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REGULARIZED DISTANCE AND ITS APPLICATIONS

GARY M. LIEBERMAN

One of the most powerful tools in studying second order elliptic and
parabolic differential equations is the barrier method, i.e. using the
comparison principle with a suitable comparison or barrier function to
infer some feature of the boundary behavior of a solution to such an
equation. For sufficiently smooth domains Ω (e.g. 9Ω e C2), barrier
functions can be constructed rather easily in terms of the distance
function d{x) = dist(x, ΘΩ) because d is a C2 function near 3Ω; for less
smooth domains it need not be even C1 (although it is
Lipschitz continuous.) These less smooth domains are of interest and
several authors have constructed barriers for certain such domains. We
consider here a general method for constructing these barriers by intro-
ducing a regularized distance, described below.

Our concern here is primarily to develop a general theory of this
regularized distance; we merely indicate some applications. We note that
many of the ideas are not new and have appeared before in specialized
circumstances. For example, essentially a regularized distance has been
constructed by Triebel [24, §3.2.3] for arbitrary domains and by Necas
[22, Theorem 2.1] for Lipschitz domains. Both constructions are slightly
different from the one given here. In addition we explore aspects of
regularized distance not considered by Triebel or Necas.

We mention also some authors who have used some of these addi-
tional properties of the regularized distance. Vyborny used a regularized
distance in [25] although he took the existence of such a function as the
geometric characterization of his domains. Gilbarg and Hormander con-
structed and used essentially a regularized distance for C1+a domains in
[3]. Finally Lieberman used a regularized distance both for C1+a domains
and for convex domains in [18]. Proofs of the properties asserted there are
contained in the present work.

This work is organized as follows. We derive basic properties of the
regularized distance, including its existence for arbitrary domains, in §1. A
local regularized distance for Lipschitz domains is discussed in §2, and a
modified regularized distance especially suited for parabolic equations is
constructed in §3. Some simple applications appear in §4.
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330 GARY M. LIEBERMAN

1. Existence and basic properties of regularized distance. Let Ω be

an open subset of R" having non-empty boundary 3Ω. We define the

signed distance to 3 Ω by

dist(;c,3Ω) J C E Ω

-dist(x,3Ω) x ί Ω .

We call a function p a regularized distance for Ω if p e C 2 (R 2 \3Ω) Π

Co α(R") and if the ratios ρ(x)/d(x) and d(x)/p{x) are positive and

uniformly bounded for all x e Rn \ 3Ω. To construct a regularized dis-

tance, we use a modification of a standard mollification argument.

LEMMA 1.1. Let Ω be an open subset ofRn having non-empty boundary,

and suppose there is a Lipschitz function g for which the ratios d/g and g/d

are uniformly bounded and positive in R" \ 3Ω. Let L be a positive constant

such that \g(x) — g(y)\ < \L\x — y\ for all x and y in Rn, let φ be a

non-negative C2(Rn) function with support in the unit ball such that

jRnφ(z) dz = 1 and define

G(x,τ)f g(x-(τ/L)z)φ(z)dz.

Then a regularized distance is given by the equation

(1.1) p(x) = G(x,p(x)).

Proof. To see that p is a regularized distance, we first investigate the

properties of G.

For T Φ 0, we can write

(1.2) G(X9r)=LkY[ g(z)φ(L(x - z)/τ) dz;

it is clear from this formula that G G C 2 ( R W + 1 \ (0,0)}) since g is

continuous and the integration is over a compact set. Moreover

G(x, rλ) - ( * , τ2) = / [g(x ~{τι/L)z) - g{x -(τ2/L)z)]φ(z) dz,

so the choice of L implies that

(1.3) \G(x, τλ) - G(x, τ2)| < / \L\τλ - τ2\{\z\/L)φ(z) dz

Similarly

(1.4) \G(xlt T) - G(x2, τ)| < \L\XI - x2\
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We now consider (1.1.). By virtue of (1.3), (1.1) has a unique solution
for every x ^ R", which can be found by iteration. If ρo(x) Ξ 0 and
pm(x) = G(x, pm_χ(x)), then \pm(x) - pm_i(*)| < i\pm-i(x) " Pm-i(x)l
so the infinite series Σ ^ = 1 ( P W ( Λ ; ) - Pm_i(*)) is uniformly and absolutely
convergent, with sum p(x) a solution of (1.1). The uniqueness of p follows
by noting that any two solutions pλ and p2 of (1.1) satisfy the inequality

|Pi(*) ~ Pi(x)\ = \G(x, PM) ~ G{x, p2(x))\ < i |P l(x) - p2(x)\.

Another application of (1.3) yields

G(x90) - i\P(x)\ < p(x) < G(x9O) + | | p ( x ) | ;

since G(x,0) = g(x), we see that \ < ρ(x)/g(x) < 2 and hence that p/d
and d/p are positive and uniformly bounded. Combining (1.3), (1.4) and
the equation

p(x) - p(y) = {G(x9 p(x)) - G(x9 p(y)))

+ (G(x9p(y))-G(y9p(y)))

yields

\p(x) - p(y)\ < L\x - y\,

so p is Lipschitz. That pis C2 follows from the implicit function theorem,
and therefore p is a regularized distance.

It follows from the proof of Theorem 1.3 below that in fact p e
C3(Rn \ 3Ω) and that |J5*p| = ©dpi1"*) for k = 0,1,2,3 (cf. [15, Lemma
4.13]). In addition it is clear that higher regularity of p can be obtained by
increasing the regularity of φ. In particular if φ e C°°(RΛ), then p e
C°°(R" \ 3Ω) and |Z)*p| = Odpl1""*) for all non-negative integers k.

Lemma 1.1 reduces the study of regularized distance to choosing a
suitable function g. We illustrate this procedure with various choices for g
relevant to the properties of Ω we wish to consider. First we choose g = d
to obtain a result similar to that in [24, §3.2.3].

COROLLARY 1.2. Every domain has a regularized distance.

