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A MAXIMAL FUNCTION CHARACTERIZATION
OF A CLASS OF HARDY SPACES

ROBYN OWENS

In this paper we obtain a maximal function characterisation of a
class of Hardy spaces Ήp which are defined on the upper half plane and
combine many of the properties of the classical Hardy spaces for the half
plane and the unit disc.

Burkholkder, Gundy and Silverstein [1] have shown that the classical
Hardy spaces HP(D) and HP(P) on the unit disc D and the upper half
plane P can be characterized by the maximal function. For the unit disc
they proved the following: if u is an harmonic function in D and Ώa(θ) is
the Stoltz domain given by the interior of the smallest convex set contain-
ing the disc {z: \z\ < a} and the point eiθ

9 then u = Rei 7 for some
F e HP{D) if and only if sup{|iι(z)|: z e Qa(θ)} e Lp(dD), where 32)
denotes the boundary of D. This theorem extends an earlier one due to
Hardy and Littlewood [9,1, p. 278].

The importance of this result is that a real-valued classification of
these spaces of analytic functions allows the notion of Hardy space to be
extended to real Euclidean spaces of arbitrary dimension. This was
precisely the task undertaken by Fefferman and Stein [2] and in so doing
they presented many other equivalent real-valued function characteriza-
tions of the corresponding Hp spaces.

In the 1950's [5] Hardy spaces were generalized in other directions
and different measures on the boundary R = 3P were considered. In this
paper we will consider a class of Hardy spaces Hp which combines many
of the properties of the classical Hardy spaces of the upper half plane and
the unit disc. Our Hp spaces will consist of functions that are analytic in
the upper half plane and yet constrained by a bounded measure on its
boundary R. This measure arises naturally [5] in the theory of abstract
harmonic analysis, where the unit circle is replaced by any abelian locally
compact group G and the set of indices over which one forms a " trigono-
metric series" is taken to be the dual group of G. In our case, the group R
of real numbers endowed with the discrete topology is considered; its dual
group can then be identified as bR, the Bohr compactification of R [3].
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366 ROBYN OWENS

The natural measure which arises by considering the space of generalized

analytic functions on bR [5] turns out to define precisely the condition

that the space be an amalgam of Lp and lq of R [6].

More explicitly, an analytic function /' = u + iΐi belongs to Hp if and

only if

1 f°° \rί . \\P dxsup sup - / | / ( * + ιy)\ — < oo.
y>0 v<=R π J-QO 1 +(ϋ — X)

When u is harmonic in P its maximal function w* is defined by

u*(t) = s u p { | t ι ( x + iy)\: \x - t\<y).

We shall prove the following three results in connection with characteriz-

ing the spaces Hp by the maximal function.

(1) If / = u + iu e Hp, 0 < p < oo, then
1 ί°° i */ M^

 d t

sup - / \u*(t)\ -
^ ^ - o o 1 + ( ϋ - t)

1 z*00 p d!x
< C sup sup - / \u(x + ιy)| —

y>0 i GR π •'-oo 1 + ( ϋ — JCJ

where Cp is a constant depending only on/?.

(2) If w is an harmonic function in P, 0 < /? < oo, and

sup — / «*(/) r < oo,

then for every υf G R there is a conjugate function w of w satisfying

sup ;

where Cp is a constant depending only on p.

(3) If w is harmonic in P, if w* satisfies

[v-tf

sup - / «•(/) < oo,
v<=R * J-oo 1 +(ϋ - t)t)

and if x •-> δ(JC + /» belongs to L°°(R) for some^ > 0, then

1 ί°° dx
sup sup - / \ΰ(x + iy)\ -

y>0 vεR * J-oo 1 +(v - X)

<Csup - Γ \u*(t)\

and we have M + /« e H1.
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These results give an extension of the Burkholder, Gundy and Silver-

stein Theorem to our class of Hardy spaces.

