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REGULARIZED DISTANCE AND ITS APPLICATIONS

GARY M. LIEBERMAN

One of the most powerful tools in studying second order elliptic and
parabolic differential equations is the barrier method, i.e. using the
comparison principle with a suitable comparison or barrier function to
infer some feature of the boundary behavior of a solution to such an
equation. For sufficiently smooth domains Q (e.g. 3Q € C?), barrier
functions can be constructed rather easily in terms of the distance
function d(x) = dist(x, 3Q) because d is a C? function near 3%; for less
smooth domains it need not be even C! (although itis
Lipschitz continuous.) These less smooth domains are of interest and
several authors have constructed barriers for certain such domains. We
consider here a general method for constructing these barriers by intro-
ducing a regularized distance, described below.

Our concern here is primarily to develop a general theory of this
regularized distance; we merely indicate some applications. We note that
many of the ideas are not new and have appeared before in specialized
circumstances. For example, essentially a regularized distance has been
constructed by Triebel [24, §3.2.3] for arbitrary domains and by Necas
[22, Theorem 2.1] for Lipschitz domains. Both constructions are slightly
different from the one given here. In addition we explore aspects of
regularized distance not considered by Triebel or Necas.

We mention also some authors who have used some of these addi-
tional properties of the regularized distance. Vyborny used a regularized
distance in [25] although he took the existence of such a function as the
geometric characterization of his domains. Gilbarg and Hormander con-
structed and used essentially a regularized distance for C'** domains in
[3]. Finally Lieberman used a regularized distance both for C!** domains
and for convex dormains in [18]. Proofs of the properties asserted there are
contained in the present work.

This work is organized as follows. We derive basic properties of the
regularized distance, including its existence for arbitrary domains, in §1. A
local regularized distance for Lipschitz domains is discussed in §2, and a
modified regularized distance especially suited for parabolic equations is
constructed in §3. Some simple applications appear in §4.
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330 GARY M. LIEBERMAN

1. Existence and basic properties of regularized distance. Let { be
an open subset of R” having non-empty boundary 9§2. We define the
signed distance to 9L by

dist(x,092) x € Q

d =

(x) {—dist(x, 30) x¢ Q.

We call a function p a regularized distance for Q if p € C*(R*\ 9Q) N
C%(R") and if the ratios p(x)/d(x) and d(x)/p(x) are positive and
uniformly bounded for all x € R"\ 9{2. To construct a regularized dis-
tance, we use a modification of a standard mollification argument.

LEMMA 1.1. Let Q be an open subset of R" having non-empty boundary,
and suppose there is a Lipschitz function g for which the ratios d/g and g/d
are uniformly bounded and positive in R" \ 9€2. Let L be a positive constant
such that |g(x) — g(y)| < 3L|x — y| for all x and y in R", let ¢ be a
non-negative C?*(R") function with support in the unit ball such that
[re®(2) dz = 1 and define

Glx) [ slx=(r/L)2)e(z) dz.
Then a regularized distance is given by the equation

(1.1) p(x) = G(x, p(x)).

Proof. To see that p is a regularized distance, we first investigate the
properties of G.
For r # 0, we can write

12 G =(-7) [ s@e(Llx - 2)/m)

it is clear from this formula that G € C*(R"*'\ {(x,0)}) since g is
continuous and the integration is over a compact set. Moreover

G(x,m) =(xm) = [ [a(x=(n/L)2) = g(x = (n/L)2)]o(2) dz,

2]

so the choice of L implies that

(1.3) ‘G(x”"l) - G(x,'rz)l

IA

'(i<1 $LIn = 7l(|zl/L) ¢(2) dz

IA

'%l"'l - ”2|-

Similarly
1
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We now consider (1.1.). By virtue of (1.3), (1.1) has a unique solution
for every x € R”, which can be found by iteration. If p,(x) =0 and
P(X) = G(X, 0y 1(3))s then 9,,(X) = pp_1(X)] < 30p_1(X) = Pp_2(X),
so the infinite series X°_,(p,,(x) — p,,_,(x)) is uniformly and absolutely
convergent, with sum p(x) a solution of (1.1). The uniqueness of p follows
by noting that any two solutions p; and p, of (1.1) satisfy the inequality

lo1(x) = 02(x)] =[G (x, (%)) = G(x, p,(x))| < Flo1(x) — p(x)].
Another application of (1.3) yields

G(x,0) — 3lp(x)| < p(x) < G(x,0) + 3|o(x)];

since G(x,0) = g(x), we see that 3 < p(x)/g(x) < 2 and hence that p/d
and d/p are positive and uniformly bounded. Combining (1.3), (1.4) and
the equation

o(x) = p(y) = (G(x, p(x)) = G(x, p(»)))

+(G(x, p(»)) — G(y,p(»)))
yields

lo(x) —p(y¥)| < Lix -y,

so p is Lipschitz. That p is C? follows from the implicit function theorem,
and therefore p is a regularized distance.

It follows from the proof of Theorem 1.3 below that in fact p €
C3(R"\ 09) and that |D*p| = O(|p|'~*) for k = 0,1,2, 3 (cf. [15, Lemma
4.13]). In addition it is clear that higher regularity of p can be obtained by
increasing the regularity of ¢. In particular if ¢ € C®(R"), then p €
C*(R"\ 9Q) and |D*p| = O(|p|'~*) for all non-negative integers k.

Lemma 1.1 reduces the study of regularized distance to choosing a
suitable function g. We illustrate this procedure with various choices for g
relevant to the properties of £ we wish to consider. First we choose g = d
to obtain a result similar to that in [24, §3.2.3].

COROLLARY 1.2. Every domain has a regularized distance.

