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THE SET OF PRIMES DIVIDING THE LUCAS
NUMBERS HAS DENSITY 2 / 3

J. C. LAGARIAS

Dedicated to the memory of Ernst Straus

The Lucas numbers Ln are defined by Lo = 2, Lx = 1 and the
recurrence Ln = Ln_ λ + Ln_2. The set of primes SL — { p: p divides Ln

for some n } has density 2/3. Similar density results are proved for sets
of primes Sa = {p: p divides Un for some n) for certain other special
second-order linear recurrences {£/„}. The proofs use a method of
Hasse.

1. Introduction. There has been a good deal of study of the struc-

ture of the set of prime divisors of the terms {Un} of second order linear

recurrences. M. Ward [15] showed that there are always an infinite

number of distinct primes dividing the terms {Un}9 provided we exclude

certain degenerate cases such as Un = 2". In fact, under the same circum-

stances it is believed that the set of primes dividing the terms U = {Un} of

any nondegenerate second order linear recurrence has a positive density

d(U) depending on the recurrence. This can be proved under the assump-

tion that the Generalized Riemann Hypothesis is true by a method

analogous to Hooley's conditional proof [4] of Artin's Conjecture for

primitive roots. P. J. Stephens [13] has done this for a large class of

second-order linear recurrences.

The point of this paper is that there are special second order linear

recurrences where it is possible to give an unconditional proof of the

existence of a density. This was shown by Hasse [3] for certain special

second order linear recurrences having a reducible characteristic poly-

nomial, in the process of solving a problem of Sierpinski [12]. Sierpinski's

problem concerns the existence of a density for the set of primes p for

which ord^2 is even. This set of primes is exactly the set of primes

dividing some term of the sequence Vn = 2n -I- 1; this sequence satisfies

the reducible second order linear recurrence Vn = 3Vn_1 — 2Vn_2 with

Vo = 2 and Vx = 3.

THEOREM A. {Hasse) The set of primes Sv = {p: p is prime and p

divides 2" + 1 for some n > 0} has density 17/24.
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Hasse's result [3] actually covers all the sequences [an + 1: n > Q}9

where a is an integer, and the density of the associated set of primes is
2/3 when a > 3 is squarefree.

Here we observe that Hasse's method with some extra complications
extends to cover certain second-order linear recurrences with irreducible
characteristic polynomials. The most interesting example of this pheno-
monon is the Lucas numbers Ln defined by Lx = 2, L2 = 1 and the
recurrence Ln + ι = Ln + Ln_v

THEOREM B. The set of primes SL= {p: p is prime and p divides some
Lucas number Ln} has density 2/3.

Theorem B also can be derived from polynomial-splitting criteria of
M. Ward [16] for membership in SL. The full proof is then essentially the
same proof as given here.

The following recurrence discussed in Laxton [8] provides another
interesting example.

THEOREM C. Let Wn denote the recurrence defined by Wo = 1, Wx = 2
and Wn = 5Wn_1 — ΊWn_2. Then the set Sw = {p: p is prime andp divides
Wnfor some n } has density 5/8.

The parameterized families of recurrences An(m) and Bn(m), both of
which satisfy the recurrence

with initial conditions A0(m) = B0(m) = 1 and Ar(m) = m + 1, Bλ(m)
= m — 1, are also recurrences to which Hasse's method applies. In the
case that ε = \(m + im1 — 4) is the fundamental unit in K =
Q(vm2 — 4) the sets SA(m) = [p: p is prime and p divides An(m) for
some n) and SB(m) = {p: p is prime and p divides Bn(m) for some n)
each have density 1/3.1 omit the details.

In what circumstances is Hasse's method applicable? Any irreducible
second-order recurrence {Un} whose terms Un are rational numbers can be
expressed in the form

Un = aθn + aθn

where a and θ are in the quadratic field K generated by the roots of the
characteristic polynomial of {Un}9 and α, θ are the algebraic conjugates of
a, θ in K. Hasse's method applies whenever:

(i) θ/θ = ± φk where k = 1 or 2 for some φ in K.
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(ii) a/a = ξφJ where ξ is a root of unity in K andy is an integer.
The actual densities of the sets of primes obtained depend in an idiosyn-
cratic way on a and 0, which makes it awkward to state and prove a
general result. For this reason I have applied the method to special cases.
From the pattern of these proofs one should be able in principle to work
out the density of a set of primes associated to any particular recurrence
to which the method applies.

