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WEIGHTED REVERSE WEAK TYPE INEQUALITIES

FOR THE HARDY-LITTLEWOOD MAXIMAL

FUNCTION

BENJAMIN MUCKENHOUPT

Kenneth Andersen and Wo-Sang Young recently obtained a suffi-
cient condition and a different necessary condition on a pair of weight
functions for which a reverse weak type norm inequality holds for the
Hardy-Littlewood maximal function. It is shown here that their necessary
condition is also sufficient. The consequences of the sufficiency theorem
that they proved are strengthened by use of this result.

1. Introduction. Define the oriented cubes in Rn to be those with
sides parallel to the coordinate axes, and for a set E in Rn let \E\ denote
the Lebesgue measure of E. For / locally integrable on Rn, define the
Hardy-Littlewood maximal function Mf by

(Mf)(x) = sup-ί-f \f(t)\dt,
\Q\JQ

where the supremum is taken over all oriented cubes containing x. The
local sufficiency result proved in [1] for a reverse weak type inequality for
the Hardy-Littlewood maximal function is as follows.

THEOREM (1.1). If U(x) and V(x) are nonnegative functions defined on
an oriented cube Qo such that

(1.2) — ί U(x)dx> A ess sup V(x)
\Q\ JQ χ^Q

for all oriented cubes Q c β 0 , then

\f(x)\V(x)dxί
JQ'Qon{x:(Mf)(x)>λ} A J{x:\f(x)\>λ}

for f supported on Qoandλ > (l/|βoD/βol/(*)l dx.

The local necessity result proved in [1] is the following; note that for a
cube Q in Rn the notation SQ denotes the cube concentric with Q with
sides S times as long.
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THEOREM (1.3). If U(x) and V(x) are nonnegatiυe functions defined on

an oriented cube Qo such that

(1.4) ί U(x)dx>γί \f(x)\V(x)dx

for all f which are characteristic functions of measurable sets E c Qo and

λ > (l/\Qo\)jQo\f(x)\dx, then for oriented cubes Q c β 0 ,

(1.5) — ί U(x)dx >A2~"esssupV(x).
\Q\ J1Q^Q() χ^Q

If U(x) satisfies the doubling condition J2QnQ}U(x)dx < CJQlJ(x)dx

for oriented Q c g 0 , conditions (1.2) and (1.5) are equivalent. It is easy to

see, however, that (1.2) and (1.5) are not equivalent in general by the

example U(x) = V(x) = X{\/2)Q0(
X) which satisfies (1.5) for A = 1 but

does not satisfy (1.2) for any finite A.

Condition (1.2) resembles the well-known weight condition for Al9

(1/|<2|)JQ U(X) dx < A QS§infx(ΞQU(x), introduced on page 214 of [4],

and (1.2) looks more "natural" than (1.5). It is, therefore, surprising that

(1.5) is in fact a necessary and sufficient condition for the reverse weak

type inequality (1.4). The main result of this paper is the following.

THEOREM (1.6). If U(x) and V(x) are nonnegatiue functions defined on

an oriented cube Qo such that

(1.7) — ί U(x) dx > A ess sup V(x)
\Q\ J2QΠQ x^Q\Q\

for all oriented cubes Q c Qo, then

(1.8) f U(x)dx

A(300n)
/ \f(x)\V(x)ώc

J{x:\f(x)\>λ]
> λ /

Λ J{x:\f(x)\>λ]

for f supported on Qoandλ > λ0 = (l/\Qo\)fQo\f(x)\dx.

The following global version of Theorem (1.3) is proved in [1] as a

corollary of Theorem (1.3).

THEOREM (1.9). // U(x) and V(x) are nonnegatiυe functions defined on

Rn and

ί U(x)dx>jf \f(x)\V(x)dx
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for all f which are characteristic functions of measurable sets E c Rn and all

λ > 0, then

— ί U(x)dx >
\Q\ J2Q\Q\

for all oriented cubes Q c Rn.

The sufficiency of this condition will be proved here as the following

corollary of Theorem (1.6). This and Theorem (1.13) generalize results by

Stein in [5].