Proof. We need only verify that d is Lipschitz and use g = d in
Lemma 1. We shall show that |[d(x) — d(y)| < [x — y|. If x and y are both
in £ or if neither is in £, we proceed as in [4, §14.6]. Let z € 99 be a point
such that |y — z| = |d(y)|. Then

[d(x)] <|x — 2| <lx = y| +]d(»)].
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Reversing the roles of x and y, we obtain

|d{x) = d(y)| =[1d(x)| =1d(»)|] <|x = y].

On the other hand, if x € @ and y & Q, let z € 9Q be a point on the line
segment joining x and y. Then

lx =yl =ix = z| +]|z = y| 2|d(x)| +|d(p)] =|d(x) — d(»)].
Combining these two cases gives the desired result. O

Although this result has some independent interest, there are certain
desirable features (cf. [4, §14.6]) of the distance function for C* domains
which do not seem to have an analog for the regularized distance con-
structed in this corollary. The two such features we shall use in the
application are (1) that | Dp| be bounded away from zero near 9€2, and (2)
that geometric properties of { be represented by analytic properties of p.
To make (1) precise, we say that a regularized distance is proper if there
are positive constants ¢; and c, such that |Dp(x)| > ¢; whenever 0 <
le(x)| < c,. With regard to (2), we consider both regularity and convexity.
We shall describe regularity of 9§ in terms of the regularity of the
function g of Lemma 1. The connection with regularity in terms of a local
representation of {2 will be discussed in the next section.

THEOREM 1.3. Let @ and g be as in Lemma 1.1 and suppose that
g € CYR"). Then Q has a C! regularized distance. Let { be a continuous,
increasing function with §(0) = 0. If
(1.6) |Dg(x) — Dg(y)| < ¢(|x — y|) forallx, yinR"
Zso Dg is uniformly continuous), if L and ¢ are as in Lemma 1, and if
K= |D¢(z)ldx,
lz|<1

then p is proper and for i, j = 1,...,n we have
(1.7a) [Dp(x) — Dp(y)| < 8¢(|x — y|) forallx, yinR"

(1.76) D, p(x)| < 2(4K + 3n + 1)(L/]o(x)])¢(le(x)| /L)
for all x € R"\ 0Q.

Proof. First we note that G is C! since g is C* and use the implicit
function theorem to see that p is C*.

Before proceeding further, we simply notation as follows. Subscripts
on G will denote partial derivatives, 7 will be identified with x,,, and the



REGULARIZED DISTANCE

argument p(x) will be suppressed from G and its derivatives. Thus

6.(x) = ge(x. (3 Gal3) = G2 (rp(»). et

Also we denote by G'(x) the vector (Gy(x),...,G,(x)).
Differentiating (1.1) yields
Dp(x) = Dp(y) = (G'(x) = G'(»)) + Dp(¥)(G,,1(x) = G,11(y))
+G,.(x)(De(x) — Dp(y)).
Combining this equation with (1.3) and (1.5), we see that

333

(1.8) [Dp(x) — Do(y)| =< 2|G'(x) = G'(Y)| + 2L|G,,1(x) = G,.1(¥)]-

to obtain (1.7a) we estimate the two terms on the right side of (1.8).
Since g € C!, we can differentiate under the integral to obtain

9) @@ =]  Dslx=(p(x)/L))o(:) ds

G,an(x) = -1/L[  z-Dg(x —(p(x)/L)2)$(z) dz.

|z|<1

Hence
6'(x) = G'()]
< [, 1Ps(x =(p(x)/L)2) = Dgly = (p(x)/L)2)lo(2) ez

+ [ IDg(y ~(p(x)/L)z) = Dg(y = (p(»)/L)2)[6(z) dz

lz|]<1

<[ (s(x =)+ (o (x) = p(»)I/L))8(2) dz

[z|<1
<2¢(]x —yl) by (1.5).
Similarly

G, 41(x) = G, (¥)] < 28(Ix — yI)/L

Inserting these last two estimates in (1.8) gives (1.7a).
To derive (1.7b), we differentiate (1.1) twice to obtain

(1.10)  D;p(x) =1/(1 = G, 41(x))
'[Gu(x) + G (X)) Dp(x) + G, 1 (x) Dyp(x)

+Gn+1,n+1(x)Dip(X)D> p(X)} .
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So to estimate D, P, we must evaluate and estimate the second derivatives
of G. The evaluations are routine but tedious. We take the equations (1.9)
with p(x) replaced by 7, make the substitution y = x — (7/L)z (to obtain
equations similar to (1.2)), differentiate, and then convert back to the
integration variable z. The result is that

(111) G, (x)=~(L/p(x)) [ Dglx —(p(x)/L)2)Do(z) dz

11
Gorlx) = ~(Wp(x) [ Dglx =(p(x)/L)2)d, (2,0(2) d:
Gyi1per(%)

= -/ [ Diglx = (p(x)/L)2) D, (2429(2)) de
Since ¢ has compact support,
/|z|<1 D(z)dz =

and hence
G, () = ~(L/p(x) [ [Dglx=(p(x)/L)2) = Dg()] Do (2) ds

with analogous expressions for G, , . (x) and G, ,(x). The integrals
of these expressions are estimated by noting that

ID,g(x —(p(x)/L)z) — D,g(x)| < ¢(lp(x)| /L)
|G, ;(x)] < KLL(lp(x)| /L) /]p(x)]
G, ()] < (n+ K)¢(lp(x)] /L) /]p(x)]
Gt (< (n+ 1+ K)E(o(x) /L) /(lo(x)|L).

Inequality (1.7b) follows readily from these inequalities in conjunction
with (1.3), (1.5), and (1.10).

By virtue of the continuity of Dp, we infer that p is proper provided
| Dp| is bounded away from zero on 9€2. Now if x € 9%, then

Do) =1Dg(0) /|1 + D) [ sl e

> 2|Dg(x)|/(2 + L)
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since |Dg| < L. Thus p is proper if |Dg| is bounded away from zero on
9%, so let x € 992.