Proof. We need only verify that d is Lipschitz and use g = d in
Lemma 1. We shall show that \d(x) - d(y)\ <\x - y\. If x andy are both
in Ω or if neither is in Ω, we proceed as in [4, §14.6]. Let z E 3Ω be a point
such that \y - z\ = \d(y)\. Then

\d(x)\<\x-z\<\x-y\+\d(y)\.
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Reversing the roles of x and y, we obtain

\d(x)-d(y)\=\\d(x)\-\d(y)\\<\x-y\.

On the other hand, if x e Ω and y £ Ω, let z e 3Ω be a point on the line
segment joining x and jμ. Then

\x — y\ = jx — z\ +\z — y\ > \d(x)\ + \d(y)\ = \d(x) — d(y)\.

Combining these two cases gives the desired result. D

Although this result has some independent interest, there are certain
desirable features (cf. [4, §14.6]) of the distance function for C2 domains
which do not seem to have an analog for the regularized distance con-
structed in this corollary. The two such features we shall use in the
application are (1) that \Dp\ be bounded away from zero near 3Ω, and (2)
that geometric properties of Ω be represented by analytic properties of p.
To make (1) precise, we say that a regularized distance is proper if there
are positive constants cλ and c2 such that \Dp(x)\ > cλ whenever 0 <
|p(x)| < c2. With regard to (2), we consider both regularity and convexity.
We shall describe regularity of 3 Ω in terms of the regularity of the
function g of Lemma 1. The connection with regularity in terms of a local
representation of 3Ω will be discussed in the next section.

THEOREM 1.3. Let Ω and g be as in Lemma 1.1 and suppose that
g e Cι(ΈLn). Then Ω has a C1 regularized distance. Let ζ be a continuous,
increasing function with ζ(0) = 0. //

(1.6) \Dg{x)-Dg{y)\<ζ{\x-y\) for allx, y in R"

(so Dg is uniformly continuous), if L and φ are as in Lemma 1, and if

\Dφ(z)\dx,
z | < l

then p is proper and for /, j = \,...,nwe have

(1.7a) \Dp(x)-Dp(y)\<W(\x-y\) for all x, y inRn

(1.7b) |A 7 P(*) | ^ 2(4^ + 3π + l){L/\p(x)\)ζ(\p(x)\/L)

for all x E R " \ 3 Ω .

Proof. First we note that G is C1 since g is C1 and use the implicit
function theorem to see that p is C1.

Before proceeding further, we simply notation as follows. Subscripts
on G will denote partial derivatives, r will be identified with xn + ι and the
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argument ρ(x) will be suppressed from G and its derivatives. Thus

etc.

Also we denote by G\x) the vector (G^x),.. .,Gn(x)).

Differentiating (1.1) yields

Dp(x) - Dp(y) = (G'(x) - G'(y)) + Dp(y){Gn+1(x) - Gn+1(y))

+ Gn+1(x)(Dp(x)-Dp(y)).

Combining this equation with (1.3) and (1.5), we see that

(1.8) \Dp(x) - Dp{y)\ < 2\G'(x) - G'{y)\ + 2L\Gn+1(x) - Gn

to obtain (1.7a) we estimate the two terms on the right side of (1.8).

Since g e C1, we can differentiate under the integral to obtain

(1.9) G'(x) = f Dg(x -(p(x)/L)z)φ(z) dz
J\z\<l

Gn+1(x) - -l/Lf Z Dg{x -(p(x)/L)z)φ(z) dz.
J\z\<\

Hence

\G'(x) - G'(y)\

< f \Dg(x -(p(χ)/L)z) - Dg(y -(p(x)/L)z)\φ(z) dz

\Dg(y -(p(x)/L)z) - Dg(y -(p(y)/L)z)\φ(z) dz/
\z\<\

* f (Si\χ ~ y\) + £i\p(χ) ~ p(y)\/L))φ(z) dz

<2ζ{\x-y\) by (1.5).

Similarly

\Gn+ι(x) - Gn + ι(y)\< 2ζ{\x - y\)/L.

Inserting these last two estimates in (1.8) gives (1.7a).

To derive (1.7b), we differentiate (1.1) twice to obtain

(1.10) D!/P(x) = l/(l-Gn+1(x))

•[G,j{x) + Gin + ι{x)DjP{x) + Gjn + ι(x)DiP(x)

+ Gn+ln + 1(x)DiP(x)D,p(x)}.
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So to estimate DlJp, we must evaluate and estimate the second derivatives
of G. The evaluations are routine but tedious. We take the equations (1.9)
with p(x) replaced by τ, make the substitutiony = x — (r/L)z (to obtain
equations similar to (1.2)), differentiate, and then convert back to the
integration variable z. The result is that

(1.11) <?„(*) = - ( V P ( * ) ) ( Dιg{x-{p{x)/L)z)DJφ{z)dz

D,g(x -(p(x)/L)z)dJ(zJφ(z)) dz
z\<l

0 ) ) / z < i Dkg{x -(p(x)/L)z)DJ{zkzJφ(z)) dz.

Since φ has compact support,

f Djφ(z) dz = 0
ήz|<l

and hence

Gu(x) = ~(L/p{x)) f [Dιg(x -(p(x)/L)z) - Dlg(x)]Djφ(z) dz

with analogous expressions for Gt n + ι(x) and Gn + ι n + ι(x). The integrals
of these expressions are estimated by noting that

\D,g(x -(p(x)/L)z) - D,g(x)\< ϊ(\p(x)\/L)

so

|G,y(x)|<JfiΓL^(|p(x)|/L)/|p(x)|

|G,.B + i(*)l < (« + ^) f ( |p(x) | /L)/ |p(x) |

|G,, + 1,n + 1(x)|/ < (« + 1 + A:)f( \p(x)/L)/{\p(x)\L).

Inequality (1.7b) follows readily from these inequalities in conjunction
with (1.3), (1.5), and (1.10).

