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ON SPECIAL PRIMES

EMMA LEHMER

In fond memory of Ernst Straus

A special prime q is a prime which divides the discriminant of a
general period polynomial of degree e associated with the prime p = ef
+ 1, but q is neither an eth power residue oip nor a divisor of any value
of this polynomial.

These primes are very rare. Evans found some for the classical
cyclotomic octic. There are none for lower degree cyclotomic polynomi-
als. This paper finds special primes for the two quartics arising from the
cyclotomy of Kloosterman sums for e = 8 and shows that there are none
for e < 8.

Introduction. In two earlier papers on the cyclotomy of Kloosterman
Sums [3, 4] we proved that for e a prime and p = ef -f- 1 the Kloosterman
equation is irreducible and represents numbers all of whose prime factors
are eth power residues of/?. However, when e is even the equation splits
into two irreducible equations of degree e/2. The question arises as to
whether these two equations can have factors which are not e/2th power
residues. Such factors are called exceptional and they have to divide the
discriminant of the equations. Evans [2] raised the question of whether all
the divisors of the discriminant of the cyclotomic period polynomials are
eth power residues. He called the divisors of he discriminant which are
not eih power residues semiexceptional and showed that for e = 8 there
exist semiexceptional divisors which are not exceptional. We studied the
problem for e = 6 in [5], where we called such semiexceptional divisors
special, and showed that they do not exist for e = 6. In [8] I studied a
wider range of period equations of degree 2e, where e is a prime without
finding any special primes. In what follows such primes will be found for
the two Kloosterman quartics for e = 8 together with the exceptional
primes for the two cubics for e = 6, as well as for the two quadratics
found in [3] for e = 4.

1. Kloosterman sums. The Kloosterman sum S(h) is defined by
p-l

S(h) = Σ «(* + **), xx s 1 (mod p)

471



472 EMMA LEHMER

where

e(v) = exp(2πiv/p), p a prime.

We write p = ef + 1 and put the integers h = 1,2,...,/? - 1 into
cosets Cj with respect to some primitive root g, where every h in C; is such
that indgh = j (mod e). In [3] we defined

θj= Σ S(h) (7 = 0 , 1 , . ..,e-l).

We showed that if e is a prime then the θj satisfy an irreducible equation
of degree e, while for even e the θ2 satisfy an irreducible equation of
degree e/2, while the 02j+1 satisfy a companion equation of the same
degree. For e = 4 we let p = a2 + b2, a = 1 (mod4), yi = 4θ2i — 1 and
z = 4θ2ι + 1 — 1 and obtained the two equations

Fi(y) = y2 - 2py + P2 - 4Pa2 a n d Gi(z) = z2 - ipz + P2 - 4b2p

with discriminants D(F2) = 4pa2 and D(G2) = 4pb2.

We now let q be an odd prime. Obviously if q\a then F2(y) Ξ= (^ —/?)2

(mod q), and if ̂ |6 then G2(z) = (z — p)2 (mod ^) so that both equations
have solutions modulo q.

The following facts are well known: (see [7] for example)

LEMMA 1. All the divisors ofb are quartic residues of p. Ifq\a, then q is
a quartic residue of p if and only if q = %n ± 1.

This leads at once to the following:

THEOREM 1. If q\a then q is exceptional for F2(y) if and only if

q = 8n ± 3. There are no exceptional divisors for G2(z) and neither equa-

tion has special divisors.

It was shown in [3], formula (6.7) that the Kloosterman periods are
linear combinations of the cyclotomic periods

Vt = Σ €(^)

For e even the formula reads

(1) eθj = β ΣΨ.(-4*'- 2 'k +(-l)jHp-1)/2(p - 1),
z = 0

where the coefficients Ψe are the Jacobstal sums

(2)
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For e = 6 [5] formula (48) gives for p = A2 + 3£2, 4/? = L2 + 27M2,

L s Λ = I(mod3)

' -2{2A + 1) ifr^O(modo)

1) if r - ±2 (mod 6)
j 0 i f r -3(mod6)

±B iίr=± (mod6)

where by a suitable choice of the primitive roots g we can match the signs

of B and r.

For e = 8 Theorem 4.7 of [1] can be restated in our notation to read

with/? = a2 + b2 = c2 -f 2d2, a s= c = 1 (mod4),/even

-2(2c + α + 1) if r s 0 (mod 8)

2(α - 1) if r s ±2 (mod 8)

2(6 ± J) otherwise.

We will also need to know that

(5) *(g)--*(g).

We are now ready to take up the special cases of e = 6 and e = 8.

