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ON JUNG’S CONSTANT AND RELATED CONSTANTS
IN NORMED LINEAR SPACES

DAN AMIR

In this paper several results on certain constants related to the
notion of Chebyshev radius are obtained. It is shown in the first part that
the Jung constant of a finite-codimensional subspace of a space C(T) is
2, where T is a compact Hausdorff space which is not extremally
disconnected. Several consequences are stated, e.g. the fact that every
linear projection from a space C(T), T a perfect compact Hausdorff
space, onto a finite-codimensional proper subspace has norm at least 2.

The second discusses mainly the “self-Jung constant” which mea-
sures “uniform normal structure.” It is shown that this constant, unlike
Jung’s constant, is essentially determined by the finite subsets of the
space.

1. Jung constant in C(7T) spaces. For a bounded subset 4 of a
normed linear space E and a subset Y of £ we denote by diam A the
diameter of 4 (sup, ,c4llx — y|)), by 7y(4) the relative Chebyshev radius
of A with respect to Y (inf . ysup,c 4/|x — yll), and by Z,(A4) the relative
Chebyshev center set of 4 in Y ({ y € Y;sup,4||x — y|| = ry(A4)}). The
Jung constant of E is J(E) = sup{2rg(A); A C E,diam 4 = 1}. It is
easily seen that 1 < J(E) < 2. For n-dimensional spaces E,, it was shown
by Jung [12] that J(I}) = 2n/(n + 1))/? and J(E,) = 1 if and only if
E, = 1. Bohnenblust [2] showed that J(E,) < 2n/(n + 1), and
Leichtweiss [14] characterized the extremal case (in the 2-dimensional case
it is the hexagonal plane). In the infinite-dimensional case, it was shown
that J(/,) = V2 (Routledge [20]), and that J(E)=1 if and only if
E = C(T) for a Stonian T, i.e. if E € 2, (Davis [5]) (cf. also [10], pages
91-92 in [11] and §6 in [4]).

Studying intersections of balls with subspaces, Franchetti [6] deduced
that for every finite-codimensional subspace E of C[a, b] we have J(E) >
3/2. A stronger and more general result is true.

1.1. PROPOSITION. If the compact Hausdorff space T is not extremally
disconnected, then for every finite-codimensional subspace E of C(T) we
have J(E) = 2.
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We need the following

1.2. LEMMA. Let E be a finite-codimensional subspace of C(T), T
compact Hausdorff. Then for every ¢ > 0 and every infinite open V C T
thereisf€ Ewith|| f||=1,f(T\V)=0andf > —¢.

Proof of the lemma. In the case where V contains no isolated points,
the proof is quite short: Since V is infinite, { f € E; f(T\ V) = 0} is
infinite dimensional and there are f;, € E, t;, € V with || f|| = 1 = fi(1,),
fi(T\V)=0. For V;={t€V; fi(t)>1— ¢}, which is infinite too,
find in the same way f, € E, t, € V, with || f,|| = 1 = £,(2,), L(T\ V}) =
0, etc. g = X7_, f; satisfies || g|| = g(¢,) > n(1 — ¢), while, since f;(¢) <0
happens only when f;,_;(z) > 1 — e and f;, ,(¢) = 0, g(¢) > —&. Normalize
to get f. O

For the general case we apply

1.3. SUBLEMMA. Given an infinite matrix (x’(k)),_1 . j=1,2, . Sch
that x/(k) > Qask — o forj =1,...,nand e > 0, there are k and (&,)%.,
such that |e,| < € for all i and x’(k) = X, ., &;x’(i) forj = 1,...,n.

Proof of the sublemma. We may assume that the rows x!,...,x" are
linerly independent. Therefore there are also n independent columns,
which we may assume to be the first n ones. Let (v, ,); -, be the inverse
of the matrix (x/(k))7,_; and ¢ = X, |y, | There is k such that |x/(k)| <
e/c forj =1, ..,n. Represent the kth column as a linear combination of

the first » ones. O

Proof of the lemma in the general case. Take a sequence (f,),_, of
disjointly supported nonnegative norm-one functions sitting in ¥. Apply
the sublemma to x’/(k) = p,(f,), where uy,...,p, € C(T)* are such that