Suppose first that Q satisfies an interior sphere condition at x with
center x,, and let M be a positive constant such that g(y) > Md(y) for
all y € R". If w is the vector from x to x,, it is clear that

dix +w)=tlow] for0<t<1,
and hence
g(x +w)—glx)=g(x + tw) > Mtlw| for0<r<1.

Therefore w - Dg(x) = M|w|, so|Dg(x)| > M.

To complete the proof, we need only show that the set of points of 3Q
at which  satisfies an interior sphere condition is dense in 0%, so let
x € 02 and & > 0 be arbitrary, and choose x, € £ and x, € d{ such that

Ix = x)| <8/2, |x, — x,| = d(xy).
Since d(x;) < 8/2, it follows that |x — x,| < §; also  satisfies an interior
sphere condition (with center x, and radius d(x,)) at x,. Thus the set of
points of 9} at which  satisfies an interior sphere condition is dense in

9€2. From the continuity of Dg it follows that |Dg| > M on d€ and hence
p is proper. O

We remark that a regularized distance constructed with smoother g or
¢ will obey an estimate on its higher derivatives analogous to (1.7).
Moreover modulus of continuity estimates for these higher derivatives can
be obtained in terms of the function { (cf. [3, Lemma 2.8] and Theorem
4.1 below) under the hypotheses of the preceding theorem. We remark
also that the condition that g/d and d/g be uniformly bounded is
equivalent, in this case, to Dg being bounded away from zero on 9{2.

We now consider convex domains. For technical reasons (which will
become clear later), we only consider bounded convex domains.

THEOREM 1.4. Let Q be an open, bounded, convex subset of R". Then 2
has a concave proper regularized distance p, i.e. the matrix (D, ;p(x)) is
negative semi-definite for x € R"\ 040.

Proof. Without loss of generality, we may assume that 0 € Q. Define
the function A (x) by

h(x) =inf{A > 0: x € AQ}.

(This is the well-known Minkowski distance function. Although all of our
assertions concerning 4 can be derived from known results in the theory of
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convexity, e.g. from results on [17], we shall give elementary direct proofs.)
We shall show that
his convex,ie, h(tx +(1 —t)y) <th(x)+(1 —t)h(y)if0 <t <1
h is uniformly Lipschitz, |x|/|h(x)| is uniformly bounded for x # 0.

To prove the convexity, suppose x € A and y € pfl, say x = Ax,,
y = uy,. Then

tx+(1—t8)y=thx; +(1 — t)py,.
Setting a = tA/(tA + (1 — t)p) and noting that 0 < a < 1, we obtain
x+(1-0)y=(A+(1-0)p)[ax; +(1 — a)y,].
Since  is convex, this equation implies that
tx+(1—-t)ye (A +(1 —1t)p)Q

soh(tx + (1 — t)y) < tA + (1 — t)u, and hence 4 is convex.

To prove the uniform Lipschitz continuity, set r = 2 /d(0), and sup-
pose x € AQ, say x = Ax,. Then

y=Ax;+y—x=Ax; +[(1/r)(y = x)/ly = xl]rly — x].
Clearly z = (1/r)(y — x)/|y — x| € @ since |z| = 1/r < d(0)/2, i.e. z is
closer to 0 than d€2 is. Thus, setting & = A /(A + r|y — xJ),
y=Ax;+ry —xlz=(A+rly = x|)(ax; +(1 — a)z),
so h(y) < h(x) + r|y — x|. Upon reversing the roles of x and y, we
obtain
h(x) = h(p)] < rlx = yl.

To obtain a bound on |x|/|k(x)], suppose |y| < K for all y € Q. Then

for x # 0, we have
[(1/2K)|x]y] <|x]/2 +]x|

for all y € © and hence x & (|x|/2K ). Since € is convex and 0 € {, it
follows that x & AQ for all A < |x|/2K. Hence |h(x)| = |x|/2K for x # 0,
so|x|/|h(x)| < 2K.

Let us now define

g(x) =1-h(x),

and note that g is uniformly Lipschitz since % is. Since g = 0 on 9%, it
follows that if |x — z| = d(x) and z € 9, then

g(x)| =lg(x) = g(2)| < rlx = 2| = rld(x)].
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Also it is readily seen that (1/h(x))x € 0%, so

ld(x)] <|x & (1/h(x))x] = (IxI/1h(x)])]g(x)] < 2K]g(x)].
Clearly g > 0 in Q and g < 0 outside &, so the ratios g/d and d/g are
positive and uniformly bounded. Therefore g satisfies the hypotheses of

Lemma 1. Let G and p be as in that lemma. Since g is concave, ¢ is
non-negative, and

Gtx+(1 —t)y,tr+(1 — t)o)
= [ gltlx =(r/L)z] +(1 = )y = (o/L)2])$(x) dz,

lzj<1
it follows that G is jointly concave in the variables x and . We now define
p,, inductively by p, = 0 and

pm(x) = %G('xﬁ pm—l(x)) + %pm~1(x)’
and observe that p(x) = lim,,_, _p,,(x). Now if p,,_; is concave, then
p(tx +(1 = 1)y) = 3G(tx +(1 = 1)y, p,_y(tx +(1 = 1) y))
+ 50, 1(tx +(1 = 1) y)
> 3G(tx +(1 = 1)y, tp,,_1(x) +(1 = t)p,,_1(»))
+ 3o (tx + (1 = 1) y) = 1,1 (x) —(1 = 1)p,_1 ()]
+ 50,1 (tx +(1 = 1) y)
=3G(tx +(1 = 1)y, 1p,,_y(x) +(1 = 1)p,,_1(¥))
+ 30, (%) + (1 = 1) p,i(¥))-
Since p, and G are concave, sending m — oo shows that p is concave. The
semi-definiteness of (D,;p) is proved by standard calculus arguments (see

[1], Thm. 3.6).
To show that p is proper, we observe that

h(tx) =th(x) forallt > 0andall x € R",
and hence that
G(tx,t1)= (1 —1t) +tG(x,7) forallz >0andall(x,7) € R

Differentiating this equation with respect to ¢, setting t = 1 and 7 = p(x)
yields

x'Gi(x) + p(x)G, 1(x) = -1 + p(x).
This equation and the equation for Dp imply that
x+ Dp(x) = p(x) +(1/(G,.1(x) — 1)).



