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In memory of Ernst Straus

Let G be an acyclic directed graph with \V(G)\>k. We prove that
there exists a colouring { Cx, C2,..., Cm } such that for every collection
{Pl9 P2,... ,Pk} of k vertex disjoint paths with |UjLi Pj\ a maximum,
each colour class C, meets min{|CJ, k} of these paths. An analogous
theorem, partially interchanging the roles of paths and colour classes, has
been shown by Cameron [4] and Saks [17] and we indicate a third proof.

1. Introduction. Let G = (F, E) be a directed graph containing no
loops or multiple edges. A path P in G is a sequence of distinct vertices
(vv ι>2> • >*>/) s u c h Λat (vi9vi+ι)eE9 i = 1,2,...,/— 1. The set of
vertices { vl9 ϋ2,. ..,#/} of a path P = (vv v2,... ,ι>/) will be denoted by
K(P). The cardinality of P, denoted by |P|, is |F(P)|.

A family 0* of paths is called a path-partition of G if its members are
vertex disjoint and U{F(P): P e # ) == V. For each nonnegative integer
k9 the k-norm \0>\k of a path partition ̂  = {Pv... yPm} is defined by

A partition which minimizes 1̂ )̂ . is called k-optimum. For example, a
1-optimum partition is a partition P containing a minimum number of
paths.

A partial k-colouring is a family # * = {C ,̂ C2,... ,Cr} of at most /:
disjoint independent sets Cf called colour classes. The cardinality of a
partial ^-colouring # * = {C1? C2,...,C t) is |U{β l Q, and <gk is said to be
optimum if j U ^ i Q is as large as possible. A path partition ^ =
{Pv P 2 > . . . ,Pm} and a partial fc-colouring ̂ A are orthogonal if every path
P. in 0> meets min{ (P^, fc} different colour classes of %>k.

Berge [2] made the following conjecture:

Conjecture 1. Let G be a directed graph and let A: be a positive integer.
Then for every fc-optimum path partition ^ , there exists a partial A>col-
ouring # * orthogonal to 0*.
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Let πk{G) be the Λ>norm of a Λ -optimum path partition in G, and let
ak(G) be the cardinality of an optimum partial /r-colouring in G. A
weaker conjecture by Linial [14] is as follows:

Conjecture 2. Let G be a directed graph and let A: be a positive integer.

Then,

ak(G)>πk(G).

If Conjecture 1 holds, then every path P in a fc-optimum path partition @
meets at least min{ \P\, k) vertices of some partial Λ -colouring cβk. Hence,
<xk(G) > Σ/>e^min{ |P|, k) = ττk(G), and Conjecture 2 holds.

For k = 1, Conjecture 2 holds by the Gallai-Milgram theorem [9],
Linial [13] showed that the proof of the Gallai-Milgram theorem also
yields Conjecture 1 for this case.

For transitive graphs, Conjecture 2 is given for k = 1 by Dilworth's
theorem [6], and for all k by the theorem of Greene and Kleitman [10]. It
is easy to deduce from it that Conjecture 1 also holds for such graphs.
Linial [14] and Cameron [3] independently showed that Conjecture 2
holds for all acyclic graphs. Conjecture 1 was proved for such graphs in
[1]. Cameron [4] and Saks [17] have shown that an even stronger version of
Conjecture 1 holds for all acyclic graphs:

THEOREM 1. Let G be a directed acyclic graph, and let k be a positive

integer. Then there exists a partial k-colouring ^k which is orthogonal to

every k-optimum path partition & of G.

We indicate a proof of Theorem 1 in §3. This proof is different from
the ones in [4] and [17] and was found independently.

It is possible to 'dualize' the notions of path partition and partial
^-colouring, by interchanging the roles of 'path' and 'independent set' in
the definitions and theorems above.

A colouring ̂  is a partition of V into disjoint independent sets. For
each non-negative integer k, the Λ -norm \cβ\k of a colouring ^ =
{Cl9 C 2 , . . . , Cm} is defined as:

A colouring which minimizes \<^'\k is called ^-optimum. For example, a
1-optimum colouring is a colouring with χ colours, where χ is the
chromatic number of G.