THEOREM (1.10). // U(x) and V(x) are nonnegatiυe functions defined

onRn and

(1.11) — f U(x)dx >
\Q\ J2Q

for all oriented cubes Q c Rr\ then

(1.12) / U(x)dx>A{30?n) [ \f(x)\V(x)dx
J{x:(Mf)(x)>λ] Λ J{x:\f(x)\>λ}

for all measurable f and λ > 0.

The other results in [1] can be proved with weaker hypotheses by

using Theorem (1.6) or Theorem (1.10) in their proofs. These strengthened

versions are as follows.

THEOREM (1.13). // U(x) and V(x) are nonnegative functions defined

on an oriented cube Qo such that (1.7) holds for all oriented cubes Q c Qo

with A > 0,/ is supported on Qo and j Q (Mf)(x)U(x) dx < oo, then

ί |/(x
JQo

For the next theorem define et as the vector in Rn with / th entry 1 and

all other entries 0. Define MJ, the Hardy-Littlewood maximal function in

the /th variable by (MJ)(x) = sup^ 0(l//z)/ 0

/ ? |/(x + tet)\ dt. The follow-

ing theorem generalizes a result in [2].

THEOREM (1.14). If U(x) is a nonnegatiυe function on Rn, K is an

integer, 1 < K < n,for h > 0, 1 < / < K and almost every x in Rn

(1.15) -ΓT ί U(x + tej dt >AesssupU(x + tet)
l h J-2h \ί\<h
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with A independent of i, x and h, and Tf(x) = (Mκ M1/)(x), then for
allλ > 0,

(1.16) [ U(x)dx

300-KA-KAK

\f(χ)\
κ-ι

(K- l)\λJ{x:\f{x)\>λ}

If it is also assumed that lim^,^^ Tf(x) = 0 and j^<rTf(x)U(x) dx < oo
for every finite r, then

fRJf(x)\[log+\f(x)\}KU(x)dx<π.

2. Proofs. The proof of Theorem (1.6) is based on the following
version of the Whitney covering lemma. As usual, E° will denote the
interior of the set E, and χE is the characteristic function of the set E.

LEMMA (2.1). Given an open set G in Rn, its complement F and a closed
cube Q such that G c 3<2, there exists a sequence { Qj} of closed cubes with
sides parallel to those of Q such that

(a) Qj C β,
(b)t/θDGnρ°,

(d) diam Q} < distίβ^ F) < 4diam Qp

/

The definition of the Qj's and the proof of (a)-(d) are essentially the
proof of Theorem 1, p. 167 of [6]. The principal change is that the initial
mesh J?o should be based on (?, i.e. Jt\ consists of Q and translations of
Q parallel to its edges by integral multiplies of S = |Q| 1 / n . The cubes in
the m e s h ^ ^ then have side length S2~κ and the layers Ω^ are defined by
Ω^= {x: 2ι~kSyfn < dist(x, F) < 22~κSyfn}. Let A be the set of all
cubes q for which there is an integer K such that q e Jt' κ and q Γ) ΏKΦ 0 .
As shown in [6], we have

(2.2) diam(tf) < dist(?, F) < 4diam(^)

for qinA and

(2.3) G = U ?

Since G c 3β, we have dist(^r, F) < ^diam(G) < f diam(β) for any
cube q; this and (2.2) show that diam(#) < | diam(β) for q e A. Because
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of the choice of ̂ # 0 , we conclude that every q in A is a subset of Q or has
interior disjoint from Q. Let the Qj be the members of A that are subsets
of Q and which are not proper subsets of other members of A. Then
properties (a) and (c) are immediate, property (d) follows from (2.2) and
property (b) follows from (2.3).

The proof of property (e) is an adaptation of the proof of property (4)
of the decomposition lemma on pages 15-16 of [3]. For this proof, fix an
x in UJ^IQJ. If 2Qj contains x, then dist(x, F) < dist(jc, β y) +
diam(<27) + dist(βy, F). Since x e 2Qj9 it follows that dist(x, Qj) <
(\) diam(β7), and by (2.2) we have dist(βy, F) < 4 diam(βy). Therefore,

(2.4)

Similarly, dist(x, F) > dist(β7, F) - dist(x, g7)implies

(2.5)

Furthermore, if y e Qj9 dist(x, y) < dist(x, Qj) + diam(β7). This, the
fact that dist(x, Qj) < (^) diam(βy) and (2.5) show that

(2.6) dist(jc, y) < 3dist(x, F).

