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THE SET OF PRIMES DIVIDING THE LUCAS
NUMBERS HAS DENSITY 2 /3

J. C. LAGARIAS

Dedicated to the memory of Ernst Straus

The Lucas numbers L, are defined by L, =2, L, =1 and the
recurrence L, = L, _, + L, _,. The set of primes S, = { p: p divides L,
for some n} has density 2 /3. Similar density results are proved for sets
of primes S, = { p: p divides U, for some n} for certain other special
second-order linear recurrences {U,}. The proofs use a method of
Hasse.

1. Introduction. There has been a good deal of study of the struc-
ture of the set of prime divisors of the terms {U,} of second order linear
recurrences. M. Ward [15] showed that there are always an infinite
number of distinct primes dividing the terms {U, }, provided we exclude
certain degenerate cases such as U, = 2". In fact, under the same circum-
stances it is believed that the set of primes dividing the terms U = { U, } of
any nondegenerate second order linear recurrence has a positive density
d(U) depending on the recurrence. This can be proved under the assump-
tion that the Generalized Riemann Hypothesis is true by a method
analogous to Hooley’s conditional proof [4] of Artin’s Conjecture for
primitive roots. P. J. Stephens [13] has done this for a large class of
second-order linear recurrences.

The point of this paper is that there are special second order linear
recurrences where it is possible to give an unconditional proof of the
existence of a density. This was shown by Hasse [3] for certain special
second order linear recurrences having a reducible characteristic poly-
nomial, in the process of solving a problem of Sierpinski [12]. Sierpinski’s
problem concerns the existence of a density for the set of primes p for
which ord,2 is even. This set of primes is exactly the set of primes
dividing some term of the sequence V, = 2" + 1; this sequence satisfies
the reducible second order linear recurrence V, = 3V,_, — 2V, _, with
Vo=2and V, = 3.

THEOREM A. (Hdsse) The set of primes S, = { p: p is prime and p
divides 2" + 1 for some n > 0} has density 17 /24.
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Hasse’s result [3] actually covers all the sequences {a” + 1: n > 0},
where a is an integer, and the density of the associated set of primes is
2/3 when a > 3 is squarefree.

Here we observe that Hasse’s method with some extra complications
extends to cover certain second-order linear recurrences with irreducible
characteristic polynomials. The most interesting example of this pheno-
monon is the Lucas numbers L, defined by L, =2, L, =1 and the
recurrence L, , =L, + L,_,.

THEOREM B. The set of primes S; = { p: p is prime and p divides some
Lucas number L} has density 2/3.

Theorem B also can be derived from polynomial-splitting criteria of
M. Ward [16] for membership in S;. The full proof is then essentially the
same proof as given here.

The following recurrence discussed in Laxton [8] provides another
interesting example.

THEOREM C. Let W, denote the recurrence defined by W, =1, W; = 2
and W, = 5SW,,_, — TW, _,. Then the set S,, = { p: p is prime and p divides
W, for some n} has density 5/8.

The parameterized families of recurrences A,(m) and B,(m), both of

which satisfy the recurrence
U=mU_,-U,_,

with initial conditions 4,(m) = B,(m) =1 and A,(m) = m + 1, B;(m)
= m — 1, are also recurrences to which Hasse’s method applies. In the
case that & = ¥(m + ym®> — 4) is the fundamental unit in K =
Q(/m* — 4) the sets S,(m) = { p: p is prime and p divides 4,(m) for
some n} and Sz(m) = { p: p is prime and p divides B,(m) for some n}
each have density 1 /3. I omit the details.

In what circumstances is Hasse’s method applicable? Any irreducible
second-order recurrence { U,} whose terms U, are rational numbers can be
expressed in the form

U,=af" + af"
where a and 6 are in the quadratic field K generated by the roots of the
characteristic polynomial of {U, }, and a, 6 are the algebraic conjugates of
a, 8 in K. Hasse’s method applies whenever:
(i) 0/6 = +¢* where k = 1 or 2 for some ¢ in K.
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(ii) @/a = {¢’ where { is a root of unity in K and j is an integer.
The actual densities of the sets of primes obtained depend in an idiosyn-
cratic way on «a and 6, which makes it awkward to state and prove a
general result. For this reason I have applied the method to special cases.
From the pattern of these proofs one should be able in principle to work
out the density of a set of primes associated to any particular recurrence
to which the method applies.