E={py....,p,}, Takef=f, — ¥, &f. o

Proof of the proposition. Choose disjoint open subsets V;, V, and
w € V, N ¥V, (such w, V,, ¥, exist since T is not extremally disconnected).
Fix ¢ > 0. Let 4 C E consist of all f; — f,, when f, run over all the
functions f satisfying the conclusions of the lemma with respect to V.
Then f* = sup,,fis1 on V] and < e on V,, while f, = inf ., fis -1 on
V, and = —& on V. Thus the diameter of 4 is < 1 + &. The radius of 4,
however, is > 1 since max, , | f*(#;) — f+(#,)| = 2 in every neighbor-
hood ¥V of w. a
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REMARK. Proposition 1.1 verifies also a conjecture of Franchetti ([7]):
If J(C(T)) < 2 thenT is extremally disconnected (and then J(C(T)) =1
by Davis’ result). This last result has been proved independently by C.
Franchetti [8].

Lemma 1.2 can be applied also to improve Proposition 2 in [6], giving
an alternative proof of our Proposition 1.1 in the perfect case.

1.4. PROPOSITION. Let F be a finite-codimensional subspace of C(T), T
perfect compact Hausdorff space. Then for every x € C(T) and every
s > d = d(x, F) we have

Z-(B(x,s)NF)=Pyx and ro(B(x,s)NF)=s+d,

where B(x, s) is the closed s-ball centered at x ({ y; ||y — x|| < 5}) and Pgx
is the best approximation to x in F.

Proof. Given any y, € F with ||x — y,|| > d, we want to show that
there is a y € F with ||x — y|| < s and ||y — y,l|| > s + d. This will estab-
lish both claims, since if ||x — y,|| < d + ¢ then clearly ||y — »|| < ||y —
x|| + ||x = »ll <s + d + & for every such y.

Without loss of generality we may assume y, = 0, ||x|| = x(¢,) for
some t, € T. If ||x|| <, let

O<e<min| =—=27 " 2

V= {t;|x(t) — x(t,)| < €}. Apply Lemma 1.2 to get z € F with ||z|| = 1
and z > —& which vanishes off V. Let y = (s + d + ¢)z. Clearly || y|| > s
+d. Ift € V, then|(x — y)(2)| = |x(2)| £ ||x]| < s. If t € V'then

s <fx|l—e—-(s+d+e)s(x—p)t) z|x|| +e(s +d+¢) <s.
If ||x]| = s, let y, € Fsatisfy d < |[x — y,|| < s. Let
S=lIx=nll Is=wmll—4d
: ; s )’1(’0)),

s—llxll  lIxll—d 1),

O<s<mm( T d >

V= {t:|x(t) — x(ty)| + |y:1(2) — y1(2,)| < €}. Apply Lemma 1.2 to get
z € F with ||z|]| = 1 = 2(t,), z = —¢ which vanishes off V. Let y =y, +
(s + d)z.

IVl = yi(t) +s+d>ypy (1)) —e+s+d>s+d.
Ift & V, then|(x — y)(#)| = [(x —y;)(t)| < s.Ift € V, then
~s <(x—y)(t,) —e-s~—d
S(x=y)) 2 (x=y)(0) +(s +d)e <s. o



4 DAN AMIR

1.5. COROLLARY. If F is a subspace of C(T), T any compact Hausdorff
space with no isolated points, and 1 < codim F < oo, then J(F) = 2.

Thus, for perfect T, the restriction in Proposition 1.1 that 7T be
non-Stonian is necessary (for J(F) = 2) only in the case F= C(T).
Further concessions are impossible — since if ¢, € T is isolated in the
Stonian space T, then F = {x € C(T); x(¢,) = 0} is isometric to C(T"),
where 77 = T\ {t,} is Stonian too, hence J(F) = 1.

Applying Franchetti’s observation on the relation between projection
constants of hyperplanes and radii of hypercircles [8], we get:

1.6. COROLLARY. If F is a finite-codimensional proper subspace of
C(T), T perfect compact Hausdorff space, then every linear projection of
C(T) onto F has norm > 2.