338 GARY M. LIEBERMAN

If 0 < |p(x)| < 1/3, it follows from this equation and (1.3) that

1Dp(x)] = 1/(3]x]).
Since |d(x)| = |p(x)|/2r and |x| < K, we conclude that p is proper. O

We remark that the regularized distance constructed in this theorem is
as regular as the domain (in the sense used in Theorem 1.3). To see this,
let g, be a function with the properties described in Theorem 1.3 on a
bounded convex domain . Then Ai(x) is defined implicitly by the
equation g,(x/h(x)) = 0. But

L (8(x/1)) = —x - Dey(x/1) /2%,

and it is easy to check that this is non-zero in a neighborhood of 9%2.
Hence & has the same regularity as g, near 9{2, and therefore so does p. Of
course away from 9Q, p is C2. This observation will not be used in the
applications.

We fruther remark that it can be shown that the regularized distance
from the proof of Corollary 1.2 is concave if £ is convex; however it is not
apparent that this regularized distance is proper.

2. Local regularized distance. From the construction of regularized
distance in §1, it is clear that local properties of p are determined by local
properties of g. In this section we explore some of these local properties
and their relationship with properties of 2. Everything we wish to consider
can be described via a local representation of 92, defined below. We
remark that our basic construction parallels that of [22, Theorem 2.1] (see
also [15, §4]) although the idea of a proper regularized distance does not
appear there.

To be specific, let x, € 0€2, let r > 0, and define

B,={xeR"|x—xy <r}, Q. =B nAQ.

If there is a constant r > 0 and a function p € C?*(B,\ 9Q) which is
Lipschitz continuous on B, and such that the ratios d/p and p/d are
bounded and positive on B, \ 9, we call p a local regularized distance at
x,. If there are positive constants § and 4, an orthonormal coordinate
system Y = (y’, ") = (»%,...,y""}, y") with origin at x,,, and a function
f such that

Qs={y € Bys:y">f(¥)}
and

lf(»() = F(¥)| < Aly{ — y3| fory{,y}in B,s,
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we call f a local representation for 3 at x,. We note that not every domain
has a local representation at every point of its boundary.

For a fixed x, € 9Q at which a local representation f exists, it is easy
to verify that g(y) = y" — f(»’) obeys the hypotheses of Lemma 1.1 with
R" replaced by B, ;. Clearly g is Lipschitz in B, with

lg(x) — g(y)| < max{1, 4}|x — y| forallx, yin By,
and the ratios d/g and g/d are positive in B, with

ld(x)| <|g(x)]| < (42 + 1)"?|d(x)| for x € B,,.

If we choose L = 2max{1, 4}, the construction of p in Lemma 1.1 can be
carried out for x € By. To see this, we observe first that G(x, 7) is defined
for x € B; and |7|/L < 4. Since f(0) = 0, it follows from (1.4) and the
definition of g that |G(x, 7)| < $L|x| + 4. Hence G(x, -) is a self-map
of the interval [-L§, L8] if x € By, so the construction of p in Lemma 1.1
can be carried out in this case. Moreover |p|/L < §. Finally p is proper
because g(x + ew) — g(x) = € for w a unit vector in the y"-direction, so
G,(x) = 1in B;. In fact it is clear that |Dp| > 1/2 in B;.

When additional hypotheses are placed on f, they imply additional
properties for p.

THEOREM 2.1. Let x, € 0Q. If 3Q has a C* local representation f at x,,
then Q has a C' local regularized distance p at x,. Specifically if § is a
increasing function such that {(0) = 0 and if

IDf(x") = Df(y)] < ¢(lx = yI) for Ix’[, 1y'] < 48,

then there is a positive constant C,, determined only by A, 8, and n, such that

|Dp(x) — Dp(y)| < 10¢(|x — y|) for x, yin B,
|D29(x)| = Clﬂ'(lp(x)[/Zmax{l, A})/IP(X)| for x € By.

We say that @ is convex at x, € 08 if ©, is convex for some r > 0.
When  is convex at x,, a elementary calculation (cf. [1, Proposition 3.4]
shows that 9{2 has a convex local representation at x,. From this fact, we
can proceed as in the last half of the proof of Theorem 1.4 to infer the
next theorem.

THEOREM 2.2. Let x, € 92 be a point at which Q is convex. Then § has
a concave local regularized distance at x,. a

Finally we show that the two senses of regularity (that of Theorem 2.1
and that of Theorem 1.3) are essentially equivalent.
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THEOREM 2.3. Let  be an open set in R”". If there is a function
g € CY(R") such that the hypotheses of Lemma 1.1 are satisfied, then there
is a local represesntation for 0Q at each point of 3§2. If there is a local
representation for 0Q at each point of 9Q and if the constants A and § in the
definition of local representation can be chosen independent of the particular
point x,, then there is a function g € C'(R") which satisfies the hypotheses
of Lemma 1.1.

Proof. The first implication is a simple consequence of the implicit
function theorem. The second implication follows by a construction of the
function g.

