A UNIFIED APPROACH TO CARLESON MEASURES AND A_{p} WEIGHTS

Francisco J. Ruiz

In the present note, for each $p(1<p<\infty)$, we find a condition on the pair $\left(\mu \omega\right.$) (where μ is a measure on R_{+}^{n+1} and ω a weight) for the Poisson integral to be a bounded operator from $L^{p}\left(R^{n} ; \omega(x) d x\right)$ into weak- $L^{p}\left(R_{+}^{n+1}, \mu\right)$.

Our Theorem I includes, on the one hand, the results of Carleson [1] and Fefferman-Stein [2] concerning the boundedness of the Poisson integral and, on the other hand, Muckenhoupt's results concerning A_{p}-weights.

1. Introduction. Given a function f on R^{n}, set

$$
\mathscr{M} f(x, t)=\sup _{Q}\left\{\frac{1}{|Q|} \int_{Q}|f|\right\} \quad\left(x \in R^{n}, t \geq 0\right)
$$

where the supremum is taken over the cubes Q in R^{n} centered at x with sides parallel to the axes and has side length at least t.

The operator \mathscr{M} is the maximal operator which "controls" the Poisson integral

$$
P f(x, t)=\int_{R^{n}} f(y) P(x-y, t) d y \quad\left(x \in R^{n}, t \geq 0\right)
$$

where

$$
P(x, t)=\frac{c_{n} t}{\left(|x|^{2}+t^{2}\right)^{(n+1) / 2}}
$$

is the Poisson Kernel.
The following question arises:
For a given positive measure on $R_{+}^{n+1}\left(=R^{n} \times[0, \infty)\right)$, when can we assert that \mathscr{M} is bounded from $L^{p}\left(R^{n}\right)$ into $L^{p}\left(R_{+}^{n+1}, \mu\right)$ and from $L^{1}\left(R^{n}\right)$ into weak- $L^{1}\left(R_{+}^{n+1}, \mu\right)$?

Carleson [1] showed that this is true if and only if μ satisfies the growth condition, called the "Carleson condition",

$$
\begin{equation*}
\mu(\tilde{Q}) \leq C|Q| \text { for each cube } Q \text { in } R^{n} \tag{1}
\end{equation*}
$$

where \tilde{Q} denotes the cube in R_{+}^{n+1} with the cube Q as its base.

Afterwards, Fefferman and Stein [2] proved that \mathscr{M} is bounded from the weighted space $L^{p}\left(R^{n}, \omega(x) d x\right)$ into $L^{p}\left(R_{+}^{n+1}, \mu\right)$ and from $L^{1}\left(R^{n}, \omega(x) d x\right)$ into weak- $L^{1}\left(R_{+}^{n+1}, \mu\right)$ if the following condition is satisfied:

$$
\begin{equation*}
\mu^{*}(x)=\sup _{x \in Q} \frac{\mu(\tilde{Q})}{|Q|} \leq C \omega(x) \quad \text { a.e. } \tag{2}
\end{equation*}
$$

In fact, from (2), the weak type $(1,1)$ inequality is obtained, and the rest follows by inierpolation with the trivial result for $p=\infty$.

Here we find the exact condition on the pair $(\mu \omega)$ for \mathscr{M} to be a bounded operator from $L^{p}\left(R^{n} ; \omega(x) d x\right)$ into weak- $L^{p}\left(R^{n+1}, \mu\right)$. The results of Carleson and Fefferman-Stein mentioned above are particular cases of our Theorem I (below), and so are Muckenhoupt's results concerning A_{p} weights.

Throughout this note μ will always denote a positive measure on R_{+}^{n+1}, ω a nonnegative weight in R^{n} and, finally, C will denote a positive constant, not necessarily the same at each occurrence.
2. Definition. Let $1<p<\infty$.

Given ω we shall denote by $C_{p}(\omega)$ the set of measures μ on R_{+}^{n+1} such that

$$
\begin{equation*}
\sup _{Q} \frac{\mu(\tilde{Q})}{|Q|}\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{-p^{\prime} / p} d x\right)^{p / p^{\prime}}=C<+\infty \tag{3}
\end{equation*}
$$

where the supremum is taken over all cubes Q in $R^{n} . C_{1}(\omega)$ will denote the set of measures μ such that

$$
\begin{equation*}
\mu^{*}(x)=\sup _{x \in Q} \frac{\mu(\tilde{Q})}{|Q|} \leq C \omega(x) \quad \text { a.e } \tag{4}
\end{equation*}
$$

and $C_{\infty}(\omega)$ the set of measures μ such that

$$
\begin{equation*}
\mu(\tilde{Q}) \leq C \int_{Q} \omega(x) d x, \quad \text { for all cubes } Q \tag{5}
\end{equation*}
$$

