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AN ALGORITHM FOR COMPUTING THE VALUES
OF THE RAMIFICATION INDEX IN THE

PUISEUX SERIES EXPANSIONS
OF AN ALGEBRAIC FUNCTION

DAVID LEE HILLIKER1

A quantitative version of a classical algorithm for computing the
values of the ramification index of an algebraic function is developed. In
our approach the number of steps required to carry out the calculation
can be a priori determined.

1. Statement of results. We develop in §1 enough of the founda-
tion and required notation for stating our algorithm for computing the
values of the ramification index of an algebraic function. In §2 we develop
the foundation for calculating each Puiseux series exponent, in reduced
form, and the value of the associated coefficient, of such a function. In §3
we couple these methods with a result of Hilliker and Straus [4] to yield a
proof of our algorithm.

Let F(w, z) be any polynomial in two complex variables w, z with
coefficients in the field of complex numbers. We consider the algebraic
function w = w(z) defined by F(w, z) = 0. We can view F(w, z) as a
polynomial in w, F(w, z) = fn{z)wn + fn^1(z)wn~1 4- 4- /0(z), where
fn(z)9 /n_i(z),. Jo(z) a r e polynomials in z of maximal degree m, with
coefficients in the field of complex numbers, and where fn(z) is not
identically zero. We assume that F(w9 z) is irreducible, over the field of
complex numbers, so that in particular, fQ(z) is not identically zero. We
let d = max(m, n).

Let R 0 be a real number large enough so that all finite critical points
(singularities, or points with multiple functional values) of the algebraic
function w lie in the interior of the circle \z\ = Ro. Let N(R0) denote the
neighborhood of infinity, \z\ > Ro. Thus for each z in N(R0)9 the values
of the algebraic function are distinct and exactly n in number. Let
R(F9 Fw) denote the resultant of F and Fw = dF/dw, viewed as polynomi-
als in w. Thus the finite critical points of w lie among the solutions to the
1 We observe with great regret that Ernst Gabor Straus died on July 12, 1983, as a result of
a heart attack. Professor Straus was my friend, my Ph.D. thesis advisor, and the coauthor
of several of our papers. He did read, and express interest in, a preliminary version of this
paper.
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polynomial equation R(F, Fw) = 0, and consequently the quantity Ro is

readily computable.

According to Puiseux's Theorem, for z in N(R0)9 the n distinct values

w{z) of the algebraic function w are given by a finite number of Puiseux

series

(1) w(z) = £ CjZ^-iV'.
7-0

Here />, r are integers, r > 1, and the c7 's are complex, with c 0 =£ 0.

There are up to n distinct choices for the ordered set consisting of

/?, r, c 0, cx, c 2 , . . . , with the various values of r, which are not necessarily

distinct, adding up to n. Each such choice determines a branch of w.

The quantity r is called the ramification index of the algebraic func-

tion w. Systematic methods for computing r, which are guaranteed to

terminate in a finite number of steps, are known. See Walker [5]. Here we

develop an algorithm for computing the ramification index r, wherein the

number of steps required to carry out the calculations can be a priori

determined.

It is convenient to denote the various Puiseux series expansions of w

by

(2) w(z) = doz
e« + έ/^Ό+oi 4- d2z

e°+ei+e* + ,

where d; Φ 0 for all j > 0, d0 = c0, eo= p/r, and where the e/s are

rational, with bounded denominators, and with ey < 0 for 7 > 1.

By employing traditional techniques involving Newton's polygon (see

§2 for details) we can calculate the degree e0 = m o / « o , n0 > 0, of w, as a

fraction in reduced form. For each such determination of e 0, we can

substitute the series (2) for w into F(w, z) = 0. The leading term that so

results will have a coefficient dι

0°Q0(d0), where i0 is a nonnegative integer

and where Qo is a polynomial with Q0(0) Φ 0. Thus the values of d0 that

correspond to this choice of e0 are the various nonzero solutions to the

equation

z<oρo(z) = 0.

If w is not identically equal to doz
e°, we repeat this process by

applying it to

Thus vx is an algebraic function of a formal variable
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related to w by w = doz™° + z™°vv The algebraic function vλ satisfies the
polynomial equation F(vv zx) = 0, where

F{Vl, zτ) = Fidoz?* + z^v,, z?«).