Let { B;} be a sequence of open balls of radius 8 such that U2, B, = R"
and such that there is a positive integer N such that each point in R" lies
in at most N of these balls. (For example, the B,’s could be centered at ali
points whose coordinates are integer multiplies of §/r). If B, N 9% is
non-empty, then let p, be a C! regularized distance defined in B, and if
B, N 9Q is empty let p, be the regularized distance for & constructed in
Corollary 1.2. Let (n,) be a C? partition of unit subordinate to ( B;) with
sup, supg | Dn,| finite and define

8

g(x)= . ni(x)pi(x)'

~
I

It is clear that g € C(R") and that g is uniformly Lipschitz on R”". Since
there are positive constants ¢, and ¢, such that

cld(x)| <|p;(x)| < ¢,|d(x)] fori=1,2,... and x €R",
it follows that g is the required function. O

Of course detailed information about the modulus of continuity of the
function g can be obtained from a knowledge of the moduli of continuity
of the local representations and vice versa. A closer examination of certain
aspects of the regularity of domains, especially comparison of different
definitions, can be found in [2].

3. Anisotropic regularized distance. In certain circumstances, e.g.,
for parabolic equations, the independent variables are nct all treated
equally. Rather than discuss this situation in its fullest generality, we shall
work here only with an anisotropic regularized distance suitable for
parabolic equations.

To conform with normal usage, we change our notation slightly. We
consider open sets Q in R"*! and label points in R"*! by (x, ) =
(x},...,x", t). When g is defined on a subset of R", we set

Dg = (D,g,...,D,g), g =D, g, etc.
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provided the derivatives exist. For any open set Q € R"*! and t € R, we
define
o(t)={xeR"(x,t)eQ}, I={tesR:Q(1)+ 7}.
For (x, 1) € R" let d,(x, t) be the signed distance from (x, 7) to 90(1),
and for (x,, t,) € R"*! and r > 0, we define
C={(x,t)eR*: x—x|<r|t—t|<r’}, 0,=CnQ.
By a regularized parabolic distance, we mean a function p such that

(i) Dp, D?%p, and p, exist and are continuous on R” X I\ 30,
(ii) there is a constant C such that

(x5, 25) = p(x5, 85)] < C(lxl — x|+t — 1

(iii) the ratios p/d, and d,/p are bounded and continuous on
R" X I\ 9Q. Let (x,,t,) € 0Q. If there is a positive constant r with
[ty —r,ty + r]C 1 and a function p satisfying the definition of regu-
larized parabolic distance with R" X I replaced by C,, we call p a local
regularized parabolic distance at (x, t,).

For simplicity we consider only local regularized parabolic distances,
which we call regularized distances in C, for brevity.

If there are constants 8 and 4, an orthonormal coordinate system
Y = (y’, y") with origin at x, and a function f such that

={(y,t) € C:y"> f(y', 1)}

1/ 2\

and

’ ’ ’ ’ 1/2
f(yi, 1) = f(33, 2)] < A(|)’1 —»l+ln — 1 )

I1/2 1/2

fOI‘ ,.Vl,l’ |y2,|3 'tl ’ |t2l = 48’

we call f a local representation for 9Q at (x,, z,). We note that if fis a
local representation for 0Q at (x,, ¢,), then (x,, ¢,) must lie on the lateral
surface of dQ (see [11] for the definition).

From this f we can construct a regularized distance in C;. We let ¢ be
a non-negative C*(R"™!) function with support in {|z| < 1} such that
Ji21<19(2) dz = 1, we let 1 be a non-negative C %(R) function with support
in (-1, 0) with [9n(s) ds = 1, and we set

K= [ (sl + [, Ipo(z)laz + [ n(s)as:

note that K > 2. Setting L = 4(A4* + 1)/? and
F(y,t,7,0)

f fm Y =(1/L)z,t =(o/K?L?)s)9(z) dz n(s) ds,
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for (y,t) € G, |7| < L§, |o| < L2872, it is readily verified that
|D,F(y,t,7,0)|<L/4, |D,F(y,t,7,0)|<1/(40"?),

|D,F(y,t,7,0)| < 1/4.
If we set G(y,t,7) = F(y,t,1,7%/2), it follows that a regularized dis-
tance in Cj is given implicitly by the equation

(3.1) p(y, 1) =G(y,t,p(y,1)).

Although convexity is not of particular concern for such equations,
we desire a parabolic analog of the condition f € C'(B,;). To describe the
analog, consider an increasing, continuous function { such that {(-)/- is
decreasing. We then assume of f that

(322)  IDF(¥i, 1) = Df(p5. 12) < &(Iyvf — 3)) + {16y — ol

1/2 1,2
(3.2b) f(y, 1) —f(y, )| <]ty — 1) §(|t1 — 1 )
(When {(s) = Cs* for constants a < 1 and C, this definition says that
fe H' «1/2%2/2 in the sense of [16] and that 0Q N C,; is a surface of
class A} 7272 in the sense of [7].) from these inequalities we can infer
estimates on Dp, D2, and p, analogous to (1.7).

1 /2)

THEOREM 3.1. Let Q be an open set on R"*', let (x,, t,) € 9Q, and
suppose 0Q has a local representation f at (x,, t,) for which (3.2) holds.
Then there is a positive constant, C = C(K, L, n) such that the regularized
distance p constructed above obeys the estimates

(333)  [Dp(x1.13) = Dp(xy, 13)| < C[8(1xy — xal) + §(1ty — 7))

(3.3b) D% (x, 1)] < C¢(lo(x, 1) /L) /Ip(x, 1)]
(3.3¢) lo.(x, )| < C¢(lo(x, )| /L) /lp(x, 2)].

Proof. To verify (3.3a), we proceed as in Theorem 1.3 making judi-
cious use of (3.2a,b). For brevity, we write p; = p(xy, t;), p, = p(x,, ,),
and f(j, k,m,r)=f(x; = (p,/L)z, t, — (p}/2K?L?)s) and similarly
for derivatives of f. Also we assume, by relabelling points if necessary,
that |p;| > |p,|.