By virtue of the continuity of Dp, we infer that p is proper provided
\Dp\ is bounded away from zero on 3Ω. Now if x e 9Ω, then

\Dp(x)\ = \Dg(x)\/ 1 + Dg(x) • f zφ(z) dz

>2\Dg(x)\/(2 + L)
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since \Dg\ < \L. Thus p is proper if \Dg\ is bounded away from zero on

3Ω, so let x e 3Ω.

Suppose first that Ω satisfies an interior sphere condition at x with

center x0, and let M be a positive constant such that g(y) > Md(y) for

all y e R". If ω is the vector from x to JC0, it is clear that

d(x + ω) = /|<o| forO < / < 1,

and hence

g(x + ω) - g(x) = g(x + /to) > Afί|ω| for 0 < t < 1.

Therefore ω Z)g( c) > Af |ω|, so |/>g(jc)| > M.

To complete the proof, we need only show that the set of points of 3Ω

at which Ω satisfies an interior sphere condition is dense in 3Ω, so let

X G 3 Ω and 8 > 0 be arbitrary, and choose xλ e Ω and X 2 G 3Ω such that

I* - xx\ < δ/2, \xλ - x2\ = dixj.

Since d(xλ) < δ/2, it follows that \x — x2\ < δ; also Ω satisfies an interior

sphere condition (with center xλ and radius d(xι)) at JC2. Thus the set of

points of 3 Ω at which Ω satisfies an interior sphere condition is dense in

3Ω. From the continuity of Dg it follows that \Dg\ > M on 3Ω and hence

p is proper. D

We remark that a regularized distance constructed with smoother g or

φ will obey an estimate on its higher derivatives analogous to (1.7).

Moreover modulus of continuity estimates for these higher derivatives can

be obtained in terms of the function ξ (cf. [3, Lemma 2.8] and Theorem

4.1 below) under the hypotheses of the preceding theorem. We remark

also that the condition that g/d and d/g be uniformly bounded is

equivalent, in this case, to Dg being bounded away from zero on 3Ω.

We now consider convex domains. For technical reasons (which will

become clear later), we only consider bounded convex domains.

THEOREM 1.4. Let Ω be an open, bounded, convex subset ofKn. Then Ω

has a concave proper regularized distance p, i.e. the matrix (Difρ(x)) is

negative semi-definite for x e R" \ 3Ω.

Proof. Without loss of generality, we may assume that O e Ω . Define

the function h(x) by

h(x) = in f {λ> O x G λ Ω } .

(This is the well-known Minkowski distance function. Although all of our

assertions concerning h can be derived from known results in the theory of
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convexity, e.g. from results on [17], we shall give elementary direct proofs.)
We shall show that

h is convex, i.e., h(tx + (1 - t)y) < th(x) +(1 - t)h(y) if 0 < t < 1

h is uniformly Lipschitz, |X|/|/I(JC)| is uniformly bounded for x Φ 0.

To prove the convexity, suppose x e λΩ and y e μΩ, say x = λx l 9

y = MJV Then

tx +(1 - /).y = ^λxx +(1 - t)μyλ.

Setting a = tλ/(tλ 4- (1 - /)μ) and noting that 0 < a < 1, we obtain

tx +(i - o.y = (tλ +(i - 0μ)[«^i +0- - «)Λ]

Since Ω is convex, this equation implies that

tx +(1 - t)y e (/λ +(1 - ί)μ)Ω

so h(tx 4- (1 - 0^) < ίλ 4- (1 — /)/x, and hence h is convex.
To prove the uniform Lipschitz continuity, set r = 2/d(0), and sup-

pose x G λΩ, say x = λx1. Then

3; = λxλ + y - x = λxx +[{\/r)(y - x)/\y - x\]r\y - x\.

Clearly z = (l/r)(y - x)/\y - x\ e Ω since |z| = \/r < d(0)/29 i.e. z is
closer to 0 than 3Ω is. Thus, setting a = λ/(λ 4- r|y — x|),

j = \xx 4- r | j - x|z = (λ 4- r\y - x\){ax1 4-(l - α)z),

so h{y) < h(x) + r\y - x\. Upon reversing the roles of λ* and y9 we
obtain

\h{x) - h{y)\ < r\x - y\.

To obtain a bound on |Λ:|/|Λ(X)|, suppose \y\ < Kίov allj^ e Ω. Then
for x Φ 0, we have

for all y e Ω and hence x ί (|x|/2J5Γ)Ω. Since Ω is convex and 0 e Ω, it
follows that x ί λ Ω for all λ < \x\/2K. Hence |A(JC)| > \x\/2K for x Φ 0,
SO|X|/|Λ(JC)| < 2#.

Let us now define

and note that g is uniformly Lipschitz since // is. Since g = 0 on ΘΩ, it
follows that if \x — z\ = d(x) and z e ΘΩ, then

\g{x)\ =\g{x) - g{z)\ < r\x - z\ = r\d{x)\.
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Also it is readily seen that (l//?(i))x E 3Ω, SO

\d(x)\ <\x* (l/h(x))x\ = (\x\/\h(x)\)\g(x)\ < 2K\g(x)\.

Clearly g > 0 in Ω and g < 0 outside Ω, so the ratios g/d and d/g are
positive and uniformly bounded. Therefore g satisfies the hypotheses of
Lemma 1. Let G and p be as in that lemma. Since g is concave, φ is
non-negative, and

G(tx + (l - t)y,tτ+(l - t)σ)

= ί g(t[x-(τ/L)z]+(l-t){y-(o/L)z])φ(x)dz,
J\z\<l

it follows that G is jointly concave in the variables x and T. We now define
pm inductively by p0 = 0 and

pjx) = f G(x, pm_i(x)) + ipm_!(x),

and observe that ρ(x) = limm_o opm(x). Now if pm_1 is concave, then

pm(/x +(1 - t)y) = | G ( t t +(1 - t)y, pm_x(tx +(1 -

\G{tx +(1 - ί ) j , ίpM-i(x) +(1 - *)pn-i(y))

+ \\pm-ι{tx +(1 - t)y) - tpm.x{x) -(1

= §G(/x +(1 - t)y, tpm_x(x) +(1 -

+ h{tpm_ι{x)+{l-t)pm_1(y)).