The analogue of a partial ^-colouring for paths, is a path k-pack,
defined to be a family &k = {Pl9 P 2 , . . . ,P,} of at most k disjoint paths
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P . The cardinality of a path λ -pack ^ * = {Pl9 P 2,. . .,P,} i s | U ; = 1 P J , and

&k is optimum if |UJβi-P, | is as large as possible. A colouring # =

{Cl9 C 2 , . . . , Cm} and a path Λ -pack 0>k are orthogonal if every colour class

C, in <̂  meets min{ |Cf |, k) different paths of 0>k.

As a dual analogue of Conjecture 1, we suggest the following:

Conjecture 3. Let G be a directed graph and let k be a positive integer.

Then for every optimum path fc-pack ί?*, there exists a colouring ^

orthogonal to &>k.

Let χk(G) be the λ>norm of a λ -optimum colouring in G, and let

λk(G) be the cardinality of an optimum path Λ -pack in G. The dual of

Conjecture 2 would be:

Conjecture 4. (Linial [14]). Let G be a directed graph and let k be a

positive integer. Then,

It is not difficult to see that Conjecture 3 implies Conjecture 4. For k = 1,

Conjecture 4 is given by the Gallai-Roy theorem [7, 15] and Conjecture 3

is also valid in this case, by the proof of the Gallai-Roy theorem.

For transitive graphs, Conjecture 4 is true by Greene's theorem [9]

and Conjecture 3 can be deduced from it. Hoffman [12] and Saks [16]
have independently proved Conjecture 4 for all acyclic graphs.

In this paper we prove the following stronger version of Conjecture 3

for all acyclic graphs:

THEOREM 2. Let G be a directed acyclic graph and let k be a positive

integer. Then there exists a colouring %> orthogonal to every optimum path

2. Proof of Theorem 2. If V can be covered by k or fewer vertex

disjoint paths, then making each vertex a colour class satisfies Theorem 2.

So assume otherwise. Let \V\ = n, and label the vertices l ,2, . . . ,n. We

shall use the linear program defined in [12]:
Let C = (c / 7), i, j = 0,1, . . . ,H, be defined by

ci0 = 0 for all i; c0J = 1 for ally > 0

cH = 0 for all i

if / > 0,7 > 0, and / Φ y, then ci} = 1 if (/, j) e E

= not defined if (/, j) £ E.
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Consider the transportation problem:

I.
n

(2.1) maximize Σ ciJxiJ

/=o
7 = 0

where xέJ > 0 for all i,j9 except that xtj is not defined if i > 0,y > 0, i Φ j

and (/, j) & E.

(2.2) Σ * < y = Σ * i o = *
7 = 0 z = 0

n n

(2.3) Σ xu = 1 for i > 0; Σ *ιj = 1 for./ > 0.

Every path fc-pack &k = {P v P2,... ,Pt}, / < A:, corresponds to a feasible

solution of (2.1)-(2.3), x, defined in the following way:

*oo = k ~ ι

if j > 0,

xOj = 1 if j is the start of one of Pl9... ,Pt

= 0 otherwise,

if i > 0,

xiQ = 1 if i is the end of one of Pl9..., tt

= 0 otherwise

if i > 0,

J C I 7 = 1 i f / ί F ( P j u •-• u ( )

= 0 if i e V(PX) u ••• U

if / > 0,y > 0?z # 7 , then

xtJ = 1 if (/, j) is an edge of Pr for some r = 1,... ,t

= 0 otherwise.

It can be shown that every vertex of (2.1)-(2.3) is integral and corresponds

to a path λ>pack of G. Hence, an integral optimum solution of (2.1)-(2.3)

corresponds to an optimum path &-pack, and conversely.

Consider the dual problem:
n n

II. min k(u0 + υ0) + Σ ui + Σ vj
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where

(2.4) ui + ϋj > cu for all ij.

Complementary slackness conditions for I and II are

(2.5) xtj > 0 => w, + Όj = cu for all ij.