An examination of the proof of Theorem 1.3 and the fact that
G, = F, + 7F, show that we need only estimate

4, = DF(xl’ s Py P%/?-) - DF(xl’ 1y, Py1s p%/Z)
and
B, = P1Ey(x1> 1, P15 p§/2) - PzF;(xza 1y, Py p%/2).
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To estimate 4,, we examine the two cases (|p? — p3|/2K*L*)'/* <
lo1 — p,l/2L and (|p? — p3|/2K*L*)'/?* > |p; — p,|/2L. In the first case,
we write

4, = f—jfmq [Df(1,1,1,1) — Df(1,1,1,2)]6(z) dz 7(s) ds

and use (3.2a) and the monontonicity of { to infer that
4,1 < ¢(lpy ~ pal /2L).
In the second case, we write
4y = (-L/p) [ [FL11.) = 7(11,1,2)] Do (2) den(s) ds
and use (3.2b) and the monotonicity of {(-)/- to infer that

lAll =< lP} + P2|§(|91 - pZ|/2L)/Klpll'

Since K > 2, |p,| = |p,), and |p; — p,| < 2L max{|x; — x,|, |t; — £,|"/*}, it
follows that in either case

4] < ¢(1x, = x]) + ¢(1n — 2]
To estimate B;, we observe that
B, = pi[ E,(x1, 11, £y, 03/2) = F,(x1,11, p1, #1/2)]
+0u[ F, (x5, 11, p1, 01/2) = F,( x5, 13, 01, 01/2)]
+[p1F, (x5, 12, 015 93/2) = P2 F, (X5, 15, 05, 03/2)]

+pZ[Fa(x2’ t2a P2 p%/z) - Fu(xl’ t2’ P, p%/z)],
and denote the terms in square brackets by B,, B;, B,, B;. For B, the two
cases are |x;, — X,| < |p;|/2"?KL and |x;, — x,| > |p,|/2"?KL. In the first
case we write

B= () [ [ L) —70 11 0le() d

X(n(s) +sn'(s)) ds

1 /2)

and we observe that
(3.4) [ ((s) +sm(s)) ds = 0
and that
f(1,1,1,1) - £(2,1,1,1)
= (%, - x,) -/01 Df(Ax; +(1 = N)x, — (py/L)z, 1,
—(p3/2K%L?)s) dA.
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Thus, writing X = Ax; + (1 — A)x, — (py/L)z, 1(s) = n(s) + sn'(s), we
have

0 1 _
B, = ~/:1 f|zl<1 /(; {Df(x, 1, —(p2/2K%L?)s) — Df(X, 1)} dA
X¢(z) dz7(s) ds
and hence, using (3.2a) and the monotonicity of {(-)/-,
B, < (1+ K)lxy = x,f¢(leal /2KL) /lpuf
< (i + K)§(bxy = x,l)/2'°KLp, .
In the second case we observe that

G = (p/L) [ 2 Dr(x, ~(Aey/L)z, 1y = (p}/2K°L2)s) dA

+f(xj, f —(p%/2K2L2)s)
t

If we write X, = x, — (Ap;/L)s and ¢ = 1, — (pj/2K*L?)s, define 7 as

before, and use (3.4), we see that
B, = (1/p%)[—(p1/L)f_i [.. [ = {Dr(%.0) = Df(%;. 1)) an
x¢(z)0(s) ds
F L[ Ul ) =1 1)) e() demls) ds

lz)<1
and therefore, using (3.2) and the monotonicity of {
|le = (1 + K)[§(|x1 - x2]>/L|pl| + 2§(|P1|/21/2KL)/21/2KLIP1|}

< 2(1 + K)§(1x, — x,1)/Lleyl.

In either case this inequality is valid for B,.
To estimate

= (e)[) [ @11 -1 121le(:)

X (n(s) +sn'(s)) ds,

we consider the cases [t, — 1,| < p? and |¢, — t,| > p3. In the first case, we
use the inequality

1/2 1/2 1/2
F(2,1,1,1) = £(2,1,2, )| <ty = 6, 7¢Ity = 6o 7)) <lealé(1ty = 12 )



REGULARIZED DISTANCE 345

In the second case, we use (3.4) to infer that

B=(e)[) [ (D@11 =1l = (e/L)z )]

+[f(xy = (py/L)z, t,) = £(2,1,2,1)]) 6(2) dz (n(s) + sm'(s))ds,

in which case
B3| < (2/0%)(Ios] /2KL )$(|0] /2/°KL)

< §(IP1,)/|P1I = §(|’1 - t2[1/2>/|p1|.

In either case, |B;| < (1 + K)¢(|r, — 1,
To estimate B,, we see that

)IPI“

Bo= [0 [ [f2.2.1.0)/6, ~ (2.2,2.1)/0,]6(2) dz
-1

lz1<1

X(n(s) + sn'(s)) ds
by observing that

f2,4,2,1) = ~(p,/L) /O "z Df(x, ~ Mp/L)z. 1, ~ (p/2K7L?)s) dX

+f(x2, I = (pf/2K2L2)s)
and using (3.2a). Finally B, is estimated as B, was. It follows that there is
a constant C’ = C’(K, L) such that
2
1B, < C'[¢(lx = xol) + €I — 0],
which in conjunction with the estimate for 4,, implies (3.3a).
To prove (3.3b) and (3.3c), we note that, as in Theorem 1.3, we can
obtain the following estimates:
’DUF(X, t, T, o)] < KL((IT]/L)/]TI
|D, F(x,t,7,0)] <(1+ K)$(6*?/KL)/|o|
D, F(x,t,7,0)| < (n+ K)§(rl/L) /Ir|
D, F(x,t,7,0)] < (1+K)§(o?/KL)/(aL)
|D,F(x,1,7,0)| < (1 + K)§(o"?/KL)/(KLs>?)
|F,(x,t,7,0)| < LK¢{(6'2/KL) /0.