2. The sextic case. We note that the coefficients of ηt and of ηi+3

are equal in (1) and that ηi 4- ηi+3 = r̂  is of order 3, so that if we let

xt = 3τ^ -f 1 then the JC7 satisfy the reduced cubic

/3(x) = x3 - 3/?x - pL with X>(/3) == {llpM)1.

Substituting the values of ψ6 given in (3) into (1) we find that for / even

and 2 a cubic residue

3θ2i= -Axέ+(p

Similarly if we let δ̂  = η' — η'i+ι then

where the δ, are the roots of the less familiar cubic

g3(x) = x3 -px - pM with D(g3) = (pL)2.

Therefore letting

y i = 3θ2i-(p + l)/2 and Zi = 3θ2ι+ι+(p

we see that the j , and the z, satisfy respectively

and G3(x) = B%(x/B)
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with discriminants

D(F3) = (ΠpMA3)2 and D(G3) = (pLB3)2.

If 2 is not a cubic residue then the roots simply permute and the

equations remain unaltered. However if / is odd then the yι satisfy G3,

while the xt satisfy F3 so we obtain nothing new. In order to assertain

whether F3 and G3 have any exceptional or special divisors we must

examine the divisors of AM for F3 and of LB for G3. We first recall some

well known facts [see 5].

LEMMA 2. All the divisors of L and M are cubic residues. If 2 is a cubic

residue then all the divisors of A and B are also cubic residues. If 2 is not a

cubic residue and if q\ 3 divides B then q is a cubic residue if and only if

q = l%n± 1.

The last part of the lemma was obtained in [5] by using f3 together

with the fact that all the divisors q \ 3 oί x3 — 3x — \ are q = ISn ± 1.

Similarly we can use g3, all of whose divisors q \ 3 are cubic residues, to

prove

LEMMA 3. If 2 is not a cubic residue of p and if q\A, then q is a cubic

residue of p if and only if q = \%n ± 1.

Proof. If 2 is not a cubie residue then AA = L + 9M, so that since

q\A, then L = — 9M (mod q). Putting this into

g3(3Mx) = 21M3{x3 - 3x - 1) (mod q)

we see that since q \ 3M, q = 18« ± 1. Conversely if q = ISn ± 1, then it

is a cubic residue and hence a divisor of g 3 (x).

This leads to the following theorem.

THEOREM 2. // 2 is a cubic residue then neither F3 nor G3 have any

exceptional or special primes. If 2 is not a cubic residue then 2 is exceptional

for F3 if p = \2n + 7 and for G3 if p = \2n + 1. The primes q = \%n±ιb

or q = 18« ± 7 are exceptional for F3 if q\A and for G3 if q\B.

Proof. Since F3(0) = 0 (mod A) and G3(0) = 0 (mod B) there are no

special primes. If 2 is a cubic residue, then all the divisors of AB are cubic

residues. If 2 is not a cubie residue it is exceptional for F3 if it divides A in

which case/? = 12n + 7, and for G3 if it divides B so that/? = 12n + 1. If
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q = 3 then q does not divide A and is a cubic residue if it divides B, so it
is not exceptional. By Lemmas 2 and 3 the primes q = ISn ± 1 are the
only cubic residues that divided or B. The remaining primes q = ISn ± 5
and q = 18« ± 7 are exceptional for F3 if they divide yί and for G3 if they
divide B. This completes the proof of the theorem.

2. The octic case. Let p = 8/ + 1 = a2 4- ί>2 = c2 4- 2d2, α = c =
1 (mod 4). As in the sextic case we make the transformation

Λ = 402 /-(/7 + l)/2 and z, « 40 2 | + 1 +(/> - l)/2

and calculate the ^2,
 a n d the ^ 2 i + 1 by substituting the Jacobsthal sums (4)

into (1). Taking (5) into account, we obtain

(6) yt = -(a + 2c)η, + aηi+ι 4-(2c - a)ηt+2 4- αη. + 3

- -a{p- 2c(ηf - η / + 2)

so that

This gives

(7) F4(y) - [ j 2 + p(a* - 2c 2)] 2 - 4 f l ^ ( y + c 2) 2 .

The discriminant D(F4) = P1

2(F4)P2(F4) where

^ ) = Π(ry

We see from (6) that

y0 -y2= - 4 c ( τ j 0 - η2) and ^ - ^3 =

so that

P 2(F 4) = [I6c2(iio ~ τ?2)(η1 - η3)}2 =

Similarly

7 o - Λ = ~2//Γα - 2 c ( η 0 - η t - η 2 + τj3)

_y2 _ y3 = - 2 ^ α + 2c(τj0 ~η1-η2 + η3)

so that

- 4c 2(η 0 - ηx - η 2 + η 3) 2
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while

Therefore

(8) PX(F4) = I6p[p(a2 - c2f - b2c4} = 16pa2(4d4 - pb2)

= \6pa2[p{a2-2c2) + c4].