This process can be continued indefinitely. At they th stage, j > 0, the
values of ey are determined, and for each such determination, the corre-
sponding values of dy are determined as the nonzero solutions to an
equation

(3) z ^ y ( z ) = 0, y > 0 ,

where ιy. is a nonnegative integer and where Qj(z) is a polynomial with

β/0) # 0.
Our algorithm, the main result of this paper, can now be formulated:

THEOREM. If there is a value of j < 2d3 — d2 + dfor which the nonzero
solutions to (3) are all simple, let j =j1>0 be the smallest such value;
otherwise, let j \ = 2d3 — d2 + d. Then the various values of the ramifica-
tion index r are the various values of the least common denominator ofe0, ev

2. Fundamental calculations. We shall employ a version of Newton's
polygon. Let w be any function, not necessarily algebraic, of finite degree
α, so that |w|/|z|α has a finite nonzero limit as z approaches infinity. We
consider our fixed polynomial

with/w(z) and/0(z) not identically zero. In this discussion, w varies over
the set of all functions of finite degree of a complex variable z. Let x9 y be
real numbers defined by x = deg w9y = deg F(w, z). Theny is a function
of x defined over the entire real line. One has

(4) y < max(deg/n(z) 4- /ιx, d e g / ^ z ) +(/i - 1)*, . . . , deg/0(z)).

The points (x, y) in the xy-plane lie in a certain region, consisting of all
points on or below a certain polygon. This polygon, which we shall call
Newton's polygon, consists of at least two, and at most n + 1 line
segments selected from lines of the form y = dcgfj(z) +jx9 for certain
values oίj in the range 0 < j < n. The first line segment, going from left
to right, is given byy = 0. The last line segment is given by j = n. The
polygon is concave upword. The vertices of this polygon have rational
coordinates. If x is not the coordinate of a vertex, then equality in (4)
holds.
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We now focus attention on the case where w is our previous algebraic

function. If we substitute the Puiseux series (1) for w into F(w, x) = 0, we

see that there will be at least two terms of leading degree, and these must

cancel. This implies that the degree of the branch w(z), given by (1), is the

x-coordinate of some vertex. The coefficients of these terms of leading

degree must add up to zero. Thus the values of c 0 are the nonzero

solutions to the equation

(5) Σ&**-0

where gh is the leading coeffcient in/ Λ (z), for 0 < h < n, and where the

summation is taken under those values of h in the range 0 < h < n for

which deg/Λ(z) 4- hx = y, where (x, y) is the vertex under consideration.

Note that (5) always has a nonzero solution, since h always takes on at

least two values.

We have realized the following: The degree of each branch of the

algebraic function w is the x-coordinate of some vertex of Newton 9s polygon

and the values of the leading coefficient that correspond to this degree are

given by (5). Conversely, it can be shown that: The x-coordinate of each

vertex is the degree of one or more branches of the algebraic function w.

Newton's polygon affords us a practical method for computing the

values of the ratio p/rv and for each such value, the corresponding values

of c 0 . It does, as we have already suggested, provide us with a method of

computing all branches of the algebraic function w, out to as many terms

as is required. We use the notation (2).

First, we compute degw = e0 = mo/nθ9 as a rational number in

reduced form, with n0 > 0, from Newton's polygon for F(w, z), and for

each such value of e0, we compute the corresponding values of the leading

coefficient d0, from the equation (5). We then make a formal substitution

zx = zι/n° and introduce a Puiseux series vx by w = doz™° + z™°vv Then,

vλ represents an algebraic function of zx defined by Fλ(vv zx) = 0 where

Fλ( vl9 zλ) is a polynomial given by

Fλ{υl9 zx) = F(doz?» + Z?°Ό19 z*°).