Proposition. Let $1 \leq p \leq q \leq \infty$. If $\mu \in C_{p}(\omega)$ then $\mu \in C_{q}(\omega)$.
Proof. This is evident for $1<p<q<\infty$ by Hölder's inequality. If $\mu \in C_{p}(\omega)(1<p<\infty)$, from (3) we get

$$
\begin{aligned}
1 & =\frac{1}{|Q|} \int_{Q} \omega^{1 / p} \omega^{-1 / p} \\
& \leq\left(\frac{1}{|Q|} \int_{Q} \omega\right)^{1 / p}\left(\frac{1}{|Q|} \int_{Q} \omega^{-p^{\prime} / p}\right)^{1 / p^{\prime}} \leq\left(\frac{1}{|Q|} \int_{Q} \omega\right)^{1 / p}\left(C \frac{|Q|}{\mu(\tilde{Q})}\right)^{1 / p}
\end{aligned}
$$

and, therefore,

$$
\mu(\tilde{Q}) \leq C \int_{Q} \omega
$$

To finish the proof, let $\mu \in C_{1}(\omega)$ and let Q be any cube in R^{n}. Then

$$
\left(\frac{\mu(\tilde{Q})}{|Q|}\right)^{p^{\prime} / p} \omega(x)^{-p^{\prime} / p} \leq C \quad \text { for a.e. } x \in Q
$$

and integrating over Q we obtain (3).
Remark. In general, $C_{p}(\omega)$ is properly contained in $C_{q}(\omega)$ if $1 \leq p<$ $q \leq \infty$. However, if ω belongs to the class A_{p} of Muckenhoupt, i.e.

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} \omega\right)\left(\frac{1}{|Q|} \int_{Q} \omega^{-p^{\prime} / p}\right)^{p / p^{\prime}} \leq C
$$

then it is obvious that $C_{p}(\omega)=C_{q}(\omega), p \leq q \leq \infty$.
Moreover, in this case, $\mu \in C_{p}(\omega)$ implies $\mu \in C_{p-\varepsilon}(\omega)$ for some $\varepsilon>0\left(\right.$ since $\omega \in A_{p-\varepsilon}($ see [4]) $)$.
3. The results. The relation between the class $C_{p}(\omega)$ and the boundedness of the maximal operator \mathscr{M} is given by the following

Theorem I. Let $1 \leq p<\infty$. Then, the inequality

$$
\begin{align*}
\mu(\{(x, t) & \left.\left.\in R_{+}^{n+1}: \mathscr{M} f(x, t)>\alpha\right\}\right) \tag{6}\\
& \leq \frac{C}{\alpha^{p}} \int_{R^{n}}|f|^{p} \omega \quad\left(f \in L^{p}(\omega)\right)(\alpha>0)
\end{align*}
$$

holds if and only if $\mu \in C_{p}(\omega)$.
Particular cases are:
A. If $\omega(x) \equiv 1$, then the classes $C_{p}(\omega)$ are the same for all p $(1 \leq p \leq \infty)$ and consist of all measures μ such that

$$
\mu(\tilde{Q}) \leq C|Q| \quad \text { for each cube } Q \text { in } R^{n}
$$

which is Carleson's condition (1). In this case, Theorem I gives us Carleson's result, mentioned in the introduction.
B. Let us consider now the measures μ on R_{+}^{n+1} of the form

$$
d \mu(x)=v(x) d x \quad \text { concentrated in } R^{n} \times\{0\}
$$

Then $\mu \in C_{p}(\omega)$ means that

$$
\begin{equation*}
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} v(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{-p^{\prime} / p} d x\right)^{p / p^{\prime}}<\infty \tag{7}
\end{equation*}
$$

i.e. $\mu \in C_{p}(\omega)$ if and only if (v, ω) satisfies the A_{p} condition (see [4]).

Since $\mathscr{M} f(x, 0)=f^{*}(x)\left(x \in R^{n}\right)$ (where f^{*} denotes the HardyLittlewood maximal function of f), we obtain

Theorem (Muckenhoupt [4]). Let $1<p<\infty$. The following statements are equivalent:
(i) (v, ω) satisfies the A_{p} condition (7).
(ii) $\int_{\left\{f^{*}>\alpha\right\}} v(x) d x \leq \frac{C}{\alpha^{p}} \int|f|^{p} \omega(x) d x \quad\left(f \in L^{p}(\omega)\right)(\alpha>0)$.