Since p0 and G are concave, sending m -> oo shows that p is concave. The
semi-definiteness of (D^p) is proved by standard calculus arguments (see
[1], Thm. 3.6).

To show that p is proper, we observe that

h(tx) = th(x) for all / > 0 and all x e R",

and hence that

G{tx, tτ) = (1 - /) + /G(x, T) for all t > 0 and all (JC, r) e R"+1.

Differentiating this equation with respect to /, setting t = 1 and τ = ρ(x)
yields

x'Gvίx) + p(x)Gn+1(x) = -1 + p(x).

This equation and the equation for J9ρ imply that
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If 0 < \p(x)\ < 1/3, it follows from this equation and (1.3) that

\Dp(x)\ > l/(3\x\).

Since \d(x)\ > \p(x)\/2r and |JC| < AT, we conclude that p is proper. D

We remark that the regularized distance constructed in this theorem is
as regular as the domain (in the sense used in Theorem 1.3). To see this,
let gj be a function with the properties described in Theorem 1.3 on a
bounded convex domain Ω. Then h(x) is defined implicitly by the
equation gλ(x/h(x)) = 0. But

and it is easy to check that this is non-zero in a neighborhood of 3Ω.
Hence h has the same regularity as gλ near 3Ω, and therefore so does p. Of
course away from 3Ω, p is C2. This observation will not be used in the
applications.

We fruther remark that it can be shown that the regularized distance
from the proof of Corollary 1.2 is concave if Ω is convex; however it is not
apparent that this regularized distance is proper.

2. Local regularized distance. From the construction of regularized
distance in §1, it is clear that local properties of p are determined by local
properties of g. In this section we explore some of these local properties
and their relationship with properties of Ω. Everything we wish to consider
can be described via a local representation of 3Ω, defined below. We
remark that our basic construction parallels that of [22, Theorem 2.1] (see
also [15, §4]) although the idea of a proper regularized distance does not
appear there.

To be specific, let x0 e 3Ω, let r > 0, and define

Br = {x e R\ |JC - JCO| < r } , Ωr = Br Π Ω.

If there is a constant r > 0 and a function p e C 2 (5 r \3Ω) which is
Lipschitz continuous on Br and such that the ratios d/p and p/d are
bounded and positive on Br\ 3Ω, we call p a local regularized distance at
x0. If there are positive constants δ and A, an orthonormal coordinate
system Y = (y\ yn) = (y1,... ,yn~ι

y yn) with origin at xQ9 and a function
/ such that

Ω4δ= {yeB4δ:y»>f(y')}

and

-yί\ foτy'l9ylinB4δ9
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we call/a local representation for 3Ω at x0. We note that not every domain

has a local representation at every point of its boundary.

For a fixed x0 e 3Ω at which a local representation / exists, it is easy

to verify that g(y) = yn — f(y') obeys the hypotheses of Lemma 1.1 with

Rn replaced by B28. Clearly g is Lipschitz in B28 with

\g(x) ~ g(y)\< max{l,^}|x -y\ for all*, y'mB28,

and the ratios d/g and g/d are positive in B2δ with

\d(x)\ < \g(x)\ < (A2 + I)l/2\d(x)\ for x e B2δ.

If we choose L = 2max{l, ^4}, the construction of p in Lemma 1.1 can be

carried out for x e Bs. To see this, we observe first that G(x, τ) is defined

for x <Ξ B8 and \τ\/L < δ. Since /(0) = 0, it follows from (1.4) and the

definition of g that \G(x, τ) | < \L\x\ + \Ί. Hence G(x, •) is a self-map

of the interval [-Lδ, Lδ] if x e 2?g, so the construction of p in Lemma 1.1

can be carried out in this case. Moreover \p\/L < 8. Finally p is proper

because g(x + εω) — g(x) = ε for ω a unit vector in the ^"-direction, so

Gn{x) = 1 in B8. In fact it is clear that \Dp\ > 1/2 in B8.

When additional hypotheses are placed on /, they imply additional

properties for p.

THEOREM 2.1. Let x0 e 3Ω. //3Ω has a C1 local representation f at xQ,

then Ω has a C1 local regularized distance p at JC0. Specifically if ζ is a

increasing function such that ξ(0) = 0 and if

\Df{x')-Df(y')\ < ζ{\x-y\) for\x'\, \y'\ < 4δ,

then there is a positive constant Cl9 determined only by A, δ, and n, such that

\Dp(x)-Dp(y)\<m{\x-y\) forx,yinB8

\D2p(x)\ < C ir(|p(x)|/2max{l, A})/\p(x)\ for x e B8.

We say that Ω is convex at x0 e 3Ω if Ώr is convex for some r > 0.

When Ω is convex at xθ9 a elementary calculation (cf. [l, Proposition 3.4]

shows that 3Ω has a convex local representation at x0. From this fact, we

can proceed as in the last half of the proof of Theorem 1.4 to infer the

next theorem.

THEOREM 2.2. Let x0 e 3Ω be a point at which Ω is convex. Then Ω has

a concave local regularized distance at x0. D

Finally we show that the two senses of regularity (that of Theorem 2.1

and that of Theorem 1.3) are essentially equivalent.
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THEOREM 2.3. Let Ω be an open set in R". // there is a function

g e Cι(Rn) such that the hypotheses of Lemma 1.1 are satisfied, then there

is a local represesntaiion for 3Ω at each point of 3Ω. // there is a local

representation for 3Ω at each point ofdίl and if the constants A and 8 in the

definition of local representation can be chosen independent of the particular

point JC0, then there is a function g e C1(RΠ) which satisfies the hypotheses

of Lemma 1.1.

Proof. The first implication is a simple consequence of the implicit

function theorem. The second implication follows by a construction of the

function g.