Since the matrix of equations (2.4) is totally unimodular, the l.p. attains its

minimum at integral w's and v's. We may subtract u0 from each u{ and vi9

/ = 0 , 1 , . . . ,/ι, to get an integral optimum solution with

(2.6) u0 = 0.

We are now ready to define our colour classes. The "interesting" classes

—the Sr defined below—get their names from the values of variables. Let

W= {/ > 0: u,• + v, = 0}

Sr={i<=W:v, = r)

and

τj = {j}> wherej £ W.

Let s = max{o |/ e W}. (We shall show later that s = ι;0.) We shall

establish that ^ == {Sl9 S2,...,Ss9 Tl9 T29..., Tn} is a colouring of G which

satisfies the theorem.

To show ^ is a colouring, we need only prove that each Sr is an

independent set. Suppose not. Then there exist i, j e 5 r, (i, j) e £ . But

w7 -f y- = 0, wf -h ϋj > 1 imply ι;. — t?; > 1, so vt = υ = r is impossible.

By our stipulations at the beginning of the proof, an optimum path

A>pack contains k paths. Let &k = {Pl9 P 2 , . . . 9Pk} be optimum. We must

show that:

(i) each T}; = {7} is on some path of ^ ^ and

(ii) each Sr meets all paths oίίPk.

To prove (i), note that j e 7] means wy + ϋy. > 0, implying by (2.5) that

Xjj = 0. Since Σ^ xyΛ = 1, we must have xy/ == 1 for some /, so j is in some

path of &>k.

To prove (ii), we first observe that

(2.7) v0 > s.

To show (2.7) we use (2.4):

ut + v0 > ci0 = 0 Vi & W

ui + v = 0 \/i G Ŵ .

From the last two equations we deduce that v0 > υi Vi G ίF, and (2.7)

follows.
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Next, let P be a path oί^k, and for ease of notation, assume the path

is (1,2,. . . ,/). Then

By (2.5), w0 + ^ = 1, so by (2.6)

(2.8) υλ = 1.

Similarly, by (2.5), ut 4 v0 = 0, and by (2.4), w, 4 Vj > 0, so

(2.9) v^v,.

F r o m Uj 4- ϋj > 0 and wy 4 ϋ y + 1 = 1 it follows that

( fory = 1,2,...,/— 1, z;., x — ι> < 1, with equality if and

(

Together, (2.8)-(2.10) show that Sl9 S29...9SVQ_1 all meet P. All that

remains to be shown is that SϋQ meets P.

From the proof of (2.9), we see that if ut 4- υι = 0, then also vι = υ0

and / is in Sυ and in P. If w7 4 ^ > 0, then ι>7 > ι;0. From (2.10) it follows

that there is some j < I with Uj 4 UJf = 0 and ί̂ r = i;z — 1 > y0. By (2.7),

this means yy = v09j is in 5^ andy is on P. This completes the proof.

Another proof of the theorem can be deduced from [5] and [11]. It is

worth noting that Theorem 2 is not true for general directed graphs, as we

shall show in §4.

3. An outline of a proof of Theorem 1. The proof uses ideas similar

to the ones used in the proof of Theorem 2.

Let C = (c,7), /, j = 0,...,«, be defined by

(3.1) ci0 = 0 for all /; cOj = k for allj, 0

cu = 1 for all i > 0

if i > 0,7 > 0 and i Φ j then

= not defined if (/, j) £ E.

Consider the following linear program:

Γ.

minimize Σ cijxu
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/ where xtj > 0 for all i9j9 except that xέJ is not defined

\ifi>09j>Q,iΦj9(i9j)<εE.

n n

(3.3) Σ*Oy= Σ * * * *
y-0 i-0

n n

(3.4) Σ xu = 1 for all i > 0; Σ *, y = 1 fory > 0.
y = 0 i-O

Let & be a path partition, and let ̂ ° denote the set of all paths in & of
cardinality at most k, and ̂  denote the set of paths in ̂ of cardinality at
least k. Paths of cardinality k are assigned arbitrarily to ̂ ° or έP+. We
define the following matrix

X(&>) = (x ι y) corresponding to ̂ :

if 7 > 0, xOy = 1 if j is the start of some path in ^ .