If υλ is identically zero, the process stops here and w = doz
e°. Otherwise,

we compute, from Newton's polygon for Fτ(υl9 zx), degZi υl9 and for each

such value we compute the associated values of the leading coefficient dx

of vl9 from an equation analogous to (5). The only difference in this

second application of Newton's polygon is that we restrict attention to
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those vertices with negative x-coordinates. Then, one has a determination

of

n0 ~*i nx

where m1/n1 is in reduced form with n1 > 0. We then set

so that v2 is an algebraic function of z2 defined by

J7 ( if 7 \ F ί / / 7m l 4- 7ml7) 7Ul\ Π
Γ2\V2 > Z2) —- Γγ\UγZ2 T Z2 U2, Z2 ) — \).

If v2 is not identically zero, we compute deg^2 v2 and for each such

determination we compute the corresponding values of the leading coeffi-

cient d2 of v2. We then have a determination of

m 0

in reduced form with n 2 > 0.

This process can be continued indefinitely. In general terms, we have

for each i > 0, an algebraic function ι?f. = ̂ ( z ) with v0 = w, z 0 = z, given

recursively by

(6) v^ = ̂ . ^ Γ ' - 1 + ZΓ'-J;,-,

with, formally,

Zi Zi-\ *

The quantity

degz υi = /20w1«2 ni_ιάQgzυi = nϋnιn2 - ni_1ei

can be determined from Newton's polygon. Consequently, et = mi/ni can

be determined as a reduced fraction with nι > 0, and for each such

determination, the corresponding values of the leading coefficient d( of υt

can be determined from an equation analogous to (5). The defining

polynomial equation for vt is F^v^ zt) = 0 where

Ft(vi9 zt) = F^d^zr-* + z?-*Όi9 zf-0,

is of degree n in ϋ,., and where JF0 = F. Later we shall use the notation

(7) F i ( £ 7 l . , z J = / B ( z l ; / ) c ; I

l l + Λ . i U ; ί ) ^ Γ 1 + •• + / o U ; ί )

where for each k > 0, the polynomial/n_^(z f; /), which reduces

when i = 0, has degree mιk in z and leading coefficient am .



4 3 2 DAVID LEE HILLIKER

3. Determination of the ramification index. The techniques of §2

furnish us with an algorithm for computing all Puiseux expansions of the

algebraic function w out to as many terms as is required, but so far we

have not indicated a method for computing the various values of the

quantity r. We develop such an algorithm here, in three stages.

First, we draw upon a result (Theorem 4.5) established in the paper of

Hilliker and Straus [4]: There is a value of the index j , and so a smallest

value] = j 0 > 0, so that ifj > j 0 , the equation for cj9 obtained by substituting

the Puiseux series expansion for w into F(w, z) = 0, is linear, of the form

Acj + Bj = 0, where A Φ 0 is a polynomial in co,cl9.. ,9CJQ9 B} is a poly-

nomial in cθ9cl9...9Cj_l9 and where the coefficients in A and B are field

elements in the field generated by the coefficients of F(w, z). A sufficient

condition forj0 = 0 is that

(8) Σ(n-k)amc"0-
kΦ0,

where mk, for 0 < k < n, is the degree of fn_k(z), am is the leading

coefficient in fn_k(z), and where the summation in (8) is taken under those

values of k for which

mk + £(n-k)

is maximal. In any case,

(9) j 0 < 2d3 -d2 + d,

where d = max(m, n). In particular, all the Puiseux coefficients lie in the

field obtained by adjoining cθ9 cl9... ,cJo to the field of the coefficients of

F(w,z).

Note that equation (5) for c0 can be written as:

Σ β m / - * = o.

where the summation is extended over the same values of k as those of (8).

Consequently, (8) is precisely the condition that the equation for c0, obtained

by substituting the Puiseux series for w into F(w, z) = 0, has only simple

solutions.

Secondly, we establish, here, the following: If the equation for the

leading Puiseux coefficient, obtained by substituting the Puiseux series

expansion for w into F(w, z) = 0, is linear, then the branch under considera-

tion has an integral degree.