Let {2?,} be a sequence of open balls of radius δ such that \J*LιBι = R"

and such that there is a positive integer TV such that each point in R" lies

in at most N of these balls. (For example, the Bι 's could be centered at all

points whose coordinates are integer multiplies of 8/n). If Btr n 3Ω is

non-empty, then let p, be a C 1 regularized distance defined in Bt and if

Bi Π 3Ω is empty let p. be the regularized distance for Ω constructed in

Corollary 1.2. Let (ij£.) be a C2 partition of unit subordinate to (J?7) with

sup, sup# I-Dij/I finite and define
00

g(χ) = Σvi(χ)pi(χ)
/ = 1

It is clear that g e C^R^) and that g is uniformly Lipschitz on R". Since

there are positive constants cλ and c2 such that

cx\d(x)\ <\Pi(x)\ < c2\d(x)\ for/ = 1,2,... and x e R",

it follows that g is the required function. D

Of course detailed information about the modulus of continuity of the

function g can be obtained from a knowledge of the moduli of continuity

of the local representations and vice versa. A closer examination of certain

aspects of the regularity of domains, especially comparison of different

definitions, can be found in [2].

3. Anisotropic regularized distance. In certain circumstances, e.g.,

for parabolic equations, the independent variables are not all treated

equally. Rather than discuss this situation in its fullest generality, we shall

work here only with an anisotropic regularized distance suitable for

parabolic equations.

To conform with normal usage, we change our notation slightly. We

consider open sets Q in Rn + ι and label points in R" + 1 by (JC,/) =

(JC1, . . . ,x", t). When g is defined on a subset of R", we set

Dg=(Dιg9...9Dng)9 g, = A, + Ig,etc.
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provided the derivatives exist. For any open set β c R n + 1 and ί G R, we

define

β ( / ) = { j c e R » : ( j c , / ) e β } , 1 = {teR:Q(t)φ 0 } .

For (x, 0 G Rw let ^ ( x , t) be the signed distance from (x, 0 to 9β(ί) ,

and for (x 0 , ί 0) e Rn+ι and r > 0, we define

Cr = {(*, t) e R"+ 1 : |x - xn\ < r, |/ - *0 | < >*2}> β r = C Γ Π β.

By a regularized parabolic distance, we mean a function p such that

(i) 7>p, D2ρy and p, exist and are continuous on R" X 7 \ 9β,

(ii) there is a constant C such that

\p(xl9t2) - p ( x 2 , / 2 ) | < C(|x! - x 2 | + |/x - / 2 | 1 / 2 ) ?

(iii) the ratios p/dp and ί/^/p are bounded and continuous on

Rn X 7 \ 9 β . Let (x 0 , /0) e dQ. If there is a positive constant r with

[̂ 0 — r, /0 + r] c 7 and a function p satisfying the definition of regu-

larized parabolic distance with Rn X 7 replaced by Cr, we call p a /oca/

regularized parabolic distance at (x 0 , / 0 ) .

For simplicity we consider only local regularized parabolic distances,

which we call regularized distances in Cr for brevity.

If there are constants S and A, an orthonormal coordinate system

Y = (y'> yn) with origin at x0 and a function/such that

and

|V2\
'ί-^i + ki - * 21

we call / a local representation for dQ at (x 0 , / 0 ) . We note that if / is a

local representation for dQ at (x 0 , / 0 ) , then (x 0 , ί 0) must lie on the lateral

surface of dQ (see [11] for the definition).

From this/we can construct a regularized distance in Cδ. We let φ be

a non-negative C2(R"~ι) function with support in {\z\ < 1} such that

/|z|<iΦ(z) dz = 1, we let η be a non-negative C2(R) function with support

in (-1,0) with f!{η(s) ds = 1, and we set

K = [° \η'(s)\ds + f \Dφ(z)\dz f

note that ϋΓ > 2. Setting L = 4(A2 + l)ι/2 and

, /, T, σ)

I fa ) ) dz η(s)
z\<\
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for (y9 t) e Q, |τ | < Lδ, |σ| < L 2δ 2, it is readily verified that

faFiy, t, r, σ)| < L/4, |/>σF(^, ί, r, σ)| < l/(4

\DTF(y,t,τ,σ)\<l/4.

If we set G(y, t, T) = F(y9t, T, T 2 / 2 ) , it follows that a regularized dis-

tance in Cδ is given implicitly by the equation

(3.1) p(y,t) = G(y9t,p(y9t)).

Although convexity is not of particular concern for such equations,

we desire a parabolic analog of the condition/ e C\B48). To describe the

analog, consider an increasing, continuous function ξ such that £(•)/' * s

decreasing. We then assume of/that

(3.2a) \Df{y[, tx) - Df(y^, t2)\ < ζ{\y[ - yβ + ζ(\tι - t2\
1/2)

(3.2b) \f(y, h) -f(y, / 2 ) | <|ί x - t2\
1/2ζ(\h - t2\

1/2).

(When ζ(s) = Csa for constants a < 1 and C, this definition says that

/GΞ //-i+«.i/2+«/2 j n the sense of [16] and that 3β Π C4δ is a surface of

class Λi ' 1 /^ 0 7 2 i n Λe sense of [7].) from these inequalities we can infer

estimates on Dp, D2p, and ρt analogous to (1.7).

THEOREM 3.1. Let Q be an open set on R"+1, let (x0910) e dQ, and

suppose dQ has a local representation f at (JC0, t0) for which (3.2) holds.

Then there is a positive constant, C = C(K, L, n) such that the regularized

distance p constructed above obeys the estimates

(3.3a) \Dp(Xι, tl) - Dp(x2, t2)\ < c[ζ{\xx - x2\) + ξ(\tl - uf/2)\

(3.3b) \D2p(x, t)\ < Cξ{\p(x, t)\/L)/\p(x, t)\

(3.3c) \pt(x, t)\ < Cζ(\p(x, t)\/L)/\p(x, t)\.

