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PRIMES OF THE FORM [r‘]

G. KOLESNIK

Dedicated to the memory of Ernst G. Straus

Methods of Vinogradov for estimating exponential sums over primes
are modified and made easier to use. Comparisons are made with
approaches of Heath-Brown and Vaughan.

1. Introduction. In 1939 I. M. Vinogradov developed a method of
estimating exponential sums over primes. His method reduces the estima-
tion of asum S = ¥, _, F(p) to the estimation of sums of type 1,

Y alx) X Fly),

X<x<2X Y<y<Y;
xy<N

where Y, < 2Y, Y is large, and sums of type 2,

Y a(x) Y b(y)F(xy),

X<x<2X Y<y<2Y
xy<N

where X and Y are large.
R. C. Vaughan proved an identity which allows one to express S as
the sum of type 1 and type 2 sums:

Z A(n)F(n) = $1=8,-8;,

V<n<X
where
Si= 2 2 p(d)logkF(dk);
d<U k<X/d
S,= 2 alk) Y F(kr),
k<UV r<X/k
with
a(k)= Y2 p(d)A(n);
d<U,n<V
dn=k
and

5= % A(n)(sz))F(mn),

m>U V<n<X/n dim
d<U
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where U and V are parameters, to be chosen to our advantage. Here S; is
a type 2 sum, S, is of type 1 and S, can easily be reduced to a type 1 sum.
D. R. Heath-Brown has proved [1] another identity, which allows one to
use parameters better. He proved that if F(x) is a function supported in
[N/2, N}, and U, V, Z are parameters satisfying 3 < U<V <Z <N,
z>4U?* N = 64Z2U, V* > 32N, then

1) L A(n)F(n)

where

< max|F(n)|+ Klog N + Llog? N,

K =3 a(m) ¥ F(mn)

n>7Z

is a type 1 sum, and

L=Ya(m) Y b(n)F(mn)

m U<n<V
is a type 2 sum. Using the above inequality, he proved that
X

7.(X) = clog X
for ¢ < 755/662, where 7.( X) is the number of n < X for which [#]is a
prime. The above result extends a previously known result for which the
above formula for 7, (X) holds. The identities of Vaughan and Heath-
Brown are easy to use, while the original method of Vinogradov needs
some combinatorial arguments. However, using Vinogradov’s idea, we can
prove the following:

+ O(X/1og? X)

LEMMA 1. Let a, 8, ¢ be positive numbers with 8§ < 1/2 and & small, and
let Ny, N < 2N, be large numbers. Let F(x) be a function supported in
[Ny, N}, F(x) < 1, and let

L' =max ).
a<N®
where the maximum is taken over|a(x)| < 1,|b(y)| < 1, X € [N®, N**3+¢],
XY = N,. Furthermore, let

Y alx) X b(y)F(xye?)

X/o<x<2X/o Y/o<y<2Y/o

b

K!'=K(a,8, F) =max| Y, a(x,)F(x; --- x,)

x€2

2

the maximum being taken over all n < [1/8] + 1, all |a(x)| < 1, and over
all subdomains 9 of {x|X <x,<2X, j=1,...,n} with the following
restrictions:

DX - X, =N, X, >N X, >X,> - >2X,_, >N
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(i) for any { ji,....j} € {1,...,n}
« a —a—38 —al.
X, - X, & [N Nl U [Nt N
(iii) if for some { jy,....j;} < {1,...,n — 1}
X, - XJ-ISN"*’S”, then X, --- X, X, < N*

1T

Let also

M= max Y min [K(a,8,, F,) + L(ey, 8;, F,)]
NZSSQOSN 00<9<2Q, alvsl

where Fi(x) = F(gx), the last sum is taken over powerful g with (q, P) = 1.
Then

L, =

ZF(q)I < (L+ K+ M)N-=.

