CLOPEN REALCOMPACTIFICATION OF A MAPPING

Takesi Isiwata

In this note, we give a necessary and sufficient condition on φ : $X \rightarrow Y$ for $v\varphi$ to be an open perfect mapping of vX onto vY and other related results.

Throughout this paper, by a space we mean a completely regular Hausdorff space and mappings are continuous and we assume familiarity with [1] whose notation and terminology will be used throughout. We denote by $\varphi: X \to Y$ a map of X onto Y, by $\beta X(\nu X)$ the Stone-Čech compactification (Hewitt realcompactification) of X and by $\beta \varphi$ ($\nu \varphi = (\beta \varphi)|\nu X$) the Stone extension (realcompactification) over $\beta X(\nu X)$ of φ .

Concerning clopenness of $v\varphi$ of a clopen map $\varphi: X \to Y$ the following results are known.

THEOREM A (Ishii [4]). If $\varphi: X \to Y$ is an open quasi-perfect map, then $v\varphi$ is an open perfect map of vX onto vY.

THEOREM B (Morita [8]). If $\varphi: X \to Y$ is a clopen map such that the boundary of each fiber is relatively pseudocompact, then $v\varphi$ is also a clopen map of vX onto vY.

In §2, concerning Theorem A we give a necessary and sufficient condition on φ for $v\varphi$ to be an open perfect map of vX onto vY without using the theory of hyper-spaces (Theorem 2.3 below) and a necessary and sufficient condition on φ for $v\varphi$ to be an open *RC*-preserving map of vXonto vY under some condition (Theorem 2.6 below).

We use the following notation and abbreviation: C(X) is the set of real-valued continuous functions defined on X, $C(X; \varphi) = \{ f \in C(X); f$ is φ -bounded $\}$, Bd A = the boundary of A, usc = upper semicontinuous, lsc = lower semicontinuous and $\omega(\omega_1)$ = the first infinite (uncountabel) ordinal, clopen = closed and open.

1. Definitions and Lemmas.

1.1. DEFINITION. Let $\varphi: X \to Y$. $f \in C(X)$ is said to be φ -bounded if $\sup\{|f(x)|; x \in \varphi^{-1}(y)\} < \infty$ for every $y \in Y$. Whenever f is φ -bounded,

we put

$$f^{s}(y) = \sup\{f(x); x \in \varphi^{-1}(y)\} \text{ and}$$
$$f^{i}(y) = \inf\{f(x); x \in \varphi^{-1}(y)\} \text{ for each } y \in Y.$$

A subset A of X is *relatively pseudocompact* if f|A is bounded for each $f \in C(X)$. $\varphi: X \to Y$ is said to be

(1) WZ if $\operatorname{cl}_{\beta X} \varphi^{-1} y = (\beta \varphi)^{-1} y$ for each $y \in Y[5]$.

(2) $W_r N$ if $\operatorname{cl}_{\beta X} \varphi^{-1} R = (\beta \varphi)^{-1} (\operatorname{cl}_{\beta Y} R)$ for every regular closed set R of Y [3].

(3) *-open (W*-open) if $int(cl \varphi U) \supset \varphi U$ ($int(cl \varphi U) \neq \emptyset$) for every open set U of X [2, 7].

(4) β -open if φ is *-open and $W_r N$.

(5) a d^* -map if $\bigcap cl \varphi Z_n = \emptyset$ for any decreasing sequence $\{Z_n\}$ of zero sets of X with empty intersection [6].

(6) *RC-preserving* (an *RC-map*) if φR is regular closed(closed) for every regular closed set R of X [2].

We note that (1) a closed map is a Z-map and a Z-map is WZ [5], (2) an open map is *-open and a *-open map is W^* -open [7], (3) a space Y is cb* iff any d*-map onto Y is hyper-real, i.e., $v\varphi$ is a perfect map onto vY[6], (4) an RC-preserving map is RC and (5) an open WZ-map is β -open by 1.2 (1, 5) below. Thus it is easy to see that if φ is β -open, then $(\beta\varphi)|Z$: $Z \to (\beta\varphi)Z$ is β -open for each Z with $X \subset Z \subset \beta X$. $Y \supset B$ is said to be φ -d* if $(\beta\varphi)^{-1}B \subset vX$. By 1.2(4) below, φ is a d*-map iff Y is φ -d*.

LEMMA 1.2. Let $\varphi: X \to Y$.

(1) If φ is WZ, then φ is open iff $\beta \varphi$ is open [5].

(2) if φ is open (WZ), then f' is usc (lsc) and f^s is lsc (usc) for every $f \in C(X; \varphi)$ (for example, see [5]).