Proof. To verify (3.3a), we proceed as in Theorem 1.3 making judi-

cious use of (3.2a, b). For brevity, we write pι = p(xv /x), ρ2 = p(x2, t2),

and f(j, k, m, r) = / ( * ; - (pk/L)z, tm - (pf/2K2L2)s) and similarly
for derivatives of /. Also we assume, by relabelling points if necessary,

that | P l | > \p2\.

An examination of the proof of Theorem 1.3 and the fact that

GT = Fτ + τFσ show that we need only estimate

A1 = DF{xlt tx,px, p\/2) - DF(xlt tx, P l , p\/2)

and
Bi = PιF,{xi, h, ρ 1 ; Pi/2) - ρ2Fσ(x2, t2, p2, p\/2).
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To estimate Av we examine the two cases (\p\ — p\\/2K2L2)ι/2 <
\px - P2\/2L and (\p\ - p\\/2K2L2)ι/1 > \pλ - p2\/2L. In the first case,
we write

Λ = ί ° ί [Df(1,1,1,1) - Df(l9lΛ,2)]φ(z) dzτι(s) ds
J-lJ\z\<l

and use (3.2a) and the monontonicity of ξ to infer that

In the second case, we write

J-ι
and use (3.2b) and the monotonicity of £(•)/' to infer that

^1*^ + P2\ξ{\Pl- P2\/2L)/K\Pι\.

Since K > 2, | P l | > |p2|, and | P l - p2\ < 2Lmax{ \xx - x2\, \tx - t2\
1/2}, it

follows that in either case

To estimate Bv we observe that

Bι = Pι[F,{xi, h, p1} p\/2) - F^x^, P l , p\/2)]

+ Pl[F,,(x2, tx, P l , pi/2) - Fσ(x2, t2, Pι, pi/2)}

+ [PI^,(*2> h, p^ p\/2) - P2Fσ{x2, t2, p2, pi/2)]

+ p2[Fσ{x2, t2, p2, p\/2) - Fa{x2, t2, p2, pi/2)},

and denote the terms in square brackets by B2, B3, B4, B5. For B2 the two
cases are \xx - x2\ < \p^/2λ/1KL and \xx - x2\ > \p^/2x/1KL. In the first
case we write

X(η(s) + sη'(s)) ds

and we observe that

(3.4)

and that

= (xi ~ x2) • Γ Df{λxx +(1 - λ)x2-(p1/L)z,t1•Ό
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Thus, writing x = λxλ 4- (1 — λ)x2 — (pλ/L)z9 η(s) = η(s) + sη'(s), we
have

B2 = ί° ί ίl {/>/(*, tx -(p\/2K2L2)s) - Df(x, tλ)} dλ
J-l J\z\<\ J0

Xφ{z) dzη(s) ds

and hence, using (3.2a) and the monotonicity of f ( )/ ,

B2 < (1 + K)\Xl - x2\ξ{\Pl\/2ι/2KL)/\Pl\
2

<(l + K)ζ{\Xl-x2\)/2^KL\Pl\.

In the second case we observe that

, 1,1,1) = (-Pi/Ljjf1 z 2)/(JC7 - ( λ P l / L ) z , ίx -

If we write Xj = xj - (λpλ/L)s and t = t λ - {ρ\/2K2L2)s, define η as

before, and use (3.4), we see that

-(Pl/L)/° / f z -{Df{xl9 ϊ) - Df{x2, ή] dλ
J-l J\z\<\ J0

Xφ{z)η(s)ds

^ w < i {f(xj,ϊ)-f(xJ,t1)}φ(z)dzη(s)ds

and therefore, using (3.2) and the monotonicity of ξ

\B2\ < (1 + K)[!{\Xl - x2\)/L\Pl\

<2{\+K)ζ{\Xι-x2\)/L\Pι\.

In either case this inequality is valid for B2.
To estimate

B,= ° f
l J\z\'|z|<l

X(η(s) +sη'(s))ds,

we consider the cases \tx — t2\ < p\ and \tλ — t2\ > p\. In the first case, we
use the inequality

|!/2\
1/(2,1,1,1) -/(2,1,2,1)| <\h ~ t2\

1/2ζ(\h ~ ht/2) <\9tt(\h - t2\
1/2).
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In the second case, we use (3.4) to infer that

,l,l,l)-f(x2-(p1/L)z,t1)}/ {
J\z\<l

+ [f(x2-(p1/L)z, t2) -f(2,l,2,l)])φ(z) dz (η(s) + sr,'(s))ds,

in which case

(2M){\Pl\/21/2KL)ζ{\Pl\/2^KL)

In either case, \B3\ < (1 + A " ) ^ - ί2 |
1 / 2)|Pil

To estimate B4, we see that

[
-I J\z\<l

X(η(s) + sη'(s)) ds

by observing that

/(2, j,2Λ) = -(Px/Ljjί1 z Df(x2 - \{Pj/L)z, t2-{p\/2K2L2)s) dλ

+f{x2,t2-{p\/2K2L2)s)

and using (3.2a). Finally B5 is estimated as B3 was. It follows that there is
a constant C" = C'(K, L) such that

ι - χ2\) + ̂ (it, - t2\
1/2)},

which in conjunction with the estimate for Aly implies (3.3a).
To prove (3.3b) and (3.3c), we note that, as in Theorem 1.3, we can

obtain the following estimates:

\DtJF(x,t,r,σ)\<ίKLξ{\τ\/L)/\τ\

\DiσF{x, t, T, σ)| < (1

\DiTF{x, t, T, σ)| < («

\DστF(x, t, T, σ)| < (1

\DaaF{x> t, T, σ ) | < (1 + K ) ζ { o )

\Ft(x, t, T, a)\ < LKζ{σι/2/KL)/σ.

The desired estimates follow from these inequalities and the method of
Theorem 1.3. D
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4. Applications. We now describe briefly some applications of the

regularized distance.

The first application is an extension of the Hopf boundary point

lemma [6]; this extension is similar to results of Kamynin and Khimchenko

[12]. Before stating the result, we give some definitions.