Here K' can be treated as a type 1 sum, and in some cases one can
take advantage of the sum over all variables; L' is the sum of type 2 sums,
and, in fact, the main contribution comes from small o so that L! is
estimated similarly to L in Heath-Brown’s identity. While, as Heath-Brown
pointed out, his identity has sometimes an advantage over the identity of
Vaughan, his conditions on U, V, Z can be occasionally too restrictive
(say, the conditions U < N5, V > N'/3; note however that in his
recent paper. “Prime numbers in short intervals and a generalized Vaughan
identity”, D. R. Heath-Brown proved a new identity which has no such
disadvantages; his new identity is essentially similar to Lemma 1 of this
paper).

The lemma has no such restrictions. Also, the type 1 sum K ' is in fact
a multiple sum which can in some cases be estimated better than the type
1 sums in the methods of Vaughan and Heath-Brown described above.
This happens, for example, if F(x) = e( f(x)), where f(x) grows relatively
slowly so that one can apply the Poisson summation formula to the type 1
sum. If we take 8 > a, B+ 8 > 1/3, then L' is essentially similar to
Heath-Brown’s L, and K is “better” (in the sense mentioned above) than
the K in Heath-Brown’s method. Applied to the Pyatetsky-Shapiro prime
number theorem, both Lemma 1 and Heath-Brown’s identity (1) lead to
the following result:

THEOREM. Let ¢ be a constant < 39/34. Then w(X) = X/(clog X) +
O(X/log? X).

As Heath-Brown mentioned in his paper, one can write an asymptotic
formula for =7, X) which is similar to the known formula for #( X). The
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Theorem improves slightly the result of D. R. Heath-Brown. The improve-
ment is obtained by using our estimation of multiple sums (Lemma 4
below).

2. Notation. Since the Theorem is proved [1] for ¢ < 755,/662, we
assume that 755/662 < ¢ <39/34; y=1/c. As usual, f(x) << g(x)
means that | f(x)| < x°g(x); f(x) = g(x) means that | f(x)] = O(|g(x)])
and |g(x)| = O(|f(x)D; f(x)Ag(x) means that

fOx) = g0 (x)(1 + 0(4))
for all i for which the statement makes sense; p, p; are primes.

3. The main results. To prove Lemma 1, we use the ideas of I. M.
Vinogradov [3]. We can obviously assume that a + § < 1, otherwise
Y, < L. Let

p=1I1p o= 11 »p;

p<N?® Nl<p<N

1
Zk=ﬁ Z F(py -+ pe)y W= Z F(yy -+ »),
oppl@ nowl@

where p,, y; of the above sums X,, W, range independently over the
interval [1, N]; W,.,(q) =X, , F(» --- yq), where g is powerful and
the sum is taken over y, such that p|y, implies p|Q, plg; F(x) =0 for
x &€ [N/2, N); ry=[1/8]1f {1/8} # 0 and r, = 1/86 — 1 otherwise. As
in Theorem 3 of [3], page 156, we use the identities W, = r¥, + r’%, +
ce X, (r=1,2,...,r) to express X, as a linear combination of
Wi,..., W, so that

R L A

< mlflx|Wk].

Using induction on r,, one can show that

W, = Wk,l(l) + Z Z C(j> k)Wk,l(pj)
plQ j=2

+ Z Z C(jl,jz’k)Wk,l(pllpf)+
nplQ i-n=2

o

+ X Y Cliieesis )Wes( P - o)
Lo pAQ Jiee g =2

so that

IIESS m,flx ZIWk,l(q)l'
q
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Here for P(q) = PIl,, p we have
Z'Wk.l(Q)l
q

=Y IXF(y, - ng) X w(d)--- X p(d)

4 [(P(9), ») di(P(q), %)

> w(d) - u(d) Y Flgd, --- dymy -~ my)
dy,....dy|P(q) -

Z p(d,) - - p‘(dk)ZF(qdl e dgmy - oomy)

q

b

and

PIESS max(max Y w(d) - p(d)F(d, - domy - m,)
kA D (4, meD

+max ) max| X p(d) - p(dy)

% g,<g<20, P |(d,meD

- F(qd, --- dymy -+ m,)

]

where the maxima are taken over Q, € [N2°, N]and D of the form
D={(d,m)X <m <2X,....X, <m, <2X,,d|P,....dJP}.