The proofs actually show that the sets of primes S, = { p: p is prime
and p| U, for some n} for these particular recurrences {U,} covered by
Hasse’s method have a special property. To state this property, we need
some definitions. A set 2 of primes is a Chebotarev set if there is some
finite normal extension L of the rationals Q such that a prime p is in 2 if
and only if the Artin symbol

]
(p)

is in specified conjugacy classes of the Galois group Gal(L/Q), cf. [5].
Chebotarev sets of primes 2 are guaranteed to have a natural density d(2)
given by the Chebotarev density theorem, cf. [10]. The special property is:

Property D. Both the set S of primes and its complement S = { p: p is
prime and p & S} have a decomposition into disjoint countable unions of
Chebotarev sets of primes. That is,

e e} o0
s=UsY, §=US§v

j=1 j=1

where S and S are Chebotarev sets. The densities of these sets satisfy
Y d(SP)+ Y d(§V) =1.
j=1 j=1

It is easy to show that any set of primes S having property D has a
natural density d(.S) given by

d(S) = ¥ d(sD).

J

For most second order recurrences {U,} the set of primes S, associ-
ated to the recurrence is not known to have Property D, and probably it
doesn’t. However, it seems a difficult problem to show that there exists
even one set S, that doesn’t have Property D. As a test case, does the set
S, of primes dividing the terms of the recurrence given by ¥, =Y, ;| +
Y,_, with Y, = 3 and Y, = 1 not have Property D?
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I give a proof of Theorem A in §2 for comparison with the more
involved details of the proofs of Theorem B and C in §§3 and 4,
respectively.

2. Proof of Theorem A. The condition that p|2” + 1 for some n
can be rewritten as:
(2.1) 2" = —1 (mod p) is solvable.

Now let m = ord , 2, the least positive integer with
(2.2) " =1 (mod p).

Now (2.1) is solvable if and only if m is even and the smallest solution to
(2.1) in that case is n = 3m. Now suppose 2/ exactly divides p — 1. Then
we have:

(2.3)  2/]lp—1andord 2isodd « 27~2/% =1 (mod p).

Hasse observes that the condition on the right side of (2.3) is a splitting
condition for primes in a certain algebraic number field K ; such sets of
primes have a density by the Frobenius density theorem.

Consequently we proceed by decomposing the set S, into disjoint sets

(2.4) S, = Usy
j=1

given by

SP={p:p=1+2/(mod2/*')andp € S, }.
We also define

SP={p:p=1+2/(mod2/*)andp & S, }.
and observe p € §% if and only if p =1+ 2/ (mod2/*!) and (2.3)
holds. To state Hasse’s observation precisely, let C; denote the cyclotomic

field Q(Z‘I/T)’ let K; = Q(z\h‘, 2\1/5) andlet L, = Q(zﬁ‘l/i 2(/'2').

LEMMA 2.1. (1) The primes p in S\’ are exactly the primes p that split
completely in K but not in L;.

(2) The degree [K;: Q] is 2,8 and 2*/~* for j=1,j =2 and j > 3,
respectively. The index [L,K ;] = 2 except for j = 2 where K, = L,.

(3) The primes p in S\ have densities d¥ equal 101/4,0 and 27>/** for
j=1,j=2 and j = 3, respectively. The primes p in S/ have densities
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d, =277 —dfforallj > 1. Thatis,

#{p<x:ipeS§YP}~ df*lnx

#{p<xpesSP}~ (21-—d*)

Inx’

as x — o0.

Proof.j To prove (1) we observe that the fields C; = Q(zj V—1),
K, = Cj(z\/Z_ yand L, = G; +1(2\J/’2' ) are all normal extensions of the ration-
als. Themcondition that the ideal ( p) split completely over a cyclotomic
field Q(V1) is well known to be p = 1 (mod m) ([2], Lemma 4), hence
p =1 (mod2’) holds if and only if p splits completely in C,. The
condition that a prime ideal p in C; split completely in the Kummer

extension K, = Cj(zxj/f ) is exactly that
(2.5) x* =2(mod(p)) forx e O,

be solvable over the ring of integers O, for C, ([2], Lemma 5). If p is of
degree 1 then any algebraic integer x in C; is congruent to a rational
integer (mod p) so in this case equation (2.5) is solvable if and only if