To prove this we use the notation of (1). We let (x, y) be the vertex of

Newton's polygon that corresponds to the branch of w under considera-

tion. Suppose that (x, y) is determined as the intersection of the two lines

y = deg/y(z) +jx and y = deg/*(z) + kx,
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with k > j, each of which lie on a segment of Newton's polygon. Then, the

degree of w is given by

(10) x =
deg/ y (z)-deg/*(z) u

k-j υ9

where u/v is the reduced form of this ratio, and where v > 0. Thus, υ

divides k — j. If

(11) y = degfh(z) + hx

is any such line that passes through the vertex under consideration, then,

since the lines y = deg/^ (z) + jx and y = deg/^(z) 4- kx both lie on

Newton's polygon, h lies in the range j < h < k and the values h =j and

h = k are actually realized. Moreover, we can determine the vertex (x, y)

as the intersection of the lines y = deg/^(z) +jx andy = deg/Λ(z) + hx,

provided h > j. That is to say, we get, from a formula analogous to (10)

with k on the left side replaced by h, that v divides h — j, so that

h = j + sv, for some positive integer s. If h = j, this formula still holds

with s = 0. We realize that h in (11) is of the form

(12) h=j + sv.

In (12) j and v are fixed integers and s takes on certain nonnegative

integral values. It follows from (12) that the polynomial Σ ghx
h

9 on the left

side of (5), has the form

(13) Σghz
h = zΨ(z")

where P{t) is a polynomial with P(0) Φ 0, since the minimal degree of the

various terms on the left of (13) is j9 and with deg,P(*) = (k —j)/v9

since the polynomial on the left of (13) is of degree k in z.

We have shown the following: The equation for the leading coefficient

c0 obtained by substituting the Puiseux series (1) for w into F( w9 z) = 0, is of

the form

(14) zΨ(zυ) = 0,

where j is a nonnegative integer, where the reduced form of the degree of the

branch under consideration is u/v with v > 0, and where P is a polynomial

with P(0) Φ 0.

Our proof is now complete, since the polynomial equation (14) could

be linear only if v = 1 so that x = deg w = u is an integer.

Note that the degree in c0 of the polynomial P(CQ) is the positive

change in the slope at the vertex.
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Thirdly, we employ the notation of (2) and construct the algebraic

functions Vj in accordance with (6). Condition (8) can be applied to the

algebraic functions vj9 for/ > 0, using the notation of (7):

(15)

where the summation is taken under those values of A:, 0 < k < n, for

which

is maximal.

It is observed that the equation for dj7 obtained by substituting the

Puiseux series (2) for w into F(w, z) = 0, is the same as the equation for

dj obtained by substituting the Puiseux series for Vj = VJ(ZJ)9 with leading

coefficient dj, into Fj(υJ9 Zj) = 0. This equation for dj is:

where the summation is taken under those same values of k as in (15).

Accordingly, we conclude that (15) is a necessary and sufficient condition for

the equation for dj to have only simple roots, for a fixed choice of dθ9 dl9

d29...9dj_v Moreover, it is the case that (15) holds for all sufficiently

large values of j , for then, the equation for dj would be linear, since

dj = ci9 for some i > j .

We can now state our algorithm, the main result of this paper, in

terms more precise than those of §1, in view of (9):

THEOREM. If there is a value of j < 2d3 - d2 + dfor which (15) holds,

let j = j τ > 0 be the smallest such value; otherwise, let j x = 2d3 — d2 + d.

Then, the various values of the ramification index r are the various values of

the least common denominator ofe0, eλ,e2,... ,eh.

To illustrate the ideas, let us compute the ramification index of the

algebraic function w given by w3 — (1 + 3z)w2 + 3z2w - z 3 + z = 0.

Newton's polygon has only one vertex, namely, (1,3). Thus all branches

are of degree 1. The equation (14) for the leading coefficient is (d0 — I ) 3

= 0, so that d0 = 1 with multiplicity 3. Condition (8) fails for w. The

algebraic function vλ of zλ = z is given by w = z + zυl9 and has the

defining equation z3v\ — z2v\ — 2z2vλ — z2 + z = 0. All branches of υλ

are of degree -1/3 . The equation (14) for the leading coefficient of vx is

dl — 1 = 0. Condition (15) holds for vλ so t h a t ^ = 1. We now conclude

that r takes on only the value r = 3.
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For more on Puiseux series, and their applications to Diophantine
equations, see the papers of Hilliker [1], [2]; and those of Hilliker and
Straus [3], [4].
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