(3) If φ is open WZ, then f^i and $f^s \in C(Y)$ for every $f \in C(X; \varphi)$ [5].

(4) φ is a d*-map iff $(\beta \varphi)^{-1} Y \subset v X[\mathbf{6}]$.

(5) φ is β -open iff $\beta \varphi$ is open [7].

(6) If φ is an RC-map, then φ is WZ [3].

(7) φ is *RC*-preserving iff φ is a *W**-open *RC*-map [2].

2. Main Theorems.

LEMMA 2.1. Let φ : $X \rightarrow Y$. Then the following are equivalent:

(1) φ is WZ (open).

(2) f^i is lsc (usc) for every $f \in C(X; \varphi)$

(3) f^s is usc (lsc) for every $f \in C(X; \varphi)$.

Proof. (2) \Leftrightarrow (3) is evident. (1) \Rightarrow (2). From 1.2(2).

We will prove $(2) \Rightarrow (1)$. Suppose that φ is not WZ. Then there are $y \in Y$ and $p \in \beta X$ with $p \in (\beta \varphi)^{-1}y - \operatorname{cl}_{\beta X} \varphi^{-1}y$. Since $p \notin \operatorname{cl}_{\beta X} \varphi^{-1}y$, there is $g \in C(\beta X)$ such that $p \in \operatorname{int}_{\beta X} Z(g)$ and g = 1 on $\operatorname{cl}_{\beta X} \varphi^{-1}y$. Let us put f = g | X. Then $f \in C(X)$, $f^i(y) = 1$, $A = Z(f) \neq \emptyset$ and $p \in \operatorname{cl}_{\beta X} A$. On the other hand, $\operatorname{cl}_{\beta Y} \varphi A = \operatorname{cl}_{\beta Y}(\beta \varphi) A = (\beta \varphi) \operatorname{cl}_{\beta X} A \ni (\beta \varphi) p$ = y. This shows $y \in \operatorname{cl} \varphi A$ and hence for each neighborhood V of y, there is $z \in V$ with $f^i(z) = 0$, i.e., f^i is not lsc.

Now suppose that φ is not open. Then there are a point x and an open set $U \ni x$ such that $V - \varphi U \neq \emptyset$ for every open set $V \ni y = \varphi(x)$. Let $f \in C(X; \varphi)$ such that $x \in \text{int } Z(f) \subset U$ and f = 1 on X - U. Obviously $f^i(y) = 0$ and $f^i = 1$ on $V - \varphi U$. This shows that f^i is not usc.

Using 2.1, it is easy to see the following:

THEOREM 2.2. $\varphi: X \to Y$ is open WZ iff f^i and $f^s \in C(Y)$ for every $f \in C(X; \varphi)$ equivalently,

$$C(Y) = \{f^i; f \in C(X; \varphi)\} = \{f^s; f \in C(X; \varphi)\}.$$

THEOREM 2.3. $\varphi: X \to Y$ is a β -open d^* -map iff $v\varphi$ is an open perfect map of vX onto vY.

Proof. ⇐) From 1.2(1, 4, 5) and $(\beta \varphi)^{-1}Y \subset (\beta \varphi)^{-1}vY = vX. \Rightarrow$) By 1.2(5), $\beta \varphi$ is open. We will prove that $v\varphi$ is a perfect map onto vY. To do this, it suffices to show that $(\beta \varphi)p = q \in \beta Y - vY$ for every $p \in \beta X - vX$. Let $p \in \beta X - vX$. Then there is $f \in C(\beta X)$ with $p \in Z(f) \subset \beta X - vX$. $\beta \varphi$ being open WZ by 1.2(5), it follows from 2.2 that $f^i \in C(\beta Y)$, $f^i(q) = 0$ and $f^i > 0$ on Y. This shows $q \in \beta Y - vY$, so $v\varphi$ is a perfect map onto vY. Since $\beta(v\varphi) = \beta \varphi$ and $\beta \varphi$ is open, $v\varphi$ is open by 1.2(1). Thus $v\varphi$ is an open perfect map of vX onto vY.

2.4. EXAMPLE. Let $X = [0, \omega_1]^2 - \{(\omega_1, \alpha); \omega \le \alpha \le \omega_1\}, Y = [0, \omega_1]$ and φ the projection of X onto Y. It is obvious that φ is not WZ and hence not closed and $\varphi^{-1}(\omega_1)$ is not compact. On the other hand $\beta\varphi$: $\beta X = \nu X = [0, \omega_1]^2 \rightarrow Y = \nu Y = \beta Y$ is open perfect (compare with the assumption of Theorem A).