Proof. Let F = {py,....,n.},, n, € C(T)* el =1, E=
{My,---sM,_1}, such that F is a maximal subspace of E. A linear
projection of E onto F has the form Px = x — pu,(x)z, where z € E and
p,(z) =1.But

[Pz sup sup |[Px||= sup sup [yl

0O<a<l |x=1 0O<a<l yeF
lly+azli=1

v

sup re(B(-az,1) N F).
O<a<l1
By Proposition 1.4, since d(-az, F) = a, re(B(-az,1) N F)=1 + a, so
that P = sup,_,.,(1 + a) = 2.
Thus, every projection of E onto F, and therefore also every projec-
tion of C(7T') onto f, has norm > 2. O

2. Jung constants and normal structure coefficients. By a classical
result of Garkavi and Klee (cf., e.g. [13]) r,(A4) = r(A) for all convex
closed and bounded A4 C F is equivalent to F having dimension < 2 or
being an inner product space. Therefore, besides the Jung constant J( E),
one may study also the “self-Jung constant” J (E) = sup{2r,(A4); A C E
convex,diam 4 = 1}. Clearly J(E) = J(E). E is said to have “normal
structure” if for every such 4 we have r,(A4) < diam 4. Thus J(E)
measures to what extent F has “uniform normal structure”. Bynum [3]
introduced the “normal structure coefficient”; N(E) = 2/J(E), and two
other coefficients, BS(E) and WCS(E), analogously defined by the
“asymptotic diameter” and the “asymptotic radius” of bounded, or
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weakly convergent, sequences in E, respectively, i.e.

i { liInksupm,n>k”xn - xm”

inflim , sup,. ([ly — x,/l; y €conv(x,);, |’

where the infinum is taken over all bounded nonconvergent sequences
(x,) € E in the BS(E) case, and over all weakly convergent, non-norm-
convergent sequences in the WCS(E) case. Clearly 1 < N(E) < BS(E)
< WCS(FE) and WCS(E) < 2 unless E has the Schur property (i.e. unless
in E norm and weak sequential convergence coincide).

It is easy to see, and hinted in [3], that BS(E) = sup{ N(F); FC E
separable} and WCS(E) = sup{ WCS(F); F C E separable}.

In [15], Limshows that J(FE) = sup{2r,(A); A C E convex and
separable, diam 4 = 1}, hence N(E) = BS(E) for every normed E. This
can be further improved, using the following observations:

2.1. PROPOSITION. (a) If E is a dual Banach space, then
J(E) = sup{2rg(K); K C E finite, diam K = 1}.
(b) If E is a reflexive Banach space, then
J(E) = sup{2r,.,,x(K); K C E finite, diam K = 1}.

Proof. (a) Let A C E be any with diam 4 = 1, r < rg(A4) any. Then
N,c4B(x,r) = @ and by w*-compactness of the balls there is a finite
K={xy,....,x,} CAwithN, xB(x,r) = O,ie.r <rg(K).

(b) Let A C E be convex closed with diam 4 =1, r < r,(A) any.
Then N, . ,B(x,r) N A = @ and by w-compactness of the balls and of 4
there is a finite K C A with N xB(x,r) NconvK C N xB(x,r)NA
= g,1e.r <rg., (K). a

2.2. PROPOSITION. ( Maluta, [16].) If E is a non reflexive Banach space,
then J(E) = 2.

Proof. By a theorem of D. P. Milman and V. D. Milman [18] there is,
in every nonreflexive Banach space E and for every ¢ > 0, a sequence
(x,)%_, in E such that for every m > 1 and every y’ € conv(xy,...,X,,),
y" € conv(X,, 1 Xpmias---) We have 1 — e <]y’ — »”|| <1 + &. Taking
A = conv(x,)%_;,onehasdiam 4 <1 + ewhiler,(4) > 1 — & a

2.3. COROLLARY. (a) (Lim) J(E) = sup{2r,,,, 4+A4; A C E separable,
diam 4 = 1} = max{J(F); F a separable subspace of E }.
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(b) If J(E) < 2, then J(E) = sup{2r., xK; K C E finite, diam K =
1} = sup{ J,(F); F a finite dimensional subspace of E }.

(¢) If E has “uniform normal structure”, so does every reflexive G which
is finitely representable in E (i.e. such that for every finite dimensional
subspace F of G and every ¢ > 0 there is an isomorphism T of F onto a
subspace of Ewith |T|||IT7Y| <1 + e).