We will show that the first sum is << K! + L'; the proof that the
second sum is << M can be obtained similarly. We consider the following
cases

1.X, -+ X, 2 N'""72

Hered, --- d, € [ X,.,,2%"'X, ], where

Xiv1 = N(zkHXl Xk)—l

If for some { jy,...,j,} € {1,...,k + 1} wehave X, --- X, € [N*, Ne«+9]
U[N'"*7° N'~¢], then we write x =m, ---m,, y=d, - dym; -~
m,/x and get ¥, << L' + M; otherwise we denote by / the number such
that X, > X, > --- 2X,>2N°>X,,,>--- > X,. Here X, --- X,>
N'~< because otherwise we would have, for some j >/, X, --- X e
[N'7*7% N'~°] If for some {j,....j,} € {1,...,/} we have X, --- X
<N**° then X --- X X, --- X, < N°(otherwise either X, --- X, €
[N*, N***] or X, -+ X,X,,, --+ X, € [N%, N**°] for some n € [/ +
1, k]) and, similarly, X, --- X, X, -+ X, > N+  Using the argu-
ment similar to case 2 below, we obtain Y, << L! + M.
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2.X, -+ X, < N'7*78

Using Lemma 5 of 3], page 144, we divide the set of all integers d | P
(j=1,...,k) into < N* subsets such that for any subset there exist
numbers @,,...,p, such that ¢; < d, < ¢;*”, where & is a small positive
number. Also, since every subset consists of some squarefree numbers
having the same number of prime divisors (see [3]), for every subset
p(d,) - -- n(d,) = const. This divides the sum

Z uu(dl) .u'(dk)F(dl L dkml e mk)
(d,m)€e2

S=

into << N°¢ subsums. Taking the largest subsum S, which corresponds to
the subset &,,, we get

Y X2 F(dy---dumy---my)
m deg,
where m = (my,...,my), m, €[ X,,2X)) (j=1,...,k),d=(d,,...,d,),
d; €9,9""] (j=1,...,k). We assume S, # 0. Here ¢, - - ¢, > N,
since otherwise

d---dm - m, < N*-2kN17«® < N/2 < N,.

Let g be the smallest integer such that ¢, --- ¢, > N* If @, --- @, <
N*% then we write x = d, - - - d,y=d,. - dym - m, and, since

N* < P @, < dl e dq < (q)1 ... <pq)1+h < Na+dHa+h) o Na+8+h,

we get 2, << § << §; <« L'. Now we assume that ¢, - - - ¢, > N°*8 We
take y defined by N*™Y = ¢, - - - @,_,; and use part (ii) of Lemma 5, [3],
page 144 to show that there exist two sequences (u#) and (v) such that
NY <u < NY"%*" for all u € (u), and such that the products uv with
(u,v) = 1, uv < N comprise precisely the numbers d,, of the subset, each
repeated the same number of times. We obtain:

L X X X X

dy,..., d,_y vE() us(u) dy,..., dim m
(u,v)=1

S <«

= SO’

S, <

F(d1 ced, quvd - domy e mk)

Z Z Z M(G)F(dl""’dq-luvdq+l U dkml T mk)

d,m u,v ol(u,v)

<)

c

dz Z F(d1 dq_luvaqu+1 <o dymy - mk) .
m ous(u)
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Writing dy ---d,_qu=x, vd, - dym -~ m =y, we get ox >
<pl'.'<pq—1Ny=Nas

1+h B
ox < (@, - ‘Pq—l) NYHOHh o N(a=V)A+h)+y+8+h o patdte

if h < €/2, so that

I = S < ) | La(x)b(y)F(xyo?)| << L' + M.

o 'x,y

This proves Lemma 1.