Suppose Ω has a C1 local representation / at x0 ^ 3Ω. We say that Ω

is Dini at x 0 if Df(0) = 0 and if there is a function ω such that

(4.1a) ω is increasing and continuous on [0, 8δ]

(4.1b) ω(0) = 0

(4.1c) / (ω(s)/s) ds is finite

(4.2) \Df(x') - Df(y>)\ < ω(|x' - y'\) for |x'|, \y'\ < 4δ.

We say that Ω satisfies an interior Dini condition at x0 e 3Ω if there is an

open set Ω ' c Ω such that x0 e 3Ω' and Ω' is Dini at x0. We use the

constants A and δ, the function ω, and the coordinate system Y from the

various definitions without further comment. We denote by v the unit

vector in the yn direction and by d the distance to 3Ω', and we follows the

summation convention for repeated indices.

THEOREM 4.1. Let££ be a linear second-order differential operator

= aiJDιJu + bιDμ + cu

defined on an open set Ω c R " with the matrix (aιJ(x)) positive semi-definite

and symmetric for all x e Ω. Suppose that u e C°(Ω) Π C2(Ω), thatSfu <

0 in Ω, that there is a point xQ e 3Ω for which u(xQ) > 0 and u(xQ) > u(x)

for all x e Ω and that Ω satisfies an interior Dini condition at x0. Let ω be a

function satisfying (4.1), let A2 be a positive constant, set coλ(x) =

ω(d(x))/ω(2d(x)), ω2(x) = ω(d(x))/d(x), and suppose that,

(4.3a) 0 < Σaιi(x) < aι^(x)vivJ/(20ω{\x - xo\)f
i

(4.3b) Σa"(x)ϊA2ω1(x)aiJ(x)rivJ

i

(4.3c) b{x)Vi > -A2ω2(x)a'J(x)vivj

(4.3d) ΣW(x)\ ^ A2[ω2{x)/<o{\x - xo\)]a'J(x)vιpJ
i

(4.3e) 0 > c{x) > -A2[ω2{x)/d(x)]a'J(x)vuVj

for all x G Ω .̂ Then for any vector μ such that μ v > 0, we have

limsup(w(x0 + tμ) — u(xo))/t < 0.
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Proof. By standard arguments, it suffices to find a function h e
C2(Ωg) Π C\Ώ'δ) such thatoSPΛ > 0 in Ω£, Λ = 0 on 3Ω^\ 9Bδ, h > 0 on
Ω ,̂ dh/dyn > 0 at JC0. We determine h as a function of local regularized
distance on Ω', say h{x) = &(p(.x)), and we suppose that k(0) = 0 and
that kr > 0 and Λ:" > 0 on (0, δ); these properties will be verified from
the explicit formula for k. By direct calculation,

= k"aijDiPDjP +

and

aiJDiPDiP = aιhιVj + aij(DiP - v>

> \aihιvj - WJDμDjP - a^(DiP - Vι){DjP - Vj).

Since DP(x0) = v, we infer from (4.3a) and Theorem 2.1 that

aijDiPDjP > \aijviVj.

The other terms in the expression for J£h are estimated similarly via
Theorem 2.1, (4.1a), (4.3b-e), and the inequality k(P) < Pk\P) which
follows from k" > 0. Hence for some constant H = H(A, A2, n) we have

Seh > ia'JViVjik" - Hk'ω(2P)/P).

Taking (4.1c) into account, we see that the desired function is

k(P)= Γ expίi/ f ω(2s)/sds) dr. Π

It is instructive to compare this theorem with [12, Theorem 1] and
similar results of Kamynin and Khimchenko. The proof of our Theorem
3.1 is simple and our method is well-suited to conditions stated purely in
terms of the distance function d. On the other hand, Kamynin and
Khimchenko consider a relaxation of our (4.3b). In addition they are able
to prove more easily the shaφness of the Dini condition (4.1c) for this
result and those discussed below.

Of course an analogous boundary part lemma for parabolic equations
can be proved via Theorem 3.1 (cf. [9], [13]). We mention also [21] in
which a boundary-point-type lemma is proved for Lipschitz domains. All
of these boundary point results lead to uniqueness theorems for suitable
boundary value problems.

Another application of the regularized distance occurs in the study of
regularity at the boundary for solutions of boundary vlaue problems. For
linear equations we refer to [10] and [11], and we only remark that the
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results there can be obtained via regularized distance. For nonlinear
equations, we refer to [18] and [19] although we remark that some of the
results thee concerning convex domains can be improved by using Theo-
rem 1.4. For example [18, Theorem A.I] can be proved directly by the
methods of [18, Chapter II] since a global regularized distance is available.
Similarly the hypothesis that 9Ω e C 2 can be removed from [10, Theo-
rems 3.3 and 3.9]. In particular we have the following result: if Ω is
bounded and convex, if u e C°(Ω) Π C2(Ω) is a solution of the minimal
surface equation

Jtu = (l + |DW|2)ΔM - DμDjuDijU = 0

in Ω, and if w|aΩ is Lipschitz, then u is Holder continuous on Ω. In
connection with these results on nonlinear equations, we raise an im-
portant question concerning the regularized distance: Is there a natural
analog of Serrin's curvature conditions [23] for domains which are less
smooth than C2? Since in the theory of elliptic equations, these conditions
are used to infer estimates on the Hessian matrix (D^d) of the distance
function, it seems reasonable to assume that the analog exists. So far,
however, we have not been able to find a simple geometric condition
which implies the appropriate behavior for the Hessian (D-p) of the
regularized distance.