Remark. In addition, Muckenhoupt showed that (i) is not in general sufficient for

$$
\int f^{*}(x)^{p} v(x) d x \leq C \int|f(x)|^{p} \omega(x) d x
$$

Therefore, in Theorem I we cannot substitute the weak type inequality (6) for the corresponding strong type inequality. However, if we add the hypothesis " $\omega \in A_{p}$ ", and use the remark in $\S 2$ and Marcinkiewicz's interpolation theorem, then the strong type inequality follows.

Another way of deriving the same result is shown in Corollary II.
C. For $p=1$ the theorem gives us the result of Fefferman-Stein, already named in the introduction.

For the class $C_{\infty}(\omega)$ we have the following result.
THEOREM II. If $\mu \in C_{\infty}(\omega)$, then

$$
\begin{equation*}
\mu\left(\left\{(x, t) \in R_{+}^{n+1}: \mathscr{M} f(x, t)>\alpha\right\}\right) \leq C \int_{\left\{f^{*}>4^{-n} \alpha\right\}} \omega(x) d x \tag{8}
\end{equation*}
$$

From the distribution inequality (8), the following result is immediate.
Corollary I. Let $1<p<\infty$. If $\mu \in C_{\infty}(\omega)$, then

$$
\int|\mathscr{M} f|^{p} d \mu \leq C \int\left|f^{*}\right|^{p} \omega
$$

Since f^{*} is bounded in $L^{p}(\omega)$ if and only if $\omega \in A_{p}(1<p<\infty)$ we have:

Corollary II. Let $1<p<\infty$ and $\omega \in A_{p}$. The following statements are equivalent
(i) $\mu \in C_{\infty}(\omega)$
(ii) $\int_{R_{+}^{n+1}}|\mathscr{M} f|^{p} d \mu \leq C \int|f|^{p} \omega$.
4. Proof of Theorem I. Assume first that (6) is verified and let $1<p<\infty$. For any cube Q of R^{n}, and for all $(x, t) \in \tilde{Q}$ it is easy to see that

$$
\frac{1}{|Q|} \int_{Q}|f| \leq 2^{n} \mathscr{M} f(x, t)
$$

therefore

$$
\begin{aligned}
\mu(\tilde{Q}) & \leq \mu\left(\left\{(x, t) \in R_{+}^{n+1}: \mathscr{M} f(x, t) \geq \frac{2^{-n}}{|Q|} \int_{Q}|f|\right\}\right) \\
& \leq C|Q|^{p}\left(\int_{Q}|f|\right)^{-p} \int_{R^{n}}|f|^{p} \omega(x) d x
\end{aligned}
$$

Taking $f=\chi_{Q} \omega^{-p^{\prime} / p}$ in the last inequality, we obtain $\mu \in C_{p}(\omega)$. For the case $p=1$, let $x \in R^{n}$ be a Lebesgue point of ω^{-1}, and take an arbitrary cube Q such that $x \in Q . \chi_{Q} \omega^{-1} \in L^{1}(\omega)$ and therefore $\chi_{Q} \omega^{-1} \in$ L^{1}, because otherwise it would be $\mathscr{M}\left(\chi_{Q} \omega^{-1}\right)(x, t)=+\infty$ for all $(x, t) \in$ R_{+}^{n+1}, contradicting (6). Then like in the previous case, taking $f=\chi_{Q^{\prime}} \omega^{-1}$, where Q^{\prime} is any cube with $x \in Q^{\prime} \subset Q$, we have

$$
\frac{\mu(\tilde{Q})}{|Q|} \leq C\left(\frac{1}{\left|Q^{\prime}\right|} \int_{Q^{\prime}} \omega^{-1}\right)^{-1}
$$

Now, we let Q^{\prime} tend to x and it follows that

$$
\mu(\tilde{Q}) /|Q| \leq C \omega(x)
$$

which implies $\mu \in C_{1}(\omega)$.
Now we assume $\mu \in C_{p}(\omega)$ and we have to prove (6). Only the case $1<p<\infty$ will be considered, since the modifications needed to deal with the case $p=1$ are rather straightforward. Let $f \in L^{p}(\omega), \alpha>0$, and

$$
\begin{aligned}
& \Omega_{\alpha}=\left\{(x, t) \in R_{+}^{n+1}: \mathscr{M} f(x, t)>\alpha\right\} \\
& \Omega_{\alpha}^{\prime}=\left\{x \in R^{n}: f^{*}(x)>\alpha\right\}
\end{aligned}
$$

