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ON THE WALLMAN ORDER COMPACTIFICATION

D. C. KENT

The Wallman order compactίf icatίon w0 X of a topological ordered
space X has been constructed by Choe and Park. This paper establishes
necessary and sufficient conditions for their compactification to be
Γ2-ordered, in which case it coincides with the Nachbin (or Stone- Cech
order) compactification.

Introduction. Let (X, <) be a poset. For x e X, let i(x) = {y e X:
x < y) and let d(x) = {y e X: y < x}. If A c X, let i{A) = U{/(x):
x e Λ}, tmάd(A) = U{<i(;c): x e A). HA = L4 (respectively,A = d(A%
then 4̂ is called an increasing (respectively, decreasing) set; a set which is
either increasing or decreasing is said to be monotone.

A topological ordered space (X, < , r) consists of a poset (X, <)
equipped with a topology T. If τ has an open subbase consisting of
monotone sets, then the topological ordered space is said to be convex.
Since only convex topological ordered spaces can have order compactifi-
cations which are Γ2-ordered (see below), we shall henceforth consider
only spaces of this type. For brevity, a convex topological ordered space
(X, < , T) will be simply called a space and designated by "X".

Following McCartan [4], we define a space X to be Tλ-ordered if i(x)
and d(x) are both closed for all X G I , and T2-ordered if the partial order
relation is a closed subset of I X I . A 7\-ordered space is T4-ordered
(normally ordered in [5]) if, whenever A and B are closed disjoint subsets,
the former decreasing and the latter increasing, there are disjoint open sets
U and F, the former decreasing and the latter increasing, such that A Q U
and B c V. The "Γ3-ordered" property is defined in [4], and "Γ3 5-ordered"
can be taken to mean "completely regular ordered" as defined in [5], but
it will not be necessary to repeat these latter definitions here.

Nachbin has constructed a Stone-Cech type order compactification
β0X of an arbitrary Γ35-ordered space X with the property that any
continuous, increasing function from X into a reordered, compact space
can be lifted to β0X. For details of the Nachbin compactification, see [3].
More recently, Choe and Park showed that X is T^-ordered whenever w0 X
is Γ2-ordered, but were unable to prove the converse. Our main result
establishes that w0X is reordered if and only if X is strongly reordered
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(this term is defined below), and consequently that w0X and β0X are
equivalent compactifications of a strongly reordered space X.

Let Jfbe a topological ordered spae. If A c X, let I(A) (respectively,
D(A)) be the smallest increasing (respectively, decreasing) closed set
containing A, and let A* = /(^) Π i)(^4). Let ^ = { i c l : i = / } .
Note that all members of ^x are closed and convex; we shall call the
members of <€x c-sets. All monotone closed sets are c-sets, and thus Vx is
a closed subbase for T. One can easily verify that every set of the form A ,
for A c X, is a c-set, and also that ^x is closed under finite intersections.

Let F( X) be the set of all filters on X; the fixed ultrafilter generated
by {x} will be denoted by x for JC e X. If JF, 3?€Ξ F(X), then JFV ^will
designate the filter generated by {F Π G F <Ξ @yG <z &} (assuming that
the latter collection does not include 0).

For J ^ G F(X), we denote by i(&) the filter generated by {i(F):
F G ^ } ; the filters ^(J^), / ( ^ ) , and D(&) are defined analogously. A
filter J**is a c-filter (respectively, a convex filter) if it has a filter base of
c-sets (respectively, convex sets). Note that J^is a c-filter (respectively, a
convex filter) iff J^= /(J^) V D(^) (respectively, J^= i(&) V d(^)). A
c-filter which is not property contained in any other c-filter will be called
a maximal c-filter. A standard Zorn's Lemma argument establishes that
every c-filter is contained in a maximal c-filter.

We can assume that X is a reordered space and define wQ(X) to be
the set of all maximal c-filters on X. Note that the only convergent
maximal c-filters are the fixed ultrafilters. It will be convenient to write
w0X = {x: x ^ X) U X', where X' is the set of all non-convergent
maximal c-filters. An order relation " < " for w0X is defined as follows:
^< <& iff I(^) c ^ and D(&) c &. It is a simple matter to verify that
(w0X9 <) is a poset and that the canonical map φ: (X, <) -> (wQX9 <),
defined by φ(x) = x, is increasing.

We next introduce a topology on w0X. For K I , define A* = {J^e
w0X: i G ^ } . Then ^ * = {A*: A <Ξ <gχ) is a closed subbase for a
topology on w0X which we shall denote by wQτ. Clearly, (A Π B)* = ̂ 4*
Π B* for all subsets 4̂, B of Jf; from this one easily deduces that w0Xis a
topological ordered space. It is obvious that A = φ~ι(A*) for any i c l ;
therefore φ: X -> w0Z is a topological embedding, and both φ and
cp"1^;*;) are increasing functions.