(2.6) x* =2 (mod p) forxeZ
is solvable. By Euler’s criterion (2.6) is solvable if and only if
(2.7) 2(7=b/2 = 1 (mod p)

is solvable. This is exactly (2.3), and we have shown ( p) splits completely
in K iff p = 1 (mod 27/) and (2.7) holds. Similarly ( p) splits completely in
L, iff p = 1 (mod?2/*") and (2.7) holds. This proves (1).
To prove (2), we first observe that [C;: Q] = ¢(2/) =2/7". The
specml cu’cumstance that C, = Q(\/_ 1) = Q(Y—1,V2) shows that K,=
=Q(/-1, \/—) and that a = V2 is in C for j > 3. The fact that

K = C,(¥2) is a nonabelian extension of Q guarantees that ﬁ is not in

any of the abelian extensions C,. Now observe that K; = C( \/_ ) for
J = 3 is a Kummer extension so that [K;: C}] d1v1des 2f ! In fact for

j = 3 ais of order 2 in C*/(C*)2 for any k because V2 is’tin C,, hence
using [2], Lemma 1 we have [K;: C] =2/"1forj > 3 and also [L Gl
=2/"'forj = 3using L, = ,+1( \/—) Thus [K;: Q] = [K;: C]JIC;: Q]
=2%/"1 for j >3 and [L;: Q] =2%"" for j > 3 so that d¥ = 2d, for
Jj = 3. Finally one checks that [K;:Q]=2,[L,:Q]=4and [K,: Q]= 8,
to prove (2).
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To prove (3) we observe that for a normal extension K/Q of degree
[K : Q] the set of primes p that split completely in K has density [K: O],
which is a consequence of the prime ideal theorem (e.g. [6], p. 315
Theorem 4), a special case of both the Frobenius and Chebotarev density
theorems. Thus using (1) we find that the set of primes in S/ is the
difference of a set of primes of density [K: 017! less a class of primes
contained in it of density [L;: Q] . Using (2) we compute this density dr
to be equal to 1/4, 0 and 2-%/** for j = 1, j = 2 and j > 3, respectively.
Finally the primes in S{/ are the difference of the class of primes
{p=1+2/(mod2/*")} of density 27/ = [C,: Q] — [C;,,: Q] ', and
the class of primes S|/’ of density d* contained in it. This proves (3). O

To complete the proof of Theorem A, we observe that for any fixed
m >3,

I C s

sy’cSs,cP- USY
j=1

Jj=1

where P denotes the set of all primes. Using (3) of Lemma 2.1, the first
inclusion gives

) 17 4 1) X (_1_)
#{pr.pESV}2(24 2 32 )lnx+0 I x

as x — oo, since all the §{/) are disjoint. The second inclusion gives

. lz _‘1 -2m+1 X X )
#{pr.pESV}s(24+32 )———-lnx+o(——lnx .

as x — oo. Letting m — oo shows that

17 x
#{pSX.pESV} ~ ﬁm
REMARKS. (1) By a careful analysis of error terms in this argument
using an effective version of the Chebotarev density theorem, Odoni [11]
has proved the stronger result that:
17 . ) Inln x
#{p<xipeS,}= > Li(x) + O(Lz(x)exp(—cm))

where Li(x) = [;*dt/In 1.
(2) The sets S{/’ are sets of primes determined by systems of poly-
nomial congruences in the sense of [5, Theorems 1.1 and 1.2].

3. Proof of Theorem B. The Lucas numbers L, satisfy
(3.1) L =¢+¢€"
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where

1+5 1—‘/5‘

3 and &= 2

Hence
(32) plL, =" +e"=0(mod(p)) = 0"= —1(mod(p))
where

., 3+/5

€
== —g= -

£ 2

and the congruences are in the ring Z[(1 + V5)/2] of algebraic integers in
Q(V5). Thus S, is exactly the set of primes p for which the exponential
congruence over Z[(1 + V5) /2] given by

(3.3) 6* = —1 (mod( p))

is solvable for some integer x.

0 =

We now proceed analogously to the proof of Theorem A. We must
treat several cases according to the behavior of the ideal (p) in
Z[(1 +V5)/2). If p= +1 (mod5) then (p) = =7 splits into two con-
jugate degree 1 prime ideals, while if p = +2 (mod 5) then ( p) is a degree
2 prime ideal in Z[(1 + V5)/2]. Let S, = S, U S, where

S,={p:peS,andp = +1(mod5)}
and
Sg={p:pe S, andp = +2(mod5)}.