2. Notation and preliminary results. We denote by P the open

upper half plane and by P its closure. Unless otherwise indicated, Lp

spaces on subsets of the complex plane are taken with respect to Lebesgue

measure on the appropriate subset. A mapping T from L1 into the set of

measurable functions is said to be of weak type (1,1) if

λ{{x:\Tf(x)\>a})<A<χ-1\\f\\1, /eZλ

where A is a constant independent of/and a > 0, and λ(E) indicates the

Lebesgue measure of a set E. In this case we say Tf e L^weak. The space

Lfoc will consist of those functions/for which \f\p is integrable over every

compact subset.

Suppose 0 < p < oo and consider the collection of all pairs (w, ύ)

where u is an harmonic function in P, ύ is a conjugate harmonic function

of u and both the following are satisfied:

(2.1) \\u\\P

p = sup sup - ί \u{x + iy)\P - ^ < oo,
ίv-x)

and

(2.2) \\u\\P

p = sup sup - j \u(x + iy)\P < oo.

If c is a constant and & is a conjugate function of u then so is ύ + c.

Moreover, if ύ satisfies (2.2) then so does ύ + c since the measure

dx/π(l + (v — x)2) has total variation equal to 1. We define the Hardy

space Hp as the space of equivalence classes, modulo constants, of all

pairs (w, ύ 4- c) satisfying (2.1) and (2.2).

If (w, ύ) e Hp then/ = u + iύ is an analytic function in P and we say

/ e Hp. When/? > 1 we define the norm of/to be

(2.3) \\ft = sup sup \ Γ \f(x + iy)\P - ^ —
>^>0 ί eR π ^-oo l + ( f — x )

endowed with this norm, the class of functions Hp is a Banach space.

These Hardy spaces have been well-studied and it is known that they

display many of the characteristics of the classical Hardy spaces on the

disc and the upper half plane. In particular, it is shown in [5] that if

/ e Hp, 1 < p < oo, then the boundary function

fix) = lim fix + iv)
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exists almost everywhere and/(.x + iy) can be reproduced as the Poisson
integral of/(x). The boundary function/satisfies

(2.4) sup Γ |/(x)f fX < oo,
υ€=R ' - o o 1 +{v — X)

a fact which can also be seen directly using Fatou's Lemma. Denoting by
fv the translated and reflected function

fv(X) =f(V ~ X)> X>V G R >
we have

dx
(2.5) sup/ 1/(*)Γ , ,2 =

 S " P / I^WΓT + X
i e R •'-oo 1 -f (V ~ X) υeR ^ - oo 1 ~r X

Let P y (0 = j/7r( y2 4 ί2), J / , / E R , denote the Poisson kernel and let
Xj denote the characteristic function of a set / c R. It is shown in [4] that
there exist constants Cx and C2 such that

Ci in C1 |/(x)|'^ - in /°1 | / ( x ) |' i+(t-xY
< C2 sup

so that by replacing Pλ(v - t) with the box kernel χ{ViΌ+ιγ the condition
(2.4) becomes equivalent to the condition

(2.6) sup Γ + 1 \f{x)\Pdx< oo.

Condition (2.6) is usually expressed [6] by saying that / belongs to the
amalgam space (Lp, /°°), with the quantity on the left hand side of (2.6)
denoted by ||/||^>00.

When u(x + iy) is an harmonic function in P satisfying (2.1) and
p > 1, a conjugate function ύ can be computed explicitly by defining the
Hubert transform on the boundary function u(x). To do this we use the
conformal mapping ψ between the unit disc D and the upper half plane
given by

(2.7) Ψ(*)= " ' ' ( T ^ T ) ' Z^Ί>,ZΦ - 1 .