2.5. LEMMA. If $\varphi: X \to Y$ is a *-open RC-map, then φ is open.

Proof. Let U be open in X and $x \in U$. Take a regular closed set R with $x \in \text{int } R \subset R \subset U$. Since φ is a *-open RC-map, we have $y = \varphi(x) \in \text{int(cl } \varphi(\text{int } R)) \subset \varphi R \subset \varphi U$, so $y \in \text{int } \varphi U$. Thus φ is open.

In the following we put

 $Y_d = \{ y \in Y; \varphi^{-1}y \text{ is open but not relatively pseudocompact} \},$ $Y_e = X - Y_d.$

THEOREM 2.6. $\varphi: X \to Y$ is a β -open map such that Y_e is φ -d* iff $v\varphi$ is an open RC-preserving map of vX onto vY such that $cl_{vY}Y_e$ is $(v\varphi)$ -d*.

Proof. \Leftarrow) Since $v\varphi$ is open WZ by 1.2(6,7), $\beta\varphi$ is open by 1.2(1) and φ is a β -open map by 1.2(5). The fact that $cl_{vY}Y_e$ is $(v\varphi)$ - d^* implies that Y_e is φ - d^* .

⇒) (1) We will first prove that if $p \in \beta X - \nu X$ and $(\beta \varphi) p = q \in \nu Y$, then there is a clopen subset *D* of *Y* such that $q \in cl_{\nu Y}D$, $D \subset Y_d$ and $cl_{\nu Y}D \cap cl_{\nu Y}Y_e = \emptyset$. There is $f \in C(\beta X)$ with $p \in Z(f) \subset \beta X - \nu X$. By 1.2(5), $\beta \varphi$ is open. Thus $f^i \in C(\beta Y)$. Since Y_e is $\varphi - d^*$, $f^i > 0$ on Y_e and hence $Z(f^i) \cap Y_e = \emptyset$. Since $f^i(q) = 0$, $q \in \nu Y$ and $Z(f^i)$ is closed. $D = Z(f^i) \cap Y_d = Z(f^i) \cap Y$ is a non-empty clopen discrete subset of *Y* contained in Y_d . $Cl_{\nu Y}D = Z(f^i) \cap \nu Y$ implies $q \in cl_{\nu Y}D$ and $cl_{\nu Y}D \cap$ $cl_{\nu Y}Y_e = \emptyset$.

(2) Let us put $\mathcal{D} = \{ D \subset Y_d; D \text{ is a clopen subset of } Y \}$ and $\operatorname{cl}_{vY} \mathcal{D} = \bigcup \{ \operatorname{cl}_{vY} D; D \in \mathcal{D} \}$. Then it is easy to see the following

 $vY = \operatorname{cl}_{vY} \mathscr{D} \cup \operatorname{cl}_{vY} Y_e, \qquad \operatorname{cl}_{vY} \mathscr{D} \cap \operatorname{cl}_{vY} Y_e = \varnothing$

and

$$(\beta \varphi)^{-1} \mathrm{cl}_{vY} Y_e \subset vX.$$

(3) $v\varphi$ is onto vY. Let $q \in cl_{vY}D$, $D \in \mathcal{D}$. For each $y \in D$, let us pick a point p(y) from $\varphi^{-1}y$ and put $A = \{ p(y); y \in D \}$. Then A is a discrete closed C-embedded subset of X. Thus $vA = cl_{vX}A$ is homeomorphic to $cl_{vY}D$ under the map $v\varphi$. Thus we have $v\varphi(vX) = vY$.

(4) $v\varphi$ is an RC-map. Let F be regular closed in vX and $E = (v\varphi)F$. Suppose that there is $q \in cl_{vY}E - E$. By (2) and the clopenness of $\varphi^{-1}y$, $y \in Y_d$, we have $q \notin Y_d \cup cl_{vY}Y_e$. Thus there is $D \in \mathscr{D}$ with $q \in cl_{vY}D$ and $cl_{vY}D \cap cl_{vY}Y_e = \emptyset$ by (2). Since $\beta\varphi$ is open by 1.2(5), $v\varphi$ is also *-open and we have that $E \supset (v\varphi)int_{vX}F$ is dense in $cl_{vY}E$ because F is regular closed. Let $M = E \cap D \cap Y_d$. Then $q \in cl_{vY}M$. Let us pick a point p(y) from $\varphi^{-1}(y) \cap F$, $y \in M$. $A = \{p(y); y \in M\}$ is a discrete closed C-embedded subset of X and hence $vA = cl_{vX}A \subset F$ and vA is homeomorphic to $vM = cl_{vY}M$, so $q \in E$ a contradiction.