Proof. Immediate from Propositions 2.1(b) and (2.2) and from the
fact that every non reflexive Banach space contains a separable non
reflexive subspace. a

REMARK. It is not clear, however, from the above whether “uniform
normal structure” is a superproperty, i.e. whether “reflexive” can be
dropped in (c) or, equivalently, whether “uniform normal structure”
implies superreflexivity.

We observe here that the (absolute) Jung constant J(E) cannot be
estimated from either side by the Jung constants of its subspaces in a
similar way. Any space E is a subspace of some #,-space F = [_(T') for
some I (e.g. the dual ball) and J(F) = 1 while J(E) can be any. Thus we
may have J(E) > J(F) when E C F. We cannot also get lower bounds for
J( E) by considering finite or separable subsets, as shown by:

2.4. ExaMmpLES. (a) J(c,) =2 by Proposition 1.1 (e.g. take 4 =
{(-1)"%,; n=1,2,...}, then diam 4 =1 = r.(A4)). However, for every
finite 4 = {x;,...,x,} C ¢y, X = 3(max;_,_,x;, — min,_;_, x;) € ¢,
satisfies r(X, A) = } diam A.

(b) Let I be an uncountable set, E = { x & m(I'); spt x countable}
(where spt x = {y; x(y) # 0}). E is a closed subspace of m(I'), hence
Banach. Every separable subset of E is contained in a subspace of m(I}),
where I') C T is countable (the union of the supports of a dense sequence).
m(TI},) is a subspace of E isometric to m = [ which has Jung constant
J(M) = 1. On the other hand, let I' = T', U I,, where I'}, I, are uncoun-
table and disjoint, 4, = {x € E;0 < x < xp } (i = 1,2),4 = 4, U (-4,).
It is easily seen that diam A = 1 but r(4) = 1. Thus J(E) = 2.

On the other hand, we have:

2.5. PrOPOSITION. Let (E,),.p be a net of linear subspaces of the
Banach space E, directed by inclusion, such thatU ., E, = E. Then: (a) If
E is reflexive, then J(E) = sup, J(E,) = lim . ,J,(E,).

(b) If E is a dual space and each E, admits a norm-1 linear projection
P, then J(E) = sup, J(E,) = lim,.,J(E,).
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Proof. If P is a norm-1 projection of E onto F, then for every A C F,

x € E we have r(Px, A) < r(x, A), hence rp(A) = ry(A4), thus J(F) <

J(E). Therefore for every a < 8 we have J(E,) < J(Ep) <J(E) or

J(E,) < J(Ep) < J(E), respectively. In either case it is enough to con-
sider 4 = conv(x,,...,x,) € E with

ry(4) > 1

1 _ re(4)
Giam 4 >~ 2 (E) —e or =T

respectively. But taking x{,...,x, € E,  with||x, — x| <efori=1,...,n
we get A’ = conv{x{,...,x,} C E, (for some a) satisfying, respectively,

"A’(A') > "A(A) — & " "E(A,) > "E(A) — &
diam 4° diam A4 + ¢ diam 4’ diam 4 + ¢

1
>‘§J(E)—-&

O

2.6. COROLLARY. For every 1 < p < oo and every infinite dimensional
L,(p) space we have

(@) J(L,() = J(1,) = sup, J(I2) = lim,, J(I7) and

(b) J(L,(p)) = J(1,) = sup, J(I7) = lim,, J(I}).

Proof. For every measurable partition D = { D, D,,...,D,} of the
measure space, with 0 < u(D,) < oo for i = 1,...,n, the characteristic
fucntions {x p,...,Xp,} span in L, (p)a subspace F, isometric to /,, and
admitting the norm-1 projection Ppf = Xi_i( [p fdp)Xx p/pm(D,). The F,
clearly form a net directed by inclusion whose union is dense in L,(p), so
that we can apply Proposition 2.5. O

In order to give lower bounds for J and J, in n-dimensional spaces,
consider “(n, m, r)-symmetric block designs”, i.e. 0-1 symmetric n X n

matrices 4 = (a,;);;_; such that
Y a,.a ={m ifi =k,
v ks rifi#k,

where n > m > 0 and r is, necessarily, m(m — 1) /(n — 1).