= 0 otherwise

if ί > 0, xi0 = 1 if / is the end of some path in ̂ + .

= 0 otherwise

if i > 0, xu = 1 if Ϊ belongs to some path in ̂ ° .

= 0 otherwise

xiJ = 1 if for some P e ^ + , (/, j) is an edge of P.

= 0 otherwise.
As in §2, it can be shown that in this correspondence, every integral

optimal solution of (3.2)-(3.4) corresponds to a fc-optimum path partition,
and conversely.

Consider the dual problem.

IΓ.
n n

maximizen(u0 -f vQ) + Σ ui + Σ vj
(3.5) i*ι /==1

where u{ -f ϋj < ctj for all i9j\

We may assume that there exists an integral optimum solution of II ;

satisfying u0 = υ0 = 0, ut < 0 and 0 < vt < k.
We associate a partial ^-colouring (€k = {Q, C2,.. 9Ck} to such a

solution in the following way. Let

CΓ= {/> 0: 1 - i#f. = ι;f. = r} .
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Using the complementary slackness conditions it can be proved (as in
§2) that <€k is orthogonal to every ^-optimum path partition.

4. Some counterexamples. Let G be a poset, and let ^ , and (Sk be
a path partition, and a partial /^-colouring of G, respectively. Since every
path P in & meets at most min{ |P|, k) vertices of #*, we have

(4.1) \V\

If & and ^are orthogonal, then equality holds and & is fc-optimum and #
is optimum. Thus, the following extension of Conjecture 1 is valid for G.

THEOREM 1'. For every k-optimum path partition &, there exists an
optimum partial k-colouring ^k orthogonal to 8P.

However, if G is not a poset, Theorem Γ may not be valid, as
demonstrated in the following example, for k = 1 (see Figure 1). The set
S = {1,3,6} denotes the unique optimum independent set. ^ =
{(1,2,3,5,6), (4)} is a 1-optimum path partition not orthogonal to S.

In a similar manner, the following extension of Conjecture 3 holds for

all posets G.

THEOREM 3'. For every optimum path k-pack £Pk, there exists a k-opti-

mum colouring Ήorthogonal to @k.

Theorem 3' may not be valid for graphs other than posets, as shown
in the following counterexample for k = 1 (see Figure 2).

The path P = (1,2,3,4) is a longest path, and χ(G) = 3. But any
3-colouring colours P in two different colours, as shown in Figure 2.
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FIGURE 2

Another variant of Conjecture 1 is:

THEOREM 1". For every optimum partial k-colouring ^k, there exists a

path partition &, orthogonal to ^k.

It can be proved that Theorem 1" is valid for posets, but not in
general. For k = 1, we have the following counterexample (see Figure 3).

No path partition is orthogonal to Ή1 = {(1,3)} in G. A similar
variant on Conjecture 3 is

THEOREM 3". For every k-optimum colouring <$ there exists a path

k-pack orthogonal to ^,

As in Theorem 1", this theorem is valid for posets, but not for all
graph, as demonstrated in Figure 4.
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2

FIGURE 4

The path P = (1,2,3) is a unique longest path but it is not orthogonal
to the colouring ί?= {(1,3), (2,4), (5)}.

Finally, we show that neither Theorem 1 nor Theorem 2 is true in
general for all graphs.

Let G = (V, E) be defined by (see Figure 5)

V= {P19P29P39P49PS9Q,R}

and

E = {(Pl9 Pj) where i <j) U {(i>3, β ) , ( β , Λ), (R9 P3)}.

FIGURE 5

It can be verified that for any maximum independent set S in G, there
exists a path partition which is not orthogonal to S. Also, there is no way
of colouring G so that all longest paths (there are three of them) meet all
colours. Hence G serves as a counterexample for k = 1 for Theorem 1 as
well as for Theorem 2, when considered for general graphs.
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