The desired estimates follow from these inequalities and the method of
Theorem 1.3. (]
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4. Applications. We now describe briefly some applications of the
regularized distance.

The first application is an extension of the Hopf boundary point
lemma [6]; this extension is similar to results of Kamynin and Khimchenko
[12]. Before stating the result, we give some definitions.

Suppose © has a C! local representation f at x, € 0. We say that Q
is Dini at x, if Df(0) = 0 and if there is a function w such that

(4.1a) w is increasing and continuous on [0, 83]
(4.1b) w(0)=0
(4.1¢c) /  (w(s)/s) ds is finite
0
(4.2) IDf(x") = Df(y)| < w(lx” = y'[) for x|, [y'] < 48.

We say that Q satisfies an interior Dini condition at x, € 92 if there is an
open set €’ C Q such that x, € 9Q" and €’ is Dini at x,. We use the
constants 4 and §, the function w, and the coordinate system Y from the
various definitions without further comment. We denote by » the unit
vector in the y” direction and by d the distance to 9£2’, and we follows the
summation convention for repeated indices.

THEOREM 4.1. Let Z be a linear second-order differential operator
Lu=a"D,;u+ b'Du+ cu
defined on an open set  C R" with the matrix (a"/(x)) positive semi-definite
and symmetric for all x € Q. Suppose that u € C°(Q) N C*(Q), that Pu <
0 in Q, that there is a point x, € 9 for which u(x,) > 0 and u(x,) = u(x)
for all x € Q and that Q satisfies an interior Dini condition at x . Let & be a

function satisfying (4.1), let A, be a positive constant, set w;(x)=
w(d(x))/w(2d(x)), w,(x) = w(d(x))/d(x), and suppose that,

(4.3a) 0 < Ya'(x) < a¥(x)y,/(200(]x - %))’
(4.3b) Za”(lx) < Ay (x)a"(x) vy,

(4.3¢) b(x)r, = Ay, (x) @' (x)p,

(@43d) ()] < d]ey(x)/e(lx = xol)]a(x)rp,
(4.3¢) 012 c(x) = ~A,[w,(x)/d(x)]a"(x)v,,

for all x € Q. Then for any vector p. such that p. - v > 0, we have
limsup (u(x, + 1) — u(x,))/t < 0.

-0
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Proof. By standard arguments, it suffices to find a function 4 €
C?(23) N CY(Q}) such that Lh > 0in 25, h = 0 on 3L} \ B,, ~ > 0 on
Q5, 0h/0y" > 0 at x,. We determine / as a function of local regularized
distance on ¥, say h(x) = k(p(x)), and we suppose that k(0) = 0 and
that &’ > 0 and £” > 0 on (0, §); these properties will be verified from
the explicit formula for k. By direct calculation,

ZLh = k"a"D,pD,p + k’(biD,-p + a”D,.jp) + ke
and
a'’D,pD;p = a’/vy; + a(D;p — v,)v, + a"D,p(D;p — v;)
> }a'vy, — $a"D,D,p — a’/(D,p — v,)(D;p — »,).
Since Dp(x,) = v, we infer from (4.3a) and Theorem 2.1 that
a’D,pD,p = ga'vp,.

The other terms in the expression for #h are estimated similarly via
Theorem 2.1, (4.1a), (4.3b—e), and the inequality k(p) < pk’(p) which
follows from k" > 0. Hence for some constant H = H(A, A,, n) we have

Lh = tavy (k" — HK'G(2p)/p).

Taking (4.1c) into account, we see that the desired function is

k(p) = /(;p exp(Hj: ®(2s)/s ds) dr. O

It is instructive to compare this theorem with [12, Theorem 1] and
similar results of Kamynin and Khimchenko. The proof of our Theorem
3.1 is simple and our method is well-suited to conditions stated purely in
terms of the distance function 4. On the other hand, Kamynin and
Khimchenko consider a relaxation of our (4.3b). In addition they are able
to prove more easily the sharpness of the Dini condition (4.1c) for this
result and those discussed below.

Of course an analogous boundary part lemma for parabolic equations
can be proved via Theorem 3.1 (cf. [9], [13]). We mention also [21] in
which a boundary-point-type lemma is proved for Lipschitz domains. All
of these boundary point results lead to uniqueness theorems for suitable
boundary value problems.

Another application of the regularized distance occurs in the study of
regularity at the boundary for solutions of boundary vlaue problems. For
linear equations we refer to [10] and [11], and we only remark that the
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results there can be obtained via regularized distance. For nonlinear
equations, we refer to [18] and [19] although we remark that some of the
results thee concerning convex domains can be improved by using Theo-
rem 1.4. For example [18, Theorem A.1] can be proved directly by the
methods of [18, Chapter II] since a global regularized distance is available.
Similarly the hypothesis that 0Q € C? can be removed from [10, Theo-
rems 3.3 and 3.9]. In particular we have the following result: if & is
bounded and convex, if u € C°(Q) N C%(Q) is a solution of the minimal
surface equation

My = (1 + lDu|2)Au — DuD;uD, ;u =0

in Q, and if u|,, is Lipschitz, then u is Holder continuous on Q. In
connection with these results on nonlinear equations, we raise an im-
portant question concerning the regularized distance: Is there a natural
analog of Serrin’s curvature conditions [23] for domains which are less
smooth than C?2? Since in the theory of elliptic equations, these conditions
are used to infer estimates on the Hessian matrix (D, ,d) of the distance
function, it seems reasonable to assume that the analog exists. So far,
however, we have not been able to find a simple geometric condition
which implies the appropriate behavior for the Hessian (D,;p) of the
regularized distance.