Therefore

D(F4) = 214a4b2c4(4d4-pb2)2.

Similarly we find that

z, = (b + 2d)ηo-(b + 2d)ητ +{b - 2d)η2 -(b - 2d)η3

so that

z2i = b{p ± 2d(η0 - ηλ - η2

while

z2/ + i = ~*/p ± 2d(v0 + % - i?

This gives

zf + z ί + 2 = ±26 and ztzi+2= p(b2 - Ad2) ± Abd2{p

so that

(9) G4(z) = [z2 + p(b2 - Ad2)]2 - Ab2p(z + 2d2)\

To get the discriminant we note that

P2(G4) = 256d4[(η0 - Vι - η2 + r ? 3)(τ ? 0 + i,x - η2 - η3)]2 = 256a2d4p

while

- 16d2(η0 - η2)
2][4/w2 - 1 6 J 2 ( % - η3)

2]

- Sd2(p + ^a)][4pa2 - 8d2(p - {p~a)\

= 16p[p(b2 - 2d2)2 - 4a2d4} = 16pb2[(b2 - 4d2)p + 4d4]

= 16pb2(c4-pa2).

Therefore



ON SPECIAL PRIMES 477

It is interesting to note that G4 can be obtained from F4 by interchanging
a with b and c2 with 2d2. This is of course also true of the discriminants,
but this duality is not apparent from the roots of the equations.

We now turn our attention to the prime factors of the numbers
represented by the two equations which divide the corresponding discrimi-
nants. The classical cyclotomic quartic for/? = 8/ + 1 is

f4(x) = (x2 -p)2 - 4p(x - a)2 withD(f4)=p3b6/4

has no exceptional or special divisors. This is no longer true for our two
quartics. In fact we have the following 2 theorems.

THEOREM 3. Let q be an odd prime. If q divides both a and c it is
exceptional for F4 if and only if q = %n ± 3. // q\a, but q\ c, then q is
special for F4 if and only ifq=%n±3.

Proof. If q\a, then q\D(F4) and/? = b2 (mod q) so that

F4(y) ^y2-2b2c2 (mod q).

By Lemma 1 we see that q is not a quartic residue of p if and only if
q = %n ± 3 so in this case it is exceptional if F4(y) = 0 (mod q), but this
is the case if and only if c = 0 (mod q), since q cannot divide both a and
b. If c Φ 0 (mod q), then q is special. This proves the theorem.

THEOREM 4. // q divides a it is exceptional for G4 if and only if
q = 8« ± 3; it is never special.

Proof. As before, q is not a quartic residue by Lemma 1 and

G4(-b2) = [b4 4- b\b2 - Ad2)]2 - 4b4(-b2 + Id2)2

 Ξ 0 {moάq).

THEOREM 5. If q\c, but q \ a, then q is exceptional with respect to F4 if
and only if q = Sn ± 1 is not a quartic residue of p. It is special for F4 if and
only if q = Sn ± 3.

Proof. Since q\c, we have p = 2d2 (mod q) and (p/q) = (q/p) =

(2/?).

F4(y) = (y2-2a2d2) (mod q).

This congruence has a solution if and only if q = 8« ± 1, in which case q
is exceptional if q is not a quartic residue of p. If q = &n ± 3 then q is a
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quadratic non-residue oίp and the congruence has no solution so that q is
special.

THEOREM 6. If q\d, then q is exceptional for G4 if and only if q is not a

quart ic residue of p. It is never special.

Proof. In this case/? = c2 (mod q) and

G4(z) s ( z 2 - c2b2)2 = 0 (mod q)

for z = be. Since q divides the discriminant of G4(z) it is exceptional if it

is not a quartic residue of p.

We will now suppose that q\ ac for F4 and that q \ ad for G4,

therefore <? + P2(,F4) or P 2 (G 4 ). Moreover all the yi9 as well as all the z, are

incongruent modulo # in this case. Therefore the proof of Theorem 5.2 in

[4] is valid so that all the divisors of Pλ{F4), except possibly those of ac,

and all the divisors of Pλ(G4), except possibly those of ad are quartic

residues of p and hence are neither exceptional nor special. This gives us

the following

THEOREM 7. All the prime divisors of c4 —pa2 and of Ad4 — pb2 are

quartic residues of p.

It would be of interest to find a direct proof of Theorem 7 and to

characterize the divisors of c and d which are quartic residues of p = c2 +

Id2.
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