2.7. LEMMA. If E is an n-dimensional space with a symmetric basis
(ex) =1 (i-e.suchthat |2} _\|a,le, |l = X o1,k eill for all scalars e, . . . ,a,
and all permutations 7 of {1,...,n}), and if there is an (n, m, r)-symmetric
block design (a, ;) ;_,, then

2Am—r) |71

Y e

i=1

n

(1—a).§ei+a Y, e

i=m+1

J(E) =2 min
O<ax<l
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and

2(m—r) -1

Zei

i=1

n

(=55 2 e

J(E)>2

i=m+1

If there is an (n, m, m/2)-symmetric block design (hence, necessarily,
m = (n + 1) /2), then also
-1

J(E) =

n
Z €;
i=1

m
Z €;
i=1

Proof. Consider the points x; = X7 _,a;e; and the sets 4 =
conv(x,,...,x,) or A, = conv(0, x,,...,x,), respectively. By symmetry,
center points are multiples of ¥."_,e,. Also,

2.8. COROLLARY. If there is an (n, m, r)-symmetric block design then,
for every 1 < p < o0, we have

no [_277n=n) ) 11
J(1r) = (”(m,n = m)”q_l) (whe ¢ + i 1)

n

min max(l(l—a)ie,+a Y e

O<a<m/n i=1 i=m+1

, & . O

n
Z €;
i=1

n
Z €;
i=1

(since the minimizing o for p > 1is m'/?7 1 /(m*?~* + (n — m)/?71) and
forp=1itislifm=>2nand0if m < 2n), and

227 (n = 1)|[(m, n — m)[h

n

— )l/p

J(l;)z(

s

If there is an (n, m, m/2)-symmetric block design, then

J(12) = 2n/(n + 1))

2.9. LEMMA. There are (n, m, r)-symmetric block designs in each of the
following cases:

(@nisany, m=1,r=0,orm=n—1,r=n— 2.

b)yn=22m=2"12"-1),r=2"'2" ' = Dorm=2"12"+ 1),
F=27120 + ).

©Qn=2"—-1m=2"Lr=2"2orm=2"1-1,r=2"2-1.
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Proof. For (a) take the unit matrix, a;,;, = §,; or its complement
a;; =1 — §,,. For (b) define, inductively, 4, = (1), B, = (0),

Bz A, At At
A, B A, 4
At+1 = Ar Ax Bt AZ s (Bt+1)ij =1 _(Az+1)ij-

At At At Bt

For (), let W, = (w}; 1‘2,lj=1 be the Walsh matrix, defined inductively by
W, = (D),

and consider (3(1 — w/)))} ;. O

2.10. COROLLARY. (a) J(l;') > (2" = 1)/2" Y/,

(b) J (1)) = 22°VP[(n = 1) + (n — 1)?]V?/n.

(© (1271 = (@ = /27 ).

(@ J(,) = 21/P,

(e) J,(1,) = max(2!/?,2771/7),

((e) follows also from Corollary 2.6 and Bynum’s estimate WCS(L,)
< min(27~1/7 21/7))

2.11. COROLLARY. (a) J,(E) = 2'/7z, where p, = inf{ p; 1, is finitely
represented in E} = the maximal “type” of E in the sense of Maurey and
Pisier [17). Thus, if E has uniform normal structure, it is “B-convex” ([13]).
In fact, stronger conditions are imposed on E (cf. [1]).

(b) For every infinite-dimensional E, J(E) > V2 (Maluta, [16]) (since
Pe < 2 by Dvoretzky’s theorem).

Now we observe some upper bounds.
2.12. PROPOSITION. If dim E < n, then J(E) < 2n/(n + 1).

Proof. Given a convex A C E with diam 4 = 1, take any r < r,(4).
Then N, ,B(x,r)N A= @ hence by Helly’s theorem, there are
Xgyeo-sX, € AwithN'_(B(x,, r) N A = &. But, taking

1 n

n+1i§0x"EA’

X =
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we have
% - x| = — 5 (- x)| = ——= | T (x, - x,)
LR el IR o
< max ||x, — x| < T,
n+1 i) J n+1

hence r < n/(n + 1). Since r < r,(A) was arbitrary, r,(A) < n/(n + 1).0

If (xq, Xq,...,x,) € E, the “n-volume” of conv(x,,...,x,) is

1, fi,--->f,

Xgs X1seensX,

V(xO,...,xn)=sup<det( );]’,EB(E*),i=1,...,n}.