From (2.4), (2.5) and (2.6) it follows that all Qj with x in 2Qj lie in a
sphere of radius 3dist(x, F) about x, are disjoint and have diameter
greater than or equal to (^)dist(x, F). Since the sphere of radius
3dist(jc, F) has volume less than [6dist(x, F)]n, the number of β y with
x e 2Qj is bounded by [6dist(x, F)]n/[(2/ll^)dist(;c, F)]n = (33}fn)n.
Ths proves (e) for x in G. For x not in G, property (d) shows that the left
side of (e) is 0. This completes the proof of Lemma (2.1).

To prove Theorem (1.6), fix a λ > λ 0 and let G be the set where
Mf{x) > λ. If x is not in 3β 0, then any oriented cube that contains x and
intersects Qo has sides with length greater than the sides of Qo and
Mf(x)<(l/\Qo\)fQo\f(x)\dx = λo. Therefore, G c 3β0 and we can
apply Lemma (2.1) with this G and with Q taken to be Qo. By property (e)

/ U(x)dx= [ χG(x)U(x)dx
GΠQ0

 JQ0

χ2Q (x)U(x) dx;

combining this and (1.7) shows that

(2.7) ( U(x) dx > A(33yfcyn Σ \Qj\ esssupF(x).
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Now given j > 1, we have dist(β ;, F) < 4diam((?7). Therefore, there

is an x in F such that \x - cy| < (f) diam(gy), where cy is the center of Qr

Since 9}/nQJ contains the sphere of radius (§)diam(g7) about cp it

follows that x is in 9y/nQJ, and since Mf(x) < λ, we have

\f(x)\dx<λ.

This shows that the right side of (2.7) is bounded below by

^ΓΣ lg>sssupF(x)

This is bounded below by

By property (b) of Lemma (2.1), this is bounded below by

.4(300ftΓ f ,,, x , w x A- Λ - ^ J \f{x)\V{x) dx.

Finally since Mf(x) > \f(x)\ almost everywhere, this is bounded below by

the right side of (1.8). This completes the proof of Theorem (1.6).

The proof of Theorem (1.10) is a minor modification of the suffi-

ciency proof of Corollary 1 of [1]. Let Qλ be a fixed oriented closed cube.

For t > 0 let/,(jc) = f(x) if \f(x)\ </andχE tQi9 ft(x) = tsgnf(x) if

\f(x)\ > t and x G tQv and ft(x) = 0 if x £ tQv Given λ > 0 and R

such that R > t and

( 2 8) , ^ 1 _

define UR(x) = U(x) if x e Λβ 1 and ί/(jc) = oo if JC ί i ίgp We will

apply Theorem (1.6) to /, with g 0 , ί/ and K taken respectively as 2RQV

UR and V. Hypothesis (1.7) is satisfied if 2Q c RQX by (1.11) while if

2 β ί RQi > hypothesis (1.7) is satisfied because the left side is infinite.

Inequality (2.8) implies that λ is greater than the required λ0. Theorem

(1.6) then implies that

(2.9) / UR(x) dx
J2RQλΓ\{x:(Mf,)(x)>\}

A{300n)~
/ \ft{x)\V{x) dx.

J{x:\f,(x)\>λ)
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Now (2.8) implies that (Mft)(x) < λ for x £ RQλ\ therefore, (2.9) is

equivalent to

ί/(x) rfx > r / |/ ? (Λ:) |F(X) έ/χ.

vx:(M/;)(x)>λ} Λ /{x:|/ί(x)j>λ)

Now let t approach oo and use the monotone convergence theorem to
complete the proof of Theorem (1.10).

Theorem (1.13) is proved from Theorem (1.6) in the same way that
Theorem 2 of [1] is proved from Theorem 1 of [1]. Theorem (1.14) is
proved from Theorem (1.10) in the same way that Theorem 3 and
Corollary 2 of [1] are proved from Theorem 2 of [1].
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