We also need five more Lemmas. Lemma 2 is the Poisson summation
formula (see, for example, Lemma 6 of [1], or Lemma 1 of [2]); Lemma 3
is Weyl’s inequality (see Lemma 5 of [1] or Lemma 2 of [2]); Lemma 4 is
Theorem 2 of [2]; Lemma 5 can be proved similarly to Lemma 4 of [1] (in
fact, 5y — 4 can be replaced with 5y — 4 + (1 — v) /48, which, however,
does not lead to any improvement for 7.( X)) because our Lemma 6 is not
good enough). Improving Lemma 6, one might hope to extend the
boundary for ¢ to ¢ < 239/207 (instead of ¢ < 15/13, which is the best
one can obtain by using Heath-Brown’s identity).

LEMMA 2. Let g < a < b < 2a. Let f(x) be a real function such that
f(x)=M" for x €[a,b];, f(z) be analytic for z € {z|V x € [a, b],
|z — x| < JcpMlogb}. Let f'(a) = a, f'(b) = B, and define x, for n €
la, Bl by f'(x,) = n. Then

T )= T 1) e+ (x,) -,

a<x<bh a<n<pB

+0(M™? + log(2 + Mb)).

LEMMA 3. Let I be a subinterval of (X,2X ], and let Q be a positive
number. Let z, be complex numbers. Then

2

<(1+x07") Y -1g0™") X Z,z,..

lgl<Q nn+qgel

Lz,

nefl

LEMMA 4. Let a, B, y be real numbers, aBy(a — 1)(8 — 1)(y — 1)
(a+B+y—-—1)a+B—-y—2)+0,and let X>Y>2Z, XYZ=N.
Let 9 be a subdomain of {(x,y,z2)| X <x<2X, Y<y<2Y, Z<
z < 2Z}, bounded by O(1) algebraic curves, and let f(x, y, z) be a real C*
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function such that f(x, y, z) A FX~Y "#Z~Yx%yPz" throughout 9. Then

Y. elf(x,y,2))

(x,y,2)ED

<< N{FN'+ Z7' + NV 4 Y2572/
- L2
+(FY2Z2)V/" 4+ (FOXN )V

LEMMA 5. Let L be the type 2 sum from Lemma 1 with F(x) = e(hx")
and X € [N}~vtn N3v=4-m],

Let n > 0 be a sufficiently small constant. Then L < N!'~7/7,

Proof. To prove the Lemma, we use Heath-Brown’s estimate for a
fixed o from his Lemma 4 and, summing over o, obtain the needed result.

LEMMA 6. Let a, B;, A, B,>0, B>A4>0, and let f(x)=
rm Ax" %+ X"_ | BxB. Then

=17y

M = max f(x)

A<x<B

m n m n
< 2m+n ZAIB—a, + Z BjAﬂj+ Z Z A;l;,/a,-*-ﬁ,BJa,/apLB/).

i=1 j=1 i=1 j=1

This Lemma can be easily proved by induction on (m, n).

LEMMA 7. Let H = N' Ylog®N, N/2 < N, < N,

s= 2 X 2 e(hxy).
l<h<H X<x<2X | Y<y<2Y
N <xy<N

S < NH(Y-3/8 XV (XYY 4 N—47/360)’

Proof. We apply Lemma 3 to get

2

(1) IS <= HXY | e(hey)

< H’N?/Q + HNQ!

L X Telrx,r.9)

X,y

<< H*N?*/Q + HNQ 'Y,
h

> ZE(f(x,y’q))',

H <g<2H, x,y
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where 1 < H < Q/2; Q <Y is a parameter to be defined later;
f(x, y, q)Ayhgx"yY~' = hHNY/Y = F with A = H,/Y. Next we apply
Lemma 2 to the sum over x and y successively and Abel’s summation
formula:

3 Si=X Xe(f(x.y.9)

q Xy

_ qzy {Z[fxz(xm y,q)]-l/ze(% +f(x,,y,9) - nxn)

n

+O(XF~? + log N)}

)y Ze(fl(n,q,y))|

q.ny

+NH(hRH,N"/Y)"* + HY

< X(hH,N'/Y)V?