The proofs actually show that the sets of primes Sυ = {p: p is prime
and p I Un for some n} for these particular recurrences {Un} covered by
Hasse's method have a special property. To state this property, we need
some definitions. A set Σ of primes is a Chebotarev set if there is some
finite normal extension L of the rationals Q such that a prime p is in Σ if
and only if the Artin symbol

\L/Q]

is in specified conjugacy classes of the Galois group Gal(L/β), cf. [5].
Chebotarev sets of primes Σ are guaranteed to have a natural density d(Σ)
given by the Chebotarev density theorem, cf. [10]. The special property is:

Property D. Both the set S of primes and its complement S = { p: p is

prime and p & S} have a decomposition into disjoint countable unions of

Chebotarev sets of primes. That is,

S= \JSU\ S = \JSU)

where S(j) and S^ are Chebotarev sets. The densities of these sets satisfy

It is easy to show that any set of primes S having property D has a
natural density d(S) given by

For most second order recurrences {Un} the set of primes Sa associ-
ated to the recurrence is not known to have Property D, and probably it
doesn't. However, it seems a difficult problem to show that there exists
even one set Sυ that doesn't have Property D. As a test case, does the set
Sγ of primes dividing the terms of the recurrence given by Yn = Yn_1 +
Yn_2 with y0 = 3 and Yx = 1 not have Property D?
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I give a proof of Theorem A in §2 for comparison with the more
involved details of the proofs of Theorem B and C in §§3 and 4,
respectively.

2. Proof of Theorem A. The condition that p\2n + 1 for some n
can be rewritten as:

(2.1) 2n = -1 (mod p) is solvable.

Now let m = ord^ 2, the least positive integer with

(2.2) 2m = l ( m o d ^ ) .

Now (2.1) is solvable if and only if m is even and the smallest solution to
(2.1) in that case is n = \m. Now suppose 2j exactly divides/? — 1. Then
we have:

(2.3) 2J\\p - 1 and ordp2 is odd ** 2(p~l)/2J = 1 (mod p).

Hasse observes that the condition on the right side of (2.3) is a splitting
condition for primes in a certain algebraic number field Ky9 such sets of
primes have a density by the Frobenius density theorem.

Consequently we proceed by decomposing the set Sv into disjoint sets

(2.4) Sv= \JSP
7 = 1

given by

S</>= {p:p = 1 + 2^(mod2;+1)and/> e Sv}.

We also define

Sv).

and observe p e S(

V

J) if and only if p = 1 + 2J (mod2y + 1) and (2.3)
holds. To state Hasse's observation precisely, let Cj denote the cyclotomic

field β(2vT), let Kj = βί'vT, "fe) and let Ly = β( 2 '+)Γ 2fe

LEMMA 2.1. (1) The primes p in S^ are exactly the primes p that split
completely in Kj but not in Lj.

(2) The degree [Kj: Q] is 2, 8 and 22j~2 for j = 1, j = 2 and j > 3,
respectively. The index [LJKJ] = 2 except for j = 2 where K2 = L2.

(3) The primes p in S^ have densities dj equal to 1/4, 0 and 2~2j + 1 for
j = 1, y = 2 tffldy > 3, respectively. The primes p in S^ have densities
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= 2~J - d* for allj > 1. That is,

as x -» oc.

Proof, To prove (1) we observe that the fields C = β( v —1),
Vr- Vr-

Kj = Cj( v2) and Ly = CJ+1( v2) are all normal extensions of the ration-
als. The condition that the ideal (p) split completely over a cyclotomic

tn,—

field β( v l ) is well known to be p Ξ= 1 (mod m) ([2], Lemma 4), hence
p ΞΞ 1 (mod27) holds if and only if /? splits completely in Cy. The
condition that a prime ideal /? in C split completely in the Kummer

Vr-

extension Kj = Cy( v2) is exactly that
(2.5) xv s2(mod(/>)) f o r j c e θ y

be solvable over the ring of integers Oy for Cj ([2], Lemma 5). If /? is of
degree 1 then any algebraic integer x in Cj is congruent to a rational
integer (mod p) so in this case equation (2.5) is solvable if and only if

(2.6) xv s 2 (mod p) f o r x E Z

is solvable. By Euler's criterion (2.6) is solvable if and only if

(2.7) 2^-1> / 2 i = l(mod/?)

is solvable. This is exactly (2.3), and we have shown (p) splits completely
in Kj iff p Ξ= 1 (mod2-/) and (2.7) holds. Similarly (/?) splits completely in
Lj iffp s 1 (mod2''+1) and (2.7) holds. This proves (1).