(5) $v\varphi$ is open RC-preserving. Since $v\varphi$ is an RC-map, $v\varphi$ is WZ by 1.2(6). Thus the openness of $\beta\varphi$ implies that $v\varphi$ is open by 1.2(1) and RC-preserving by 1.2(7).

As a direct consequence of the above theorem, we have the following corollary which is a generalization of the result obtained in [5] if X is realcompact and $\varphi: X \to Y$ is an open WZ map with Bd $\varphi^{-1}y =$ compact for each $y \in Y$, then Y is also realcompact.

COROLLARY 2.7. If X is realcompact and $\varphi: X \to Y$ is a β -open map such that Y_e is φ -d*, then Y is also realcompact.

THEOREM 2.8. Let $\varphi: X \to Y$ and $Z = (\beta \varphi)^{-1} Y_d \cup vX$. Then the following are equivalent:

(1) Z is a realcompact and φ is a β -open map such that Y_{ρ} is φ -d*.

(2) $\varphi' = (\beta \varphi) | Z$ is an open perfect map of Z onto vY.

(3) $v\varphi$ is a clopen map of vX onto vY such that $Bd(v\varphi)^{-1}q$ is compact for every $q \in vY$.

(4) $v\varphi$ is a clopen map of vX onto vY such that $(vY)_e$ is $(v\varphi)-d^*$.

Proof. (1) \Rightarrow (2) If $Z = \beta X$, then $\varphi' = \beta \varphi$ and φ' is an open perfect map onto νY . Let $p \in \beta X - Z$ and $q = (\beta \varphi) p$. Then $Z = \nu Z$, $\beta Z = \beta X$ and there is $f \in C(\beta X)$ such that $p \in Z(f) \subset \beta X - Z$ and $0 \le f \le 1$. Since $\beta \varphi$ is open WZ and Y_e is $\varphi \cdot d^*$, it is easy to see that $f^i \in C(\beta Y)$, $f^i(q) = 0$ and $f^i > 0$ on Y. Thus $q \in \beta Y - \nu Y$, so φ' is a perfect map onto νY . The openness of φ' follows from 1.2(1, 5).

(2) \Rightarrow (3) We shall show that $v\varphi$ is closed. Let F be closed in vX and $q \in cl_{vY}(v\varphi)F - (v\varphi)F$. Since φ' is perfect and every point of Y_d is isolated, we have $q \notin Y_d$, so $(\beta\varphi)^{-1}q = (v\varphi)^{-1}q$ is disjoint from cl_ZF , and hence $q \notin \varphi'(cl_ZF)$, a contradiction. Thus $v\varphi$ is closed. The verifications of other parts are easy. (3) \Rightarrow (4) Evident.

(4) \Rightarrow (1) Since $v\varphi$ is clopen, $\beta(v\varphi) = \beta\varphi$ is open by 1.2(1) and hence φ is β -open by 1.2(5). Since $vY = (vY)_e \cup Y_d$, the $(v\varphi)$ -d*-ness of $(vY)_e = vY - Y_d$ implies the φ -d*-ness of Y_e . Since $Y_d = (vY)_d$ and $(vY)_e$ is $(v\varphi)$ -d*, we have $Z = (\beta\varphi)^{-1}vY$, and hence $\varphi': Z \rightarrow vY$ is an open perfect map which shows that Z is realcompact.

References

- L. Gillman and M. Jerison, *Rings of Continuous Functions*, Van Nostrand, Princeton, N. J., (1960).
- [2] Y. Ikeda and M. Kitano, Notes on RC-preserving mappings, Bull. Tokyo Gakugei Univ., Ser. IV, 29 (1977), 53-59.
- [3] K. Ikeda, RC-mappings and almost normal spaces, ibid., 50 (1979), 13-17.
- [4] T. Ishii, On the completions of maps, Proc. Japan Acad., 50 (1974), 39-43.

TAKESI ISIWATA

- [5] T. Isiwata, Mappings and spaces, Pacific J. Math., 20 (1967), 455-480.
- [6] ____, d-, d*-maps and cb*-spaces, Bull. Tokyo Gakugei Univ., Ser. IV, 29 (1977), 19-52.
- [7] _____, Ultrafilters and mappings, Pacific J. Math., 104 (1983), 371–389.
- [8] K. Morita, Completion of hyperspaces of compact subsets and topological completion of open-closed maps, General Topology and Appl., 4 (1974), 217-233.

Received August 18, 1983 and in revised form October 28, 1983.

Tokyo Gakugei University (184) 4-1-1 Nukuikita-Machi Koganei-Shi, Tokyo, Japan

158