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A UNIFIED APPROACH TO CARLESON MEASURES
AND ^WEIGHTS

FRANCISCO J. RUIZ

In the present note, for each/? (1 < p < oo), we find a condition on
the pair (μ ω) (where μ is a measure on i?" + 1 and ω a weight) for the
Poisson integral to be a bounded operator from Lp(Rn; ω(x) dx) into

Our Theorem I includes, on the one hand, the results of Carleson
[1J and Fefferman-Stein [2] concerning the boundedness of the Poisson
integral and, on the other hand, Muckenhoupt's results concerning
^-weights.

1. Introduction. Given a function/on Rn, set

Jtf(x, t) = sup f ±r f I f\\ (x ^R\t> 0),

where the supremum is taken over the cubes Q in Rn centered at x with
sides parallel to the axes and has side length at least t.

The operator^is the maximal operator which "controls" the Poisson
integral

Pf(x, t) = [ f(y)P(x - y, t) dy (x <ΞRn,t> 0),
JRn

where

p ( x ' ' ) = ( W

2 + ί V + i ) / 2

is the Poisson Kernel.
The following question arises:
For a given positive measure on Rn

+

+1 (= Rn X [0, oo)), when can we
assert that Jiis bounded from Lp(Rn) into Lp(Rn

+

+\ μ) and from L\Rn)

Carleson [1] showed that this is true if and only if μ satisfies the
growth condition, called the "Carleson condition",

(1) μ(Q) < C\Q\ for each cube Q in Rn,

where Q denotes the cube in JR^+ 1 with the cube Q as its base.
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Afterwards, Fefferman and Stein [2] proved that Jί is bounded from
the weighted space Lp(Rn, ω(x) dx) into Lp(Rn

+

+ι, μ) and from
L\Rn, ω(x) dx) into weak-L^i?^1, μ) if the following condition is
satisfied:

(2) μ*(x) = sup ̂ - < Cω(x) a.e.

In fact, from (2), the weak type (1,1) inequality is obtained, and the
rest follows by interpolation with the trivial result for/? = oo.

Here we find the exact condition on the pair (μω) for Jί to be a
bounded operator from Lp(Rn; ω(x) dx) into weak-Lp(Rn+ι, μ). The
results of Carleson and Fefferman-Stein mentioned above are particular
cases of our Theorem I (below), and so are Muckenhoupt's results
concerning Ap weights.

Throughout this note μ will always denote a positive measure on
Λ++\ ω a nonnegative weight in Rn and, finally, C will denote a positive
constant, not necessarily the same at each occurrence.

2. Definition. Let 1 < p < oo.
Given ω we shall denote by Cp(ω) the set of measures μ on Rn

+

+ι such
that

where the supremum is taken over all cubes Q in Rn. Cx{ω) will denote
the set of measures μ such that

(4) μ*(x)=sup4^Γ<Cω(x) a.e,

and Q^to) the set of measures μ such that

(5) μ(Q) < C f ω(x) dx, for all cubes Q.
JQ

P R O P O S I T I O N . Let 1 <p<q< oo. Ifμ e Cp(ω) then μ e Cq(ώ).

Proof. This is evident for 1 < p < q < oo by Holder's inequality. If
μ e Cp(ω) (1 < p < oo), from (3) we get
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and, therefore,

μ(Q)<cf ω.
JQ

To finish the proof, let μ Ξ Cλ(ω) and let Q be any cube in Rn. Then

c f o r a u e δ -

and integrating over Q we obtain (3).

REMARK. In general, Cp(ω) is properly contained in Cq(ω) if 1 < p <
q < oo. However, if ω belongs to the class Ap of Muckenhoupt, i.e.

then it is obvious that Cp(ω) = Cq(ω),p < q < oo.
Moreover, in this case, μ e Cp(ω) implies μ e Cp_ε(ω) for some

ε > 0 (since ω G Ap_ε (see [4])).

3. The results. The relation between the class Cp(ω) and the
boundedness of the maximal operator^is given by the following

THEOREM I. Let 1 < p < oo. Then, the inequality

(6) μ({(*, t) e R"+

+ι:Jΐf(x, t) > a})

holds if and only if μ e Cp(ω).

Particular cases are:
A. If ω(x) = 1, then the classes Cp(ω) are the same for all p

(1 < p < oo) and consist of all measures μ such that

μ(Q) < C\Q\ for each cube Q in Rn,

which is Carleson's condition (1). In this case, Theorem I gives us
Carleson's result, mentioned in the introduction.

B. Let us consider now the measures μ on i?++1 of the form

dμ(x) = v(x) dx concentrated in Rn X {0}.

Then μ e Cp(ω) means that

(7,

i.e. μ e C (ω) if and only if (v, ω) satisfies the A condition (see [4]).
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Since Jίf(x,ϋ) = f*(x) (x e Rn) (where /* denotes the Hardy-
Littlewood maximal function of/), we obtain

THEOREM {Muckenhoupt [4]). Let 1 < p < oo. The following statements
are equivalent:

(i) (y, ω) satisfies the Ap condition (7).

(ii) /

REMARK. In addition, Muckenhoupt showed that (i) is not in general
sufficient for

J f*{x)pυ(x) dx < CJ |/(JC) |MX) dx-

Therefore, in Theorem I we cannot substitute the weak type inequal-
ity (6) for the corresponding strong type inequality. However, if we add
the hypothesis "ω e Ap", and use the remark in §2 and Marcinkiewicz's
interpolation theorem, then the strong type inequality follows.