Let $x_{0} \in R^{n}$ be fixed. It is obvious that if $\left(x_{0}, t\right) \in \Omega$ and $t^{\prime}<t$, then $\left(x_{0}, t^{\prime}\right) \in \Omega_{\alpha}$ and $x_{0} \in \Omega_{\alpha}^{\prime}$, and we define

$$
\begin{align*}
t\left(x_{0} ; \alpha\right) & =\sup \left\{t:\left(x_{0}, t\right) \in \Omega_{\alpha}\right\} \tag{9}\\
& =\sup \left\{t: \frac{1}{\left|Q\left(x_{0} ; t\right)\right|} \int_{Q\left(x_{0} ; t\right)}|f|>\alpha\right\}
\end{align*}
$$

(where $Q\left(x_{0} ; t\right)$ denotes the cube centered at x_{0} with side length t).

Lemma I. If $\alpha>\left(C / \mu\left(R_{+}^{n+1}\right)\right)^{1 / p}\|f\|_{L^{p}(\omega)}$, then $t\left(x_{0} ; \alpha\right)<\infty$ for every $x_{0} \in \Omega_{\alpha}^{\prime}$.

Take Lemma I for granted, and consider the following two possibilities:
(a) $\mu\left(R_{+}^{n+1}\right)=\infty$.
(b) $\mu\left(R_{+}^{n+1}\right)<\infty$.

In case (a), no matter how $\alpha>0$ is chosen, we have $t\left(x_{0} ; \alpha\right)<\infty$ for every $x_{0} \in \Omega_{\alpha}^{\prime}$.

We shall need the following covering lemma of Besicovitch type.
Lemma II. Let A be a bounded set in R^{n}. For each $x \in A$ a cube $Q(x)$ centered at x is given. Then one can choose, from among the given cubes $\{Q(x)\}_{x \in A}$, a sequence $\left\{Q_{k}\right\}$ (possibly finite) such that:
(i) The set A is covered by the sequence, i.e. $A \subset \cup Q_{k}$.
(ii) The sequence $\left\{Q_{k}\right\}$ can be distributed in N (a number that depends only on n) families of disjoint cubes.

A proof of the Lemma II can be found in [3, Chapter I.1].
Let K be any bounded measurable set of R^{n}. For each $x \in \Omega_{2^{-n_{\alpha}}}^{\prime} \cap K$ we take the cube $Q\left(x ; t\left(x ; 2^{-n} \alpha\right)\right)$.

We can apply Lemma II, obtaining $\left\{Q_{k}\right\}$ from

$$
\left\{Q\left(x ; t\left(x ; 2^{-n} \alpha\right)\right)\right\}_{x \in \Omega_{2}^{\prime-n_{\alpha} \cap K}}
$$

such that $\Omega_{2^{-n} \alpha}^{\prime} \cap K \subset \cup Q_{k}$ and we have $\left\{Q_{k}\right\}$ distributed in N (depending only on the dimension) families of disjoint cubes.

Purely geometrical considerations show that $\left\{\tilde{Q}_{k}\right\}$ consist also of N subfamilies of disjoint elements and $\Omega_{\alpha} \cap(K \times[0, \infty)) \subset \cup Q_{k}$.

For each subfamily, say $\left\{Q_{i}\right\}$, we have

$$
\mu\left(\cup \tilde{Q}_{i}\right)=\sum_{i} \mu\left(\tilde{Q}_{i}\right)=\sum_{i} \frac{\mu\left(\tilde{Q}_{i}\right)}{\left|Q_{i}\right|^{p}}\left|Q_{i}\right|^{p} .
$$

Now, using (9), Hölder's inequality (applied to $\left.\left(f \omega^{1 / p}\right) \omega^{-1 / p}\right)$ and the hypothesis we obtain

$$
\begin{aligned}
\mu\left(\cup \tilde{Q}_{i}\right) & \leq 2^{n p} \sum_{i} \frac{\mu\left(\tilde{Q}_{i}\right)}{\left|Q_{i}\right|^{p}} \frac{\left(\int_{Q_{i}}|f|\right)^{p}}{\alpha^{p}} \\
& \leq 2^{n p} \sum_{i} \frac{\mu\left(\tilde{Q}_{i}\right)}{\left|Q_{i}\right|^{p}} \frac{1}{\alpha^{p}}\left(\int_{Q_{i}}|f|^{p} \omega\right)\left(\int_{Q_{i}} \omega^{-p^{\prime} / p}\right)^{p / p^{\prime}} \\
& \leq \frac{C}{\alpha^{p}} \int_{R^{n}}|f|^{p} \omega
\end{aligned}
$$

and, therefore,

$$
\mu\left(\Omega_{\alpha} \cap(K \times[0, \infty))\right) \leq \frac{N C}{\alpha^{p}} \int_{R^{n}}|f|^{p} \omega
$$