As a final application, we discuss extensions of functions on 9 to
globally defined functions. In what follows, we assume {2 to be bounded
although an unbounded € can also be handled by our methods. Our first
step is to define appropriate regularity classes of functions in terms of
certain norms. We denote by { a continuous increasing function with
$(0) = 0 and {(¢) > O for ¢ > 0 such that {(¢)/7 is a decreasing function
of ¢. (From [20, §3.5] it follows that assuming this last property involves
no loss of generality for our purposes), and we get Z(t) = log,{(?)
(Z = capital {). For u defined on 2 and k > 0 an integer, we define

k
|ulo = supu, [lulls = X [D/ulo
Q j=0

[u] = sup{|u(x) —u(y)|/¢(Ix — y): x # yin Q}
luli+z = lulle +[D*u] ..

We note that |u|,, , is the usual Holder norm | |, when {(¢) = ¢¢ for
some 0 < a < 1. We also note that | |, = || ||, and that | |, > || ||, for any
integer k. We denote by H, , ,(2) the set of all u for which |u|, . , is finite.
Let y be a positive function defined on {¢# > 0} with the property that
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there are positive constants y, and y, such that

v,Y(2t) < v(¢t) < v,¥y(2¢) forallz > 0.
For § > 0, we write Q5= {x € @: d(x) > 8}, and for a >0 and k a
non-negative integer such that ry(¢) and t*y(¢) are increasing functions
of ¢, we define the norms

(r a
luly = gup{ﬁ v(8)|ulas, }
>0

lule’ = sup {3 (8) s, }.

In analogy with the weighted Holder spaces of [3] we denote by H{" and
C{D the set of all functions u on @ with finite norm |u|" and [|u||{"
respectively. Thus (1.7) can be reformulated as saying p € C{™'~%). In fact
a stronger result is valid.

THEOREM 4.1. Under the hypotheses of Theorem 1.3 (including (1.6)) Q
has a regularized distance p € H{™' =% for any a > 2.

Proof. As in the proof of Theorem 1.3, we see that p € C{™1~% for all
integers k > 2. We first show that H{;."? > C{1"9 N {172 for all
a €(0,1], and then that H{™* "% > H,, , N C{™17%, thus establishing the
theorem for 2 < a < 3. The general case a > 3 is handled similarly.

Letu € C{179 N C{ 17D, Setting

H = sup {(8'7/¢(8))[ D?u] wia, }

8>0
* = max{1,diam 2},

we see by some simple algebra that

e < 1 () S

Hence we need only estimate H in terms of ¢, = |D%u|$ ™% and ¢, =
|D?u|{ =2 since ¢; < ||u]l§ 2 and ¢, < ||lu]|§1 2. Now fix § > 0, posi-
tive integers i < n and j < n, and x and y in Q4. If |x — y| < §/2, then
x+Hy—x)€Q,for0<t<1,s0

(D, u(x) = Du(y)| =| [ Dyulx + 1(y = %) di(x, = 5,)

< deylx = y8(8/2)877 < deyfx — yI¢(8)87
On the other hand if |[x — y| > §/2, then

lD,ju(x) - Diju(y)[ s[DUu(x)I +|Dlju(y)|

< 26,¢(8)87 < dcyfx — y| ¢(8)871
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Hence H < 4n(c, + ¢,), yielding H{;X"9 > C{1 =D n {9,

To show that H{"'=% > C{*» N H,, ,, we proceed as before ex-
cept that in the case [x — y| = §/2, we use the estimate

[Du(x) = Du(y)| < ¢(x = yl) = (¥(x = »)/1x = y])lx =yl
< 2fx — y[£(8) /8. 0

It should be noted that the inclusions H{;} % > C{1=9 n C{1D
and H{™1=% 5 H;, , N C{~179 were established without any restrictions
on the smoothness of d€2. Under slightly stronger hypotheses (e.g., 3 is
Lipschitz and Z = B, a constant, with 0 < 8 < 1), better results are valid;
see [3, Lemma 2.1].

We are now ready to discuss extensions of functions on 9€2. For k and
¢ as above, we write H; , , for the set of all # € H,, ,(R") with compact
support and we write H, . ,(9Q) for the set of all # with finite norm:

|hlk+z;00 = inf{|hlsz: h € H} ,and h = hon 39 }.

We note that if 4 is continuous on 0%, then h € H,(92) for some .
Moreover if 3€2 has a local representation at each x, € 9Q and if |A(x) —
h(y)| < ¢(|x — y)) for all x and y in 39 and some ¢, then h € H,(3Q2) and
|hz.00 = 1. If, in addition, all the local representations f are in C* for
some k > 1 then H,,;(98) (for suitable {) and H,, ;(3Q) (for all j < k
and all {) can be defined via the function g given by g(y’) = h(y’, f(¥"))
being in the appropriate function space. For brevity we write 9§ € H, .,
if 3Q has a local H, , , represenentation at each x, € 0{. In this case we
can extend functions on d{ in a convenient fashion (cf. [S, Lemma 1]).

THEOREM 4.2. (a) If hy € H,(3R), then there is h € H}, such that
h=nhy on 3Q and |h|$2 < c(a, Q)|h|z.eq for all a>1. (b) Suppose
08 € H,,, and let v be the inner normal to 0. If h, € H,  ,(08) and if
h, € H,(0R) then there is h € H| , such that

h=h,, Dh-v=h, ondQ

and

-1-2)
|h| . < 0(0,9)(]h|1+2;69 +|h1|z;asz)

foralla > 2.

Proof. Set H(x, 1) = [,j<1ho(x — (7/L)z)$(z) dz with ¢ as in §1.
(a) A(x) = H(x, p(x)) gives the desired function.
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(b) Note that according to (a), 1/Dp - » can be extended to a function
F € H, N H{"?. Using the obvious definition for H,(x, 7), we set /,(x)
= H(x, p(x)) and hy(x) = Hy(x, p(x)). Then
h(x) = hy(x) +(h3(x) = Dhy(x) - Dp(x)) F(x)p(x)
gives the desired function. O
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