Another way of deriving the same result is shown in Corollary II.
C. For p = 1 the theorem gives us the result of Fefferman-Stein,

already named in the introduction.
For the class C^ω) we have the following result.

THEOREM II. Ifμ e C^ω), then

(8) μ{{(x,t) <ΞRn

+

+1:Jΐf(x,t) > a}) < cί ω(x) dx.
J{f*>4-"a}

From the distribution inequality (8), the following result is immediate.

COROLLARY I. Let 1 < p < oo. Ifμ e Q^ω), then

f\J?f\Pdμ<cf \f*fω.

Since/* is bounded in Lp(ω) if and only if ω G Ap (1 < p < oo) we
have:

COROLLARY II. Let 1 < p < oo and ω e A . The following statements
are equivalent

(O/xeCJω)
(iϊ) fRl+.\J?f\r dμ < Cf \f\'ω.
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4. Proof of Theorem I. Assume first that (6) is verified and let

1 < p < oo. For any cube Q of Rn, and for all (x, t) e Q it is easy to see

that

therefore

/ Λ+l 2 " n ί

I \Q\ JQ

*C\Q\>\\ I/I / \f\pω{x)dx.
VQ I JRn

Taking/ = χQω~p/p in the last inequality, we obtain μ e Cp(ω). For

the case /? = 1, let x e Rn be a Lebesgue point of ω~\ and take an

arbitrary cube Q such that x e (λ χ^ω"1 G Lx(ω) and therefore χ^ω" 1 G

L1, because otherwise it would bz jf(χQω~ι)(x, t) = + oo for all (x, ί) G

i?++1, contradicting (6). Then like in the previous case, taking/ = χβ/ω~\

where (?' is any cube with x e g ' c Q, we have

μ(Q) r(J_ f -i|

iβi - l i β ' μ β ' ω / "

Now, we let Q' tend to x and it follows that

μ(Q)/\Q\<Cω(x),

which implies μ e Cx(co).

Now we assume μ e C^(ω) and we have to prove (6). Only the case

1 < p < oo will be considered, since the modifications needed to deal

with the case/? = 1 are rather straightforward. Let/ e Lp(ω), a > 0, and

Let Jto G Rn be fixed. It is obvious that if (JC0, /) G Ω and /' < /, then

(x 0, ί') G Ωα and x0 G Ω ,̂ and we define

(9) t(xQ;a) = sup{t:(x0,ήsΞΏa}

Λ\f
o>t)\JζKχo;t)

(where Q{xQ\ t) denotes the cube centered at x0 with side length /).
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LEMMA I. If a> {C/μ{R^ι))ι^\\f\\LP{ωy then t(x0; a) < oo for
every x0 e Q'a.

Take Lemma I for granted, and consider the following two possibili-
ties:

oo.
In case (a), no matter how a > 0 is chosen, we have t(x0; a) < oo for

every * 0 e β;.
We shall need the following covering lemma of Besicovitch type.

LEMMA II. Let A be a bounded set in Rn. For each x e A a cube Q(x)
centered at x is given. Then one can choose, from among the given cubes
{ Q(x)}χ<=Λ> a sequence {Qk} (possibly finite) such that:

(i) The set A is covered by the sequence, i.e. A c ΌQk.
(ii) The sequence {Qk} can be distributed in N (a number that depends

only on n) families of disjoint cubes.

A proof of the Lemma II can be found in [3, Chapter I.I].
Let K be any bounded measurable set of Rn. For each x e Ω2-nα Π K

we take the cube Q(x\ t(x\ 2~nά)).
We can apply Lemma II, obtaining { Qk) from

such that Ώ'2-»a Π K c (JQk and we have {Qk} distributed in N (depend-
ing only on the dimension) families of disjoint cubes.

Purely geometrical considerations show that {Qk} consist also of N
subfamilies of disjoint elements and Ωα Π (K X [0, oo)) c ΌQk.

For each subfamily, say { β, }, we have

Now, using (9), Holder's inequality (applied to (fω1/p)ω~ι/p) and the
hypothesis we obtain

r \Qt\p ai

y ( ι f f
7 \Q,\' «'\Wn )\}Q

^ ~ ι \f\p<»,
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and, therefore,

Since this estimate is independent of K, we obtain

NC

In case (b), (6) is proved (as above) for all

But for α < 2"(C/μ(R"+

+1))1/P\\f\\LP(ω),wehavc

1 c Ί~np i \ 1~r>

0LP Jj^n ~~ C + C

and (6) follows.

Proof of Lemπiα I. We suppose that ju is not identically zero (other-
wise, the theorem is trivial).

Iΐt(x0; α) = +00, then

a < limsup —7 r- / I/I

Ϋ/pf

\n(r

and, therefore, the lemma is proved.
This finishes the proof of Theorem I.

Proof of Theorem II. Maintaining the same notations, we suppose,
first, that t(x; 2~na) < 00 for every x e Ω'2-*α.

Then, let K any bounded measurable set of Rn and let {Qt} be one of
the N subfamilies of disjoint elements whose unions cover £ϊ2-na Π K.

\iy e Qi9 then it is easy to see that a < 4nf*(y) and, therefore,

Uβ. c {x:f*(x)>4-na}
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and, from the hypothesis we have

ω(x)dx<cί ω(x)dx.
J{f*>A~na}

From this, (8) follows immediately.

If t(x0; 2~na) = + oo for some x0 e Ω'2-»α, then it is immediate that

{ x: /*(x) > 4~na} = Rn

y and in this case we get

μ ( Ω j < μ(Rn

+

+1) < CJ ω(x) dx.

Therefore, Theorem II is proved.
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