Case 1. The primes in S, have density 5/12.
Write (p) = 77 in Z[(1 + V5) /2]. In this case (3.3) is equivalent to

(3.4) 6*= —1 (mod =)

being solvable. To see this, suppose (3.4) holds and apply the automor-
phism taking V5 to — V5 to (3.4) to get

(3.5) 6* = —1 (mod 7).
Since 88 = 1 we have *6* = 1 so (3.5) implies
6*= —1 (mod 7).

Combining this with (3.4) shows (3.3) holds. The reverse direction is clear.
Now we have the equivalence

(3.6) ord, fiseven & §* = —1 (mod ( p)) is solvable.
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If p=1+ 2/ (mod2’/*!) we obtain

2/lp =1 and ord_ fisodd < 6»~Y/* =1 (mod 7).
This leads us to split S, into the disjoint union of sets

si= Usp,
j=1

where

S ={p:p=1+2/(mod2/*") and ord, 6 is even}.
We set

S = {p:p =1+ 2/(mod2/*') and ord, 0 is odd}.

The associated fields are

K* = o(V1,/5,8) and L =o( V. V5,%8).

LEMMA 3.1. (1) S{V is empty. For j > 2 the primes p in 8\ are exactly
the primes that split completely in K¥ and which do not split completely in
L*.

] —

(2) The primes in S and SV have densities 0 and 1/4, respectively.
For j > 2 the primes in S\” have density 2”2/ and those in S\’ have density
27/ — 272

Proof. Similar to that of Lemma 2.1. The relation § = —¢? leads to
K¥ =L} = Q(V-1,Y5); this causes S to be empty. For j > 2 one
checks that [K¥:Q]=2%"! and [L}: Q]1= 2%/ In fact forzj > 2,
Ky = Q(w,, Vs, ®;_2,w;$;_,) wherew, = > V-1 and Y, = o Ve, and
L¥ = Q(w, s V5, ;_,). Finally note that the set S{” U §{ = {p: p =
+1(mod5)} andp =1 + 2/ (mod 2/*?) has density 27/~ a

As in the proof of Theorem A we find the primes in S, have density
L4 ¥ 7/ —-2%)=3%
4 j=2 12+

Case 2. The primes in S have density 1 /4.

The primes p = +2 (mod 5) remain inert in Z[(1 + V5)/2], and in
this case

6% = —1 (mod( p)) is solvable « ord , 6 is even.
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Now
(3.7) gPtH/2 = (—1)(“1)/28"’““1 = g (mod p)

for some a € Z because GF(p)* = {¢?*': ¢ € GF(p?*)*}. Applying the
nontrivial automorphism of Q(V5) gives

§»*Y/2 = g (mod p)

hence

1= (600)7"""7 = a? (mod( p)).
Thus
(3.8) 67! = g% =1 (mod( p))

Consequently ord ,, 0| p + 1. Now when p = —1 + 2/ (mod2/*1) we
have

(3.9) 0»*b/>" =1 (mod(p)) = ord,,, 6 is odd.
We now decompose
Sp= G S5
j=1
where
SP={p:p=1(modd) andp € S, }.
and forj > 2

S’ ={p:p=—-1+2/(mod2/"")andp € S, }.
We complete case 2 with the following lemma.
LeEMMA 3.2. (1) SV is empty.
(2 For j=2all S$P={p: p=—-1+2/ (mod2’*") and p= +2
(mod 5)} and S has density 2771,

Proof. (1) When j = 1 we have

(3.10) g»*b/2 =1 (mod( p)) = ord,, 8is odd.
Now 8 = —e?s0
(3.11) OPV/2 = (—g2) P2 = _ et (mod( p)).

We claim that
e?*! = —1(mod(p))
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which with (3.11) shows §**P/? = 1 (mod( p)) and so by (3.10) ord , 8 is
odd and SV is empty.
To prove the claim, set

0172 = ¢ (mod( p)

so that

(3.12) ef "1 = ¢? (mod( p)).

By algebraic conjugation €7 *1/2 = ¢ (mod p) and e = —1 so that
(313) = 1=(=D""" = (&) = 64 (mod(p)).