Following Sullivan [21], we define the modulus of n-convexity of E,

n

in

i=0

1
n+1

8{M(e) = inf{l — ;x, € B(E),

i=0,...,n,V(xg,...,x,) = s}

(so that

Xy + X
2

is the ordinary modulus of convexity). Sullivan showed that if E is “n-uni-

formly convex”, i.e. if §{”(e) > 0 for all ¢ > 0, then E is superreflexive

and has normal structure. Bynum [3] observed that J (E) < 2(1 — 82(1)).

One can push this argument one step further:

80(e) = 8,(¢) = inf{l - “ x40, %, € B(E), |xo — x,]| = e}

2.13. PROPOSITION.

J(E) < 2min max(l - 82 (e), %—e + %)
Proof. Let A C E be convex with diam 4 = 1. Suppose r,(4) > r >
1 —8P(e). Take 7 >0 and x,, x; €A with ||x; — x,]| > 1 — 5 and
x, € A with
X+ X

3 >r

Xy —

2

x5 € 4 with
Xo+ X + X,
3

X3 —




CONSTANTS IN NORMED LINEAR SPACES 11

Translating, we may assume x; = 0. Take f; € B(E*) with
filx; = xp)>1-m and f, € B(E*)
with

fz(x2 B B ; xl) > r.
Then
1 1 1
V(xy, xp, x,) =|f1(x0)  fi(x1)  fi(x2)
fz(xo) fz(xl) fz(xz)

filxy = x4) fl(xz —(xo + x,)/2)
fo(x; = x) fz(xz —(x + xl)/z)

Xy + X3

>0 -n)r _f1(x2 ) )fz(x1 — Xo)-

But
Xq+ x 2x, + x 3x
fl(x2— 02 1)=f1(x1_xo)+f1("-22—0""‘2—1)
3 2x, + x
=f1(x1—x0)+5f1(43—2—x1)
3 1
>(A-n)-5=-5-n
and also
+ 2 + 3
fl(xz‘xozXI>=“f1(x1-x0)+f1(%i"%)<%+71
Similarly,
+ 3 2x, +
fz(xl—xo)'-'fz(xz_xozXI)+f2(%“_szzc_o)>"_5
and
X, + x x; + 2x 3x 3
fz(xl_x0)=—f2(x2_%)+fz( . ) 2 - 20)<5“"-

Thus
e V(xg, x,%x,)>Q=m)r—3+19)3-r).
Since n > 0 was arbitrary, 3r/2 — 3/4 <eorr < 2¢/3 +1/2. O
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If we use this estimate for /, we get J(/,) < 1.61 (while2(1 — §,(1)) =
V3 and J,(/,) = V2).Inany E, 1f8<2>(3/4) > 0, then J,(E) < 2.

2.14. PrROPOSITION. For every n and every € > 0, we have J(E) <
2max(1 — (1 — &)/nle,1 — 8{"(¢)), so that if §{(1) > O then E has uni-
form normal structure.

Proof. Let A C E be convex with diam A = 1. Take any r < r,(A)
and any n > 0. Find x,, x;, € 4 with ||x,— x;]| >1 — 7 and x, € 4,
k—2 3,...,n+1 with ||x, — k72 )x,|| > r (such x, exist since

k~'vk-lx, € A and r,(A) > r). Translate to get x,,,; = 0, so that x, €
B(E), i=0,...,n. Find f, € B(E*) with fi(x; — x,) >1—n and f, €
B(E*), k =2,...,n,with f,(x, — k"'X*-1x,) > r. Consider

1, fis-- s/,
V(x())"'9-xn) 2 det( XO, x]_a-..,.xn
fi: 5o F5 o1,

= det L L
Xy ™ X, Xy i(xo + %), %3 — %
i

m~

X, %Z

All the entries in the last determinant have absolute value < 1, but the
subdiagonal ones, f,,(x, — k™'L% lx,) for m > k, are small for r close to
1: since m~ X" Y, (x,, — x;) > r and |f,(x,, — x;)| < 1, we have 1 —
m(l —r) <f,(x, —x;) <1fori < m,hence

oG = X = o (30 = %) = fru(x, = x)[ < m(1 = 1)

and

<m(l-r),

1 k-1
fm('xk—z ; )

0

' Zf(xk x;)

i=0

too. Thus
V(xgs-eesx,) > —m)r" P =(n! = Dn(l —r) > ¢

provided r > 1 — (1 — &€ — n)/n!n. Therefore for such r we must have

</ +1) Y x) <1 - 88(e).

i=0

Since n > 0 and r < r,(A) were arbitrary, we get

ro(A4) < max(1 — 8¢(e),1 —(1 — &) /n'n). |
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REMARK. The rough estimate we used above can be improved, but
since the computation of §{™ seems to be quite complicated, it is not clear
whether finer estimates will yield more results.

