a
surjection there exists a non-negative integer N such that h(n) = h(N) for
all n > N. Thus for every n > N and every z €
obtain from (13) the inequality

*;*(*)-ft>oo(*))

-g/,w(z)|<K(z)| +

U I Λ ( n ) we would

Since ε̂  < 2~μ by (14), this would imply that \gh(n)(z)\ +
bounded by \gh(N)(z)\ + | ^ ( z ) | + 2
contradict (15).

~N

on
was

U Lh{n) which would
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Also note that the sequence (/„) is strictly increasing because, by (10)

and (14), we have for n > 0
/„ /„

Σ k + J < K/π + i)"1-!.

Thus ln+1 must be greater than ln as otherwise (11) could not hold.

Since \ank\ < 2~n (from (10) and (14)), we obtain a well-defined

sequence of weights (dk) by setting

(16) dk= f α M for/: = 0,1,....
μ = 0

Now consider the numbers Dn = d0 + dx + ••• + */„. We can as-

sume, without loss of generality, that for n = 1 the conditions (10)

through (13) hold with ελ replaced by εx = ελ/2. Then there is a positive δ

such that for every polynomial pλ(z) = Σjji»o0if*
z* satisfying /^(l) = 1

and \alk — άlk\ < 8 for k = 0,1, . . . ,/1? the conditions (10) through (13)

are satisfied with n = 1 and fl1>A; replaced by 51>Λ. Making the correspond-

ing changes in the series
OO 00 OO

d0 = Σ 0μ,O> ^1 = = Σ *μ,l> > ^/ i- l = Σ ^ μ Λ - 1
μ = 0 μ = 0 μ = 0

we can always ensure that D o , Z>1?. ..9Dtl are non-zero. Hence, without

loss of generality, we can assume that px{z) = px(z) and Dn Φ 0 for

« < /x.

We now show that Dn Φ 0 for n > lv To this end, suppose for some

m > 1 lm < n < lm+1 so that Dn = ΣUoΣ^oaμΛ = Σ £ . o Σ Σ _ o f l M . Nowlm

00
,

by (10) and (14) so that for m = 1,2,...
oo n oo

(17) Σ Σ>MI< Σ

Hence

w + l n

< i

Dn~ Σ ΣaμJ

and since αμ>/t = 0 for k > lμ and (/„) is increasing this can be written as

Dn~ L L aμ,k - L an
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Dn-(m + l)- Σ°m+i.k< Σ

Using the triangle inequality and (12) gives

\Dn-(m

and (14) gives

(18) \Dn-(m
r

Λ μ - l
Thus Dn Φ 0 for n > lλ and we have a well-defined weighted means

method D = (*/„ k) defined as in (1).

To show that D is regular we first note that (2) follows directly from

(18). To show that (3) holds, if lm < n < lm+ι then by (17)

n oo n w 4-1 ' μ

Σ \dk\ < Σ Σ KΛ < Σ Σ Kk\ + I
A: = 0 μ = Q /t = 0 μ = 0 /t = 0

and by (12),

Thus, by using (14) we get

n

\Dn\< Σ\dk\< Σ (l + 2-") + K m + 5,
A: = 0 /i = 0

and this together with (18) gives limπ_>00 |i)π |~1Σ2=ol^l = 1» which cer-
tainly implies (3). Hence, D is regular.

Before attempting to prove the universal property of D we first show

that there is a subsequence (σ^) of (σrt

D) such that

(19) lim max of(z) - gv(z)\ = 0.

In fact, we choosey', = ln(v) where n(v) = max{« ^ N0\h(n) = ̂ }. It

follows from (15) that (n(v))v>0 is a strictly increasing sequence and

hence also (jv)v>0 is strictly increasing. Moreover, it follows from (15) and

the definition of n(v) that h(n(v)) = v and for all v > 0

(20) k ( ^ ) | + Mw(,)(^)|</^W forallzetf,uL,.
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We can easily verify the identity

(21) DΛ(σ/(z) - gy(z)) = («(,) + 1 - Djgv(z) + An(v)(z)

oo Jv k

+ Σ Σ aμ<k Σ cmzm.

By (18) and (20) we see that for all v > 0

\{n(p) + l - Dj)gv{z) + An(v)(z)\ < 2{^{v) for all z e Kv U L,.

The modulus of the third term on the right-hand side of (21) does not
exceed

00 Jv Jv

Σ Σ KJ Σ \cm*m\

< Σ
μ = n(p) + l k = 0 \lμ-l •" 1 / κ χ μ-l

by (10) and (14) (noting that h(n(v)) = v). Hence we get

oo Λ k

Σ Σ <*μ,k Σ
00

< Γ 2-*1 < 1 for all zeK.U Lυ.

Inserting these estimates into (21) we obtain for all v > 0

|Z)J |σ/(z) - g,(z)| < 2/^0 + 1 for all z^KvULv

so that

Mv) +1)

n>ι
Since Π(Ϊ') tends to infinity as v tends to infinity and (18) holds, (19)
follows easily.

To complete the proof of the theorem, suppose that (G, L, g) is a
triple satisfying (i), (ii), (iii). By Mergelyan's approximation theorem [8]
there exists a sequence of polynomials (wΛ)π^0

 s u c h that

(22) lim max \πn(z) - g(z)\ = 0
n-* oo z^L

and we may assume, without loss of generality, that every mn e J i.e. τrrt

has complex rational coefficients.
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For every n > 0 let Ψn be the compact set consisting of all points in G

whose moduli do not exceed {n + 1) and whose distance to the comple-

ment of G is at least l/(n 4- 1). The sequence (Ψn)n>0 exhausts G i.e. for

every compact set K c G there is an index n0 (depending on K) such that

(23) Kczψn for all n>n0.

To prove (6) we now apply (c) of the lemma to the triple (G, L, Ψn),

for every n > 0, and hence obtain sequences (Kn)n^09(Ln)n^Q such that

(Kn9 Ln) e «\ %cKncG and L c Ln for every n > 0.

Since (w0, (AΓ0, Lo)) belongs to Q X # there is an index J>0 such that

qv = 7ΓO, Kv = Â o and L = Lo. Moreover, we can inductively choose

indices vn (n > 1) such that (^w)n>0 is strictly increasing and

(24) *„„ = *„, Kv=Kny Lv=Ln forevery«>0

(since (9Π, (Kn, Ln))n>0 represents every element of i x ^ infinitely

often.) Substituting vn for v in (19) and writing kn fory we obtain

lim max a^(z) - gv{z)\ = 0.

But for every rc > 0, Φrt c Kn = Kv, L c Ln = L^ and TΓ̂  = g^ so that

using the definition of g we get

(25) lim max σ^f(z) - f(z)\ = 0

and

(26) lim max σ?(z) - πn(z)\ = 0.

If K is any compact subset of G then (23) and (25) imply that

lim σj?(z) = f(z) uniformly on K,
n-* oo "

and (22) with (26) gives

lim σ£(z) = g(z) uniformly on L.
n-~* oo "

Thus (6) holds and hence the result.
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