By (3.8) e#*! = +1 (mod( p)). We suppose that "' = 1 (mod( p)) and
get a contradiction. In that case (3.12) gives > =1 (mod( p)), hence
¢ = +1 (mod( p)). Hence ¢ = ¢(mod( p)) and (3.13) now gives

¢* = —1(mod(p)),
the desired contradiction.

(2) We must show that in the case j > 2 ord,, 6 is even for any
p=—1+4+2/(mod2’*!) and p = +2 (mod5). We argue by contradic-
tion. Suppose ord ,, § were odd, so that by (3.8) we have
(3.14) 6r*172" =1 (mod( p)).

Set

({212 = g (mod(p)
and observe § = —¢? and (3.14) give
(3.15) — ¢ =1 (mod(p)).
Now

g7/ = ¢ (mod(p))
and

(316) = 1=(=1)""" = (&) = $¢ (mod(p)).

Now by (3.15) ¢*= —1 (mod(p)) and since p = 3 (mod4) we have
¢ = —¢ (mod(p)). Hence ¢ = —¢> =1 (mod(p)), contradicting
(3.16). O

As in the proof of Theorem A Lemma 3.2 implies the density of
primes in Spis 152, 277! = 1/4. This proves Theorem B. O
REMARK. It is possible to prove that

2 ) Inln x
#{p<xipeS )= 3 Li(x) + O(Ll(x)exP(—clnlnlnx))

by the method of Odoni [11].
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4. Proof of Theorem C (Sketch). We have

1 1 5 1 "

(4.1) V,= (‘2‘ + g\/jé‘)(a + 5\/:—3‘)
1 1 5 1 "
Hz-e)5-373)

Lettinga = 1 + V-3 andy = 3 + 1V—3 we have
(4.2) V, =0 (mod(p)) = ¢" = = (mod(p)),

where
_y_n+s/-3 . & _ -1+y-3

L ¥ amd LT T2

is a cube root of unity. Hence (4.1) gives
(4.3) p divides V, for some n > 0 < ord ,) ¢ = 0 (mod 3).
We consider separately the cases in which (p) splits completely or
remains inert in Q(v —3).
Case 1. p = 1 (mod 3).

Then (p) = 77 in Z[(1 + Vv—3)/2]. Now as in Theorem B we have
(4.9) ord , ¢ = 0 (mod3) « ord,¢ = 0 (mod 3),

using the fact that ¢¢ = 1. Now let 3/||p — 1, and observe that in this
case

(4.5) ord_ ¢ # 0 (mod 3) & ¢~ V¥ =1 (mod 7).
Then
(4.6) % ~V/¥ =1 (mod7) « = splits completely in
VY 3
E=0(V1,V8)/0(V1)
< ( p) splits completely in F,/Q.

Hence the density of primes satisfying (4.6) is [F;: Q]™' = (2 - 3*/71)7,
and the density d; of primes with 3/|| p — 1 and (4.4) holding is

-1 i 1y-1
d,=2(2-3)" —(2.3471),

The total contribution of such primes has density

& 5
(4.7) D, = E,ldj = 15
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Case 2. p = 2 (mod 3).

Then ( p) isinertin Z[(1 + v—3)/2] and as in Theorem B we have

¢”*" =1 (mod(p))
and if 3/|| p + 1 then

ord,, ¢ = 0 (mod 3) = ¢»~ Y% =1 (mod (p)).
Now we have

(4.8) ¢@»*V/¥ =1 (mod(p)) « p =2 (mod3) and ( p) splits

completely in F,/Q(V—3).

We claim that the set of primes defined by the right side of (4.8) has
density (2 - 3*/7")7%. To verify this, one checks that F;/Q is Galois over Q
with dihedral Galois group of order 2 - 32/7!, that the splitting condition
(4.8) on primes in F;/Q corresponds exactly to the Artin symbol

(p)
being the conjugacy class (o), where o is the unique element of order two
in Gal(F,/Q). Then the Chebotarev density theorem implies that the set
of primes in (4.8) has density [F;: Q] = (2 - 3*/7')7, as claimed.

Hence the density d¥ of primes with 3/|| p + 1 and (4.4) holding is

=1 c_1v—1
*=2(2-3)" —(2-3¥7)

and the total density of such primes is

> 5
D2= Zdj*='1—6 O
j=1
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