To prove (2), we first observe that [C,: β] = φ(2J) = 2-7'""1. The

special circumstance that C3 = Q()/-~l) = β(/—T, ̂ ") shows that i ί 2 =

^2 = β(/--T,\^"), and that α = /2 is in C, for 7 > 3. The fact that
4 4

^2 ^ Q(v^) is a nonabelian extension of β guarantees that vT is not in
any of the abelian extensions Cy. Now observe that Kj = C7( v«) for
y > 3 is a Kummer extension so that [Kji Cj] divides 2 7" 1 . In fact for
7 > 3 α is of order 2k in Cf/{C*)2 for any A: because ^2" isn't in Cy, hence
using [2], Lemma 1 we have [Kj: Cj] = 2 7 " 1 for^ > 3 and also [Lj: Cy+1]
= 2^~x fory > 3 using L- = C y + 1( 2"v^). Thus [ϋΓy: β] = [^ : CJ[Cy: β]
- 22>"1 for 7 > 3 and [Lj: β] = 22j~ι for 7 > 3 so that dj = 2̂ /y for

7 > 3. Finally one checks that [Kx

9: Q] = 2, [L x : β] == 4 and [K2: β] = 8,
to prove (2).
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To prove (3) we observe that for a normal extension K/Q of degree

[K: Q] the set of primes/? that split completely in Khas density [K: β ] ~ \

which is a consequence of the prime ideal theorem (e.g. [6], p. 315

Theorem 4), a special case of both the Frobenius and Chebotarev density

theorems. Thus using (1) we find that the set of primes in S(

v

j) is the

difference of a set of primes of density [Kj\ Q]~ι less a class of primes

contained in it of density [Lj: Q]~ι. Using (2) we compute this density d*

to be equal to 1/4, 0 and 2'2j+ι for 7 = l,y = 2 andy > 3, respectively.

Finally the primes in S(

y

J) are the difference of the class of primes

{p = 1 + 2J (mod2^ + 1)} of density 2~J = [C/. Q]~ι - [CJ+1:Q]~\ and

the class of primes S[/} of density dj contained in it. This proves (3). D

To complete the proof of Theorem A, we observe that for any fixed

m > 3,

7 = 1 7 = 1

where P denotes the set of all primes. Using (3) of Lemma 2.1, the first

inclusion gives

24 3 j i n x Un c

as x -» oo, since all the S{

V

J) are disjoint. The second inclusion gives

4 3

as x -> oo. Letting m -» oo shows that

REMARKS. (1) By a careful analysis of error terms in this argument

using an effective version of the Chebotarev density theorem, Odoni [11]

has proved the stronger result that:

#{p <x:p^Sv} = ^Li(x) + θίπ(x)expί-c^^

where Li( c) = /2

X dt/In /.

(2) The sets S{

V

J) are sets of primes determined by systems of poly-

nomial congruences in the sense of [5, Theorems 1.1 and 1.2].

3. Proof of Theorem B. The Lucas numbers Ln satisfy

(3.1) Ln = ε" + ε"



PRIMES DIVIDING THE LUCAS NUMBERS 455

where

l + i/5 A _ l - \ / 5
ε = — and ε = .

Hence

(3.2) p\ Ln <* e" + ε~n = θ (mod(p)) <* θn = - 1 (mod(p))

where

and the congruences are in the ring Z[(l + ]f5)/2] of algebraic integers in
Q(]/5). Thus SL is exactly the set of primes p for which the exponential
congruence over Z[(l -f y[5)/2] given by

(3.3) θx s -l(mod(/>))

is solvable for some integer x.

We now proceed analogously to the proof of Theorem A. We must
treat several cases according to the behavior of the ideal (p) in
Z[(l + V^)/2]. If p ΞΞ ±1 (mod 5) then (p) = TΓTΓ splits into two con-
jugate degree 1 prime ideals, while if p Ξ= ±2 (mod 5) then (/?) is a degree
2 prime ideal in Z[(l + i/5~)/2]. Let SL = 5^ U SB where

^ = {z^1/7 G 5 L and^ = ±1 (mod5)}

and

= ±2 (mod5)}.