Lim [15] gave the following upper bound for J.(/,), p > 2:
14 ¢77! )_1/,,
(1+1)"}

where0 <t < 1lsolves(p — 2)tP 1+ (p—DetF 2 =1
Maluta [16] defined another related constant for a normed E:

J(1,) <21+

D(E) = sup{lilxcn sullacd(xnﬂ,conv(xi);;l); (x,) € E,diam(x, )", = 1},

and showed that:
(i) D(E) = sup{ D(F); F C E separable};

(i) D(E) = 0 if and only if E is finite-dimensional.

(ii1) If D(E) < 1 then the Banach space E is reflexive and has normal
structure (but £ = (X & [/,), is reflexive and has normal structure al-
though D(E) = 1).

(iv) 2D(E) < J(E) and, if E is reflexive, D(E) < 1/WCS(E).

Maluta asked if D(E) = 1/WCS(E) for every reflexive E. She showed
that this is the case for /,, i.e. D(/,) = 271/ (Bynum showed WCS(/)) =
2Py, DX @ I7),) = 272 (Bynum showed WCS((X @ I%),) = V2 >
1=N(X & I}),)). For the space /,,, i.e. /, with the norm ||x||,; =
llx*ll, + llx7ll ,, which is of special interest since in it §(1) = 0, one still
has D(1,,) = 1/WCS(l,,) = 27'/7. We can give an affirmative answer to
Ma}wuta’s question in the case that E satisfies the (weak) Opial condition:
w, = 0 = liminf||x, — x|| 2 liminf||x,|| Vx # 0 [19]. The /, spaces (1 <
P < oo) satisfy this condition, but the L [0, 1] spaces do not, unless p = 2.

2.15. PROPOSITION. If E satisfies Opial’s condition, then D(E) >
1/WCS(E).

WProof. For any 0 <r <1/WCS(E), we can find (x,) C E with
x, — 0, diam(x,) = 1 and limsup||x, — x|| > r for every x € conv(x,).

In particular, lim sup||x,|| > 7 + & for some ¢ > 0, so that we can take a
subsequence (x,) with ||x;|| > r + ¢, Va. By Opial’s condition we have
liminf||x] — x|| = r + & Vx. Let n, = 1. If n,,...,n, have been chosen,
take a finite ¢/2-net, (y;,...,y,,), for conv(x,,...,x, ), and find n; ., so
that ||x, — yll > r + ¢/2 for every n = n,,,, j < m, Then
d(x}, , ,conv(x;)f_,) > r,so that D(E) > r. 0
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The parameters J(E), 2D(E) and R(E) ([1]), although all of them

between 1 and J,( E), are incomparable even for reflexive infinite dimen-
sional spaces:

2.15. EXAMPLES.

(a) J(1,) = 2D(l,) = V2 > 1= R(l,).

(b)E=(Z @ "), Here J(E) = 1;2D(E) = V2 and R(E) = 2.

() E = (X & I7),. Here 2D(E) = V2 again, but J(E) = R(E) = 2.
In concluding, we remark that none of the convexity properties

J(E)<2,J(E)<2 WCS(E)>1or D(E) <1 is isomorphy invariant.
In fact, the “best” spaces have “worst” equivalent renormings. For J this
follows from Proposition 1.1 (m = C(BN) has a maximal subspace
2-isomorphic to it of the type C(T'), T non-Stonian). For J, WCS or
D, it was observed by Maluta that D(/,, || ||,) =1, where ||x||, =
max(||x|| 5, V2|x[l.,)-

(1]
(2]
(31
(4]

[5]
(6]

(7]
(8]
(91
(10]
(11]
12]

(13]
(14]

(15]
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