< X(hHNY/Y)?
+NH,(hRH,N/Y)"? + H)Y

[ % elatmma))

qg.m.n

82 s Y 2
XX [__fl(r;yz y’")] e(fi(n.q,y,) —my,)
g.n m

+Y-(hHN/Y)™? + log N}

<< NY(hH,N")™

+YH, + NY(hHN'Y"')",
where fi(n, g, y) = f(x,, ¥, q) — nx,,
g(m.n,q) = fi(n,q,,) — my,Aeg/nm*(gh)" = F,
cyis a constant, a; = —y/(2 — 2y), B, =1/2 — a, m = hHHIN" ' = M,
n=hHN"Y *= M,. Now we apply Lemma 3 with an appropriate Q,
and Lemma 2 to the sum over n to get

(4) |S2|ZE Y e(g(lm,n, q)| < (HlMle)le—l

g.m,n

O
‘{-—IJIMIM?_QI_1 Z
a=1

Y Ye(g(m,n+q,.q9)—g(m, n,q))

q.m h

(continues)
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2 _
< (HM\M,) 07! + H MM, Q7"

o
X X

Y {Z [g.2(m,n, + q,q) — g2(m,n,,q)]
q=1

q,m v

1
o5+ 80mn, + a1,9) — g(m, n,. q) = on,
+ O(F~'2M, + log N)}l

< (1'11]‘41]‘42)2(21—1 '*'(1'111‘41]”2)2(F)-1/2

L Yelo(g,m,v))

g,m v

+H MMM -(0,Y) Y
q

wherev = V = q,Y/M,, O, < M,,
¢ (g, m, v)A,c,0" g *m*s (gh)*Pr = Fq,/M,,

A, = H,/Y + q,/M,. Using Lemma 4 to estimate the last sum over g, m,
v, we get

L elp(q.m.0))|

q,m,v

< HHMV{ Fg(My,M\H\V)™" + H{* + M{* + V' + (H,Mp) ™"

+(H, + M, + V) (H,My )"

_ _211/8
+[(H, + M, + V)M, (Fg,) (H,MYV) 7

+[(Fgu/M,) (B, + M, + V) (H MY

18y 1/2

X (My/Y + g/M,)° )

Substituting this into (3), we choose Q; (using Lemma 6) to minimize the

obtained expression; then we substitute the obtained estimate into (2) and

(1) and, choose (using Lemma 6) Q to our advantage, we complete the
proof of the lemma.

Now we can prove the Theorem. As in [1], it suffices to prove (using
Abel’s formula) that

(5) S = Z

l<h<H

Y. e(hp")| < N(logN)~>,

Ny <p<N

where
H = N!'""log*N.
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While the formulation of Lemma 1 is slightly lenger than (1), the
application is not more difficult, and we will use it to prove (5). We take
a=1—y+mn, a+8=5y—4—mn, where 5 is sufficiently small, and
use Lemma 1:

Sy << (L' + K') + N'™™.

According to Lemma 5, L << N'~"/7 and we need to estimate K. Here
a + 8 > 14/39 — 7 so that n from Lemma 1 is equal to 2 or 3. If n = 3,
then X, > NO™"/2 X, > N> 7477 and, denoting y = x;, x = X,X;, We
use Lemma 7 to get

YK < N7 X770 +(X,%,) 72+ (X1, X,) 7 + N-%0)
h

< N1-n

if n is small. If n = 2, then we use van der Corput’s estimate (or Lemma 2
and a trivial estimate of the right-hand side sum) and obtain

LK<T I | T elhs)

h x,=X'x=X

< Y X,[ X, (hN) + (hN7)7
h
< N1_7+1/2X2 <<<N2—2y+1/2+1, < Nl—n.
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