1. The primes in SA have density 5/12.

Write (p) = 7rτf in Z[(l 4- yβ)/2]. In this case (3.3) is equivalent to

(3.4) θx= -l(modflr)

being solvable. To see this, suppose (3.4) holds and apply the automor-
phism taking ^5" to — ̂ 5* to (3.4) to get

(3.5) θx= - l (modτr) .

Since θθ = 1 we have θxθx = 1 so (3.5) implies

0 * Ξ - i ( m o d τ f ) .

Combining this with (3.4) shows (3.3) holds. The reverse direction is clear.
Now we have the equivalence

(3.6) ord^ θ is even <=> θx = — 1 (mod (p)) is solvable.
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If p = 1 4- 2 y ( m o d 2 7 + 1) we obtain

2'\\p - 1 and ord,θ is odd ~ Θ^~l)/2J = 1 (mod TΓ).

This leads us to split S^ into the disjoint union of sets

7 = 1

where

5 | / ) = (jr?:^ = i + 2 7 (mod2^ + 1 ) and ord^tfis even}.

We set

S ω = {^ ^ = 1 + 2 7 (mod2 7 + 1 ) and ord^flis odd}.

The associated fields are

and LJ =

LEMMA 3.1. (1) S^l) is empty. Forj > 2 the primes p in S^J) are exactly

the primes that split completely in KJ and which do not split completely in

(2) The primes in S\l) and S\l) have densities 0 and 1/4, respectively.

Forj > 2 the primes in S\J) have density 2~2J and those in S\n have density

2 -/-i -2'2K

Proof. Similar to that of Lemma 2.1. The relation θ = -ε 2 leads to

Kf = L* = ^ ( V ^ Γ , ^ ) ; this causes S\l) to be empty. For j > 2 one

checks that [KJ : Q] = 22j~ι and [L*:Q] = 22J. In fact for j > 2,

Kf = Q(ωj9 V5 , φj_2, ^JΦJ-2 ) where coy = V - 1 and ψ y_ 2 = Vε, and

LJ = β ( ω / + 1, ]/5, φJ_ι). Finally note that the set S^J) U S^J) = {p: p =

± 1 (mod 5)} and/7 Ξ 1 + 2 7 (mod2^ + 1 ) has density 2~/~1. D

As in the proof of Theorem A we find the primes in SA have density

Case 2. The primes in SB have density 1/4.

The primes p = ±2 (mod5) remain inert in Z[(l + ]/δ)/2], and in

this case

θx =Ξ - 1 (mod(/?)) is solvable <=> ord ( p ) ^ is even.
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Now

(3.7) 0 ( ' + 1 ) / 2 = ( - 1 ) ( ' + 1 ) / V + 1 = a(modp)

for some a e Z because GF(p)* = {ψ/7+1: ψ e GF(/?2)*}. Applying the

non trivial automorphism of β(V^) gives

hence

Thus

(3.8) ΘP+ι = a2= l{moά{p))

Consequently oτά{p)θ\ p + 1. Now when p Ξ= —\ + 2J (mod2 7 + 1 ) we

have

(3.9) ^(p+D/2^ = ! (mod(^)) ^ ord ( ; ? ) ^ is odd.

We now decompose

where

5 i 1 ) = = {P'P = 1 (mod4)and/?

and for y > 2

We complete case 2 with the following lemma.

LEMMA 3.2. (1) S^l) is empty.

(2) For j > 2 all S^l) = {p: p = - 1 + 2^ (mod2 7 + 1) α«J p = ±2

(mod 5)} and S^j) has density 2~J~ι.

Proof. (1) Wheny' = 1 we have

(3.10) 0(/>+υ/2 = i (mod(^)) <=> ord ( / 7 ) 0 is odd.

Now θ = — ε2 so

(3.11) 0 ( ' + 1 >/ 2 s ( - ε 2 ) ^ + 1 ) / 2

 s _ε/»+i (mod(p)).

We claim that
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which with (3.11) shows θ{p + l)/2 = 1 (mod(p)) and so by (3.10) ord^ θ is
odd and S£} is empty.

To prove the claim, set

so that

(3.12) ε

By algebraic conjugation ε(p+1)/2 = φ (mod p) and εε = — 1 so that

(3.13) - 1 = (-1) ( ' + 1 ) / 2

 Ξ (eey+1)/2 = φφ (mod{p)).