As a final application, we discuss extensions of functions on 3 Ω to
globally defined functions. In what follows, we assume Ω to be bounded
although an unbounded Ω can also be handled by our methods. Our first
step is to define appropriate regularity classes of functions in terms of
certain norms. We denote by ξ a continuous increasing function with
f(0) = 0 and £(/) > 0 for / > 0 such that ζ{t)/t is a decreasing function
of t. (From [20, §3.5] it follows that assuming this last property involves
no loss of generality for our purposes), and we get Z(t) = logtξ(t)
(Z = capital f). For u defined on Ω and k > 0 an integer, we define

k

[u]z = sup{\u(x) - u(y)\/ξ{\x - y\): x Φ y in Ω

We note that \u\k+z is the usual Holder norm \\k+a when ζ(t) = ta for

some 0 < a < 1. We also note that 110 = || | | 0 and that | \k > \\ \\k for any

integer k. We denote by Hk+Z(Ώ) the set of all u for which \u\k+z is finite.

Let γ be a positive function defined on {t > 0} with the property that
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there are positive constants γ1 and γ2 such that

γiγ(20 < γ ( 0 < γ2γ(2ί) for all t > 0.

For δ > 0, we write Ω S = { X G Ω : d(x) > δ}, and for a > 0 and k a

non-negative integer such that tay(t) and tky(t) are increasing functions

of t, we define the norms

δ>0

||n||(*Γ) = sup{δ«y(δ)\\u\\k;aδ}.
δ>0

In analogy with the weighted Holder spaces of [3] we denote by H^T) and

C^Γ ) the set of all functions u on Ω with finite norm \u\{P and ||w||^Γ)

respectively. Thus (1.7) can be reformulated as saying p e C£~ι~z\ In fact

a stronger result is valid.

THEOREM 4.1. Under the hypotheses of Theorem 1.3 {including (1.6)) Ω

ftαs α regularized distance p G H^ι~z^ for any a > 2.

Proof. As in the proof of Theorem 1.3, we see that p e C^~1"Z ) for all

integers Λ > 2. We first show that i/2

(;1

α"Z) 3 C 2

( - 1 " Z ) Π C 3

( - 1 - Z ) for all

a e (0,1], and then that Hίfι~Z)
 D H1 + ZΠ C 2

( " X " Z ) , thus establishing the

theorem for 2 < α < 3. The general case α > 3 is handled similarly.

Let u e C 2

( - 1 " Z ) Π C 3

(- 1-Z ). Setting

δ>0

d* = max{l,diamΩ},

we see by some simple algebra that

Hence we need only estimate H in terms of cι = |Z> 3 M|^ 2 ~ Z ) and c2 =

\D2u\$~Z) since cx < Ht/H^1"2 ' and c 2 < H M I I ^ 1 " 2 ' . NOW fix δ > 0, posi-

tive integers / < n and j < n, and x and y in Ωδ. If |JC — y\ < 8/2, then

x + t(y — x) e Ω δ / 2 for 0 < / < 1, so

\DljU{x) - D,jU(y)\ = £ DiJku{x + t(y - x)) dt{xk - yk)

< Acx\x -y\ζ(8/2)8-2 a

On the other hand if \x - y\ > 8/2, then

\DljU(x) - DijU{y)\ <\Dυu(x)\
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Hence H < 4n(cλ + c2), yielding H^ι~Z) D C^~Z) Π C^ι~z\
To show that H!fι~Z) 3 C2

("1"Z ) Π # 1 + z , we proceed as before ex-
cept that in the case \x - y\> δ/2, we use the estimate

\DU(X) - Du(y)\ * S{\χ - y\) = M l * - y\)/\* ~ y\)\χ - y\

<2\x-y\ζ{8)/8, D

It should be noted that the inclusions H^~Z) => C2

(~1~Z) Π C3

(-1"Z )

and Hffι~Z) zi Hι + Z Π Cffι~Z) were established without any restrictions
on the smoothness of 3Ω. Under slightly stronger hypotheses (e.g., 3Ω is
Lipschitz and Z = /?, a constant, with 0 < β < 1), better results are valid;
see [3, Lemma 2.1].

We are now ready to discuss extensions of functions on 3Ω. For k and
ξ as above, we write H'k+Z for the set of all h & Hk+z(Rn) with compact
support and we write i^ + z (3Ω) for the set of all h with finite norm:

\h\k+z;dQ = inf{|Λ|*+z: h e i ^ + z a n d Λ = /zon3Ω}.

We note that if h is continuous on 3Ω, then h e i/z(3Ω) for some ζ.
Moreover if 3Ω has a local representation at each x o e 3 ί 2 and if \h(x) —
h{y)\ < ζ(\x — y\) for all x andj> in 3Ω and some £, then h e i/z(3Ω) and
|Λ|Z;8Ω = 1. If, in addition, all the local representations / are in Ck for
some k > 1 then if^+z(3Ω) (for suitable ζ) and HJ+z(dϊl) (for ally < k
and all ζ) can be defined via the function g given by g(y') = h(y\ f{y'))
being in the appropriate function space. For brevity we write 3Ω e Hk+Z

if 3Ω has a local Hk+Z represenentation at each x0 ^ 3Ω. In this case we
can extend functions on 3 Ω in a convenient fashion (cf. [5, Lemma 1]).

THEOREM 4.2. (a) // h0 e i/z(3Ω), then there is h G HZ such that
h = h0 on 3Ω and \h\{~Z) < c(a, Ω)|λ|Z;3Q for all a > 1. (b) Suppose
3Ω e Hι+Z and let v be the inner normal to 3Ω. If h0 e i/1+z(3Ω) and if
hλ e Hz(dΩ) then there is h e f/ί+z wcΛ ί/zαr

/i = Λo, Z)^ - v — hλ on 3Ω

I λ t 1 " ^ ^ c(β,O)(|A|i+Z;ao

#// α > 2.

. Set H{x, T) = /,Z|<1ΛO(^ - (τ/L)z)φ(z) dz with φ as in §1.
(a) h(x) = H(x, ρ(x)) gives the desired function.
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(b) Note that according to (a), I/Dp v can be extended to a function
F ^ H'z Π H^~z\ Using the obvious definition for Hx{x, T), we set h2(x)
= H(x, p(x)) and h3(x) = Hλ(x, p(χ)). Then

h(x) = h2(x) +(h3(x) - Dh2(x) Dp(x))F(x)p(x)

gives the desired function. D
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