Since this estimate is independent of K, we obtain

$$
\mu\left(\Omega_{\alpha}\right) \leq \frac{N C}{\alpha^{p}} \int|f|^{p} \omega
$$

In case (b), (6) is proved (as above) for all

$$
\alpha>2^{n}\left(\frac{C}{\mu\left(R_{+}^{n+1}\right)}\right)^{1 / p}\|f\|_{L^{p}(\omega)}
$$

But for $\alpha \leq 2^{n}\left(C / \mu\left(R_{+}^{n+1}\right)\right)^{1 / p}\|f\|_{L^{p}(\omega)}$, we have

$$
\frac{1}{\alpha^{p}} \int_{R^{n}}|f|^{p} \omega \geq \frac{2^{-n p}}{C} \mu\left(R_{+}^{n+1}\right) \geq \frac{2^{-n p}}{C} \mu\left(\Omega_{\alpha}\right)
$$

and (6) follows.

Proof of Lemmia I. We suppose that μ is not identically zero (otherwise, the theorem is trivial).

$$
\begin{aligned}
& \text { If } t\left(x_{0} ; \alpha\right)=+\infty, \text { then } \\
& \alpha \\
& \leq \underset{t \rightarrow \infty}{\limsup } \frac{1}{\left|Q\left(x_{0} ; t\right)\right|} \int_{Q\left(x_{0} ; t\right)}|f| \\
& \\
& \leq \limsup _{t \rightarrow \infty} \frac{1}{\left|Q\left(x_{0} ; t\right)\right|}\left(\int_{Q\left(x_{0} ; t\right)} \omega^{-p^{\prime} / p}\right)^{1 / p^{\prime}}\|f\|_{L^{p}(\omega)} \\
& \quad \leq \limsup _{t \rightarrow \infty}\left\{\frac{C}{\mu\left(\tilde{Q}\left(x_{0} ; t\right)\right)}\right\}^{1 / p}\|f\|_{L^{p}(\omega)}=\left\{\frac{C}{\mu\left(R_{+}^{n+1}\right)}\right\}^{1 / p}\|f\|_{L^{p}(\omega)}
\end{aligned}
$$

and, therefore, the lemma is proved.
This finishes the proof of Theorem I.

Proof of Theorem II. Maintaining the same notations, we suppose, first, that $t\left(x ; 2^{-n} \alpha\right)<\infty$ for every $x \in \Omega_{2^{-n} \alpha}^{\prime}$.

Then, let K any bounded measurable set of R^{n} and let $\left\{Q_{i}\right\}$ be one of the N subfamilies of disjoint elements whose unions cover $\Omega_{2^{-n} \alpha}^{\prime} \cap K$.

If $y \in Q_{i}$, then it is easy to see that $\alpha<4^{n} f^{*}(y)$ and, therefore,

$$
\cup Q_{i} \subset\left\{x: f^{*}(x)>4^{-n} \alpha\right\}
$$

and, from the hypothesis we have

$$
\begin{aligned}
\mu\left(\bigcup_{i} \tilde{Q}_{i}\right) & =\sum_{i} \mu\left(\tilde{Q}_{i}\right) \leq C \sum_{i} \int_{Q_{i}} \omega(x) d x \\
& =C \int_{\cup Q_{i}} \omega(x) d x \leq C \int_{\left\{f^{*}>4^{-n} \alpha\right\}} \omega(x) d x .
\end{aligned}
$$

From this, (8) follows immediately.
If $t\left(x_{0} ; 2^{-n} \alpha\right)=+\infty$ for some $x_{0} \in \Omega_{2^{-n} \alpha}^{\prime}$, then it is immediate that $\left\{x: f^{*}(x)>4^{-n} \alpha\right\}=R^{n}$, and in this case we get

$$
\mu\left(\Omega_{\alpha}\right) \leq \mu\left(R_{+}^{n+1}\right) \leq C \int_{R^{n}} \omega(x) d x
$$

Therefore, Theorem II is proved.
Acknowledgments. The author is grateful to José L. Rubio de Francia for his useful suggestions.

References

[1] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Annals of Math., 76 (1962), 547-559.
[2] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115.
[3] M. de Guzman, Differentiation of Integrals in R^{n}, Lecture Notes in Math. no. 481, Springer-Verlag, 1975.
[4] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 115-121.

Received June 28, 1983 and in revised form September 21, 1983.