By (3.8) ε^ + 1 = ± 1 (mod(p)). We suppose that ε^+1 = 1 (mod(/>)) and
get a contradiction. In that case (3.12) gives φ2 = 1 (mod(p)), hence
φ Ξ +1 (mod(p)). Hence φ = φ(mod(p)) and (3.13) now gives

φ2= -l(mod(p)),

the desired contradiction.
(2) We must show that in the case j > 2 oτd{p) θ is even for any

p = —\ + 2J ( m o d 2 7 + 1 ) and p Ξ ±2 (mod5) . We argue by contradic-
tion. Suppose o r d ( / ? ) θ were odd, so that by (3.8) we have

(3.14) Θ(P

Set

and observe θ = —ε2 and (3.14) give

(3.15) - φ 2

Ξ l (

Now

and

(3.16) - 1 = (-l)<'+ 1>/* Ξ {eir + l)/v ^ φφ(mod{p)).

Now by (3.15) φ2 = - 1 (mod(p)) and since ^ = 3 (mod4) we have

φ = — φ (mod(p)). Hence φφ = —φ2 = l (mod(/?)), contradicting

(3.16). D

As in the proof of Theorem A Lemma 3.2 implies the density of
primes in SB is Σ^22~J~ι = 1/4. This proves Theorem B. D

REMARK. It is possible to prove that

# { p < x: p e Sr) = 7r Li( c) + 0 Li(x)exp - c Ί Ί Ί
l i ^ ^ L j 3 I \ In In In x

by the method of Odoni [11].
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4. Proof of Theorem C (Sketch). We have

Letting a = ]

(4.2)

where

Φ

\ + b

K

γ

Ϋ

+

= Q

11

.11-1/
\2 6V

and γ = f

(mod(p))

+ δf^
14

- ) (

+ έv

and

5

2

III

- M '
we have

^ (mod(p)),

α - 1 + Z 1 7 !

α 2

is a cube root of unity. Hence (4.1) gives

(4.3) p divides Vn for some n > 0 «=> ord ( j P ) φ ^ O (mod 3).

We consider separately the cases in which (p) splits completely or

remains inert in

Case 1. p s 1 (mod 3).

Then (/>) == TΓTΓ in Z[(l -f \/—3)/2]. Now as in Theorem B we have

(4.4) oτd(p) Φ Ξ ° ( m o d 3) <=> ord^φ = 0 (mod 3),

using the fact that φφ = 1. Now let 3J\\p — 1, and observe that in this

case

(4.5) ord^φ m 0 (mod 3) <̂  φ^'ι^J = 1 (mod π).

Then

(4.6) θ(p~1)/v s 1 (mod 7?) <=> 7r splits completely in

>̂ (p) splits completely in i^

Hence the density of primes satisfying (4.6) is [/}: Q}~1 = (2 327'""1)""1,

and the density dj of primes with ?>j\\ρ — 1 and (4.4) holding is

dj = 2(2 3J)-1 -(2-32J-ιy\

The total contribution of such primes has density

(4-7) A-Σ4-~.
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Case 2. p = 2 (mod 3).

Then (p) is inert in Z[(l 4- ]/— 3)/2] and as in Theorem B we have

φp+ι = l(mod(p))

and if 3J\\p + 1 then

ord ( / ) ) φ * 0 (mod3) «* φ^-ι^v = 1 (mod (/?)).

Now we have

(4.8) φ(^ + 1 )/ 3 7 = 1 (mod(/>)) <=>p = 2 (mod3) and (/>) splits

completely in i^./g ( / ^ T ) .

We claim that the set of primes defined by the right side of (4.8) has

density (2 32J~1)~ι. To verify this, one checks that Fj/Q is Galois over Q

with dihedral Galois group of order 2 3 2 7 " 1 , that the splitting condition

(4.8) on primes in Fj/Q corresponds exactly to the Artin symbol

l o o .
being the conjugacy class (σ) , where σ is the unique element of order two

in GsΛ(Fj/Q). Then the Chebotarev density theorem implies that the set

of primes in (4.8) has density [Fj: β ] " 1 = (2 32j~ι)'\ as claimed.

Hence the density dj of primes with 3j\\p 4- 1 and (4.4) holding is

d

and the total density of such primes is

Acknowledgments. I am indebted to J. P. Serre for informing me of

the work of Hasse, and to C. Pomerance for helpful comments.
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