Before proceeding further, it is desirable to compare our construction
of w0X with that of Choe and Park. They define a bifilter (&, JίT) on X to
be a pair of filters such that ^has a base of decreasing closed sets,^has a
base of increasing closed sets, and ^ V Jf exists; the set of all maximal
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bifilters forms the underlying set for their compactification, which is also
denoted by w0X. It is easy to see that, for any bifilter (^, Jίf) on X, the
filter J^= ^ V Jtf is a c-filter, and that, for any c-filter # \ (D(&), I{^))
is a corresponding bifilter. If {<&, 3tf) is a maximal bifilter, then J^= &V 34f
is a maximal c-filter, and (/)(J*"), / ( ^ ) ) = (^, •#*); thus a bijection
exists between the set of maximal bifilters on X and the set of maximal
c-filters on X. A comparison of the order relation and topology defined
for w0X in [2] with our definitions given above reveals the equivalence of
these spaces both as posets and as topological spaces. Thus the results
obtained concerning w0X in [2] are applicable here, albeit with ap-
propriate terminological alterations. The next two results are obtained in
this way.

PROPOSITION 1.1. For any Tx-ordered space X, (wQX, φ) is an order

compactification of X, and w0X is a Tλ topological space. If w0X is

T2-ordered, then X is T4-ordered.

PROPOSITION 1.2. Let X be a Trordered space, Y a T2-ordered compact

space, and f: X —» Y a continuous, increasing function. Then there is a

unique, continuous, increasing function /: w0 X —» Y such thatf-φ = f.

We define a reordered space X to be strongly reordered if, whenever
A and B are c-sets:

I{A) DB = 0 implies I(A) Π D(B) = 0

D(A) ΠB = 0 implies D(A) Π I(B) = 0

Note that a Γ4-ordered space X is strongly reordered iff, for a oset A and
a decreasing open set U with A c U, D(A) c £/and dually.

Priestly [6] defines a C-space to be a topological ordered space X such
that, for each closed subset A, i(A) and d(A) are also closed. The class of
strongly Γ4-ordered spaces includes the T4 C-spaces, among which are the
Γ2-ordered compact spaces.

PROPOSITION 1.3. A T^ordered space X is strongly T4-ordered if and

only w0X is T2-ordered

Proof. In Proposition 1, page 26, [5], Nachbin shows that a space is
Γ2-ordered if, whenever a £ b, there is an increasing neighborhood V of a
and a decreasing Woΐ b such that V Π W = 0.

Assume that J^, ^are elements of w0X such that ίF< &is false. Then
either I(^) c J^or D(&) c JΠs false. In the former case, since ^ is a
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maximal c-filter, there is F e J^and G e ^such that I(F) Π G = 0 . By
the assumption that X is strongly reordered, I(F) Π D(G) = 0 , and so
there are disjoint open neighborhoods U and F of I(F) and D(G),
respectively, such that U is increasing and V decreasing. Then U* and V*
are disjoint, open neighborhoods of & and ^, respectively, in w0X, the
former increasing and the latter decreasing. This w0Xis T^-ordered.

Conversely, assume that w0X is Γ2-ordered. Let A, B be c-sets and
suppose I(A) ΠB = 0 . Then 7(>4)* Π 5 * = 0 . 7(^4)* is a closed, in-
creasing subset of w0X and 5* = D(B)* Π 7(5)* is a closed subset of
w0X. Let dw(B*) = { J**<Ξ w0X: J**< ^for some ^€Ξ 5*}. By Proposition
4, page 44, [5], dw(B*) is a closed subset of w0X, and it follows that
I(A)* Π </„(£*) = 0 . Then φ~1(7(^ί)* Π ^(J5*)) = φ"1(7(^)*) Π
φ ' H ^ ί 5 * ) ) = 0 s i n c e Φ'HA^)*) = /(^) and D(B) c φ-\d(B*)\ it
follows that / ( i 4 ) Π ί ) ( 5 ) = 0 . A similar argument shows that if 7>(̂ 4)
Π B = 0, then Z>(̂ 4) Π 7(5) = 0 . This conclusion that X strongly 7>
ordered now follows with the help of Proposition 1.1 D

COROLLARY 1.4. A T4-ordered space X is strongly T4-ordered if and only

if, for any c-setA, d(A) and i(A) are both closed.

Proof. The condition is obviously sufficient. Suppose that X is strongly
Γ4-ordered and x £ d(A). Then /(x)* Π A* = 0, and consequently i(x)*
Π dw(A*) = 0 . It follows that ι(JC) Π <p'Vw(^*)) = 0 s i n c e t h e closure
of d(A) in X is a subset of φ~\dw(A*)), x is not in the closure of d(A).
Thus d(A) is closed. D

COROLLARY 1.5. Let X be T35-ordered. Then the compactifications w0X

and β0 X are equivalent if and only if X is strongly TΛ-ordered.

If the order relation of X is trivial, then the c-sets are simply the
closed sets, and the compactification w0 X is identical with the ordinary
Wallman compactification. In this case, Corollary 1.5 yields the well-
known equivalence of the Wallman and Stone-Cech compactifications for
T4 topological space.

We conclude by considering the Wallman order compactification for
a simple and familiar class of spaces. We define a totally ordered space to
be a totally ordered set with its order topology. If X is a totally ordered
space, then one can show that w0X (and hence β0X) is a totally ordered
space and a complete lattice. If X = R is the totally ordered space of real
numbers, then w0X can be identified with the extended real line [-00,00].
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If X = Q is the space of rationals, then w0X can also be regarded as the
extended real line, but with each irrational "occurring twice"; by identify-
ing these "irrational pairs", one obtains w0R as a quotient space of w0Q.
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