Via this mapping we can define the Hubert transform 3Cuυ of each
translated function uv(x) = u(v - x), since each uv belonging to LP(R;
dx/(l 4- jc2)) is mapped onto a function w / ψ belonging to LP(Ύ) and
the usual Hubert transform H is well-defined on this space (T = 3D



A CLASS OF HARDY SPACES 369

denotes the unit circle). Explicitly, 3^uυ is defined as H(uv°ψ)°ψ~ι.
Under the conformal mapping ψ however, the translations of u are not
preserved; that is, in general 3fuv Φ {3tfu)υ. But since (the Poisson
integrals of) $fuυ and (Jίf?u)ϋ both represent the imaginary part of the
same analytic function their difference can only be a constant; we write

A theorem of M. Riesz implies that Λ ^ e LP(R; dx/(l + JC2))
whenever uv e LP(R; dx/(l + x2)), which entails that for 1 < p < oo

i / wP dx

dx^ ( \ ί wp a x

< cp sup / \u,(χ)\ τ-—2

for some constant Cp which depends only on p. In other words we have

THEOREM 1. If u is an harmonic function in P satisfying (2.1) and
1 < p < oo then for every v e R Λere is a conjugate function ϋ of u such
that

f \ϋ(x)f dx <Cp .\\u\\U<Cp .\\u\\
x)

where C is a constant depending only on p.

3. The Main Theorem: Direct half and converse for p > 1. In view
of the Burkholder, Gundy and Silverstein Theorem [1, p. 138] it is natural
to ask whether the spaces Hp, 0 < p < oo, can be characterized by the
non-tangential maximal function. For each / e R w e denote by T(t) the
cone

Γ ( 0 = [z = x + iy e P : |x - t\<y},

and if u is an harmonic function on P we define the non-tangential
maximal function u* of u by

u*(t) = sup |M(Z)|, t e R.
zeΓ(ί)

In this section we shall prove the following two results.

THEOREM 2. //(M, ύ) *Ξ Hp andO < p < oo /Λew w* e (L*, /°°).

THEOREM 3. // u is an harmonic function in P and w* e (L^, /°°),
1 < p < oo, /Λ̂ « for every v e R ίΛere w α conjugate function ύ that
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satisfies

r°° \ΰ(x)f —
- 00

where C is a constant depending only on p.

In Theorem 3 the hypothesis that w* G (LP

9 /°°) certainly implies that
u satisfies (2.1) since w* dominates u on R and the Poisson integral is
norm-decreasing [4]. Nevertheless, the Theorem does not state that (w, ύ)
G Hp since ύ does not necessarily satisfy (2.2). In §6 we will discuss
conditions under which (2.2) is satisfied.

To prove Theorem 2 we begin with a lemma.

LEMMA 1. If F is analytic in P and

| |/1|* = sup sup / ^ \F(x + iy)\P / * 2 < <*>>

then for every ε > 0, \F\P is bounded on

Pε= {x + iy G P: y > ε}.

Proof. For /? > 1 this is a trivial consequence of the fact that F can be
expressed as the Poisson integral of its boundary values.

When/? < 1 we note that \F\P is subharmonic whenever Fis analytic.
Given x 4- iy e P we choose A < 1 small enough so that the disc { £ + iη:
(x - £) 2 + (y - η) 2 < h) c P. Then

< ^ ( l + h) h

of Theorem 2. Consider the conformal mapping ψ defined by
(2.7). Under the inverse of ψ, cones
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FIGURE 1

FIGURE 2

are mapped onto moon-shaped regions in the disc and as t -> ± oo these
regions become smaller. See Figure 1. In the other direction, a Stoltz
domain Ώa(θ) in the disc, defined as the interior of the smallest convex set
containing the disc {z: \z\ < a} and the point eiθ> is mapped by ψ onto a
bounded region in the upper half plane containing the point i. See Figure
2. Since ψ is conformal, the angle at the apex is always preserved.

Also under ψ, the pair (w, ύ) e Hp is transformed into a pair of
functions «oψ and ύ ° ψ satisfying

\\uoψ\\P

p = sup TΓ- f " \uoφ(reiθ)\P dθ < oo,

Hfioψlf = sup j^f2" \ύ°ψ(reiθ)\Pdθ < oo.
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These relations assert that (w°ψ, w°ψ) e HP{D), the classical Hardy

space on the unit disc. As (u ° ψ) is also a conjugate function of u ° ψ this

means ( ι / ° ψ , ( w ° ψ ) ) G HP(D) and by the Hardy-Littlewood Maximal

Theorem [9, Theorem 7.36] we have ( w o ψ ) * G L^(T) with \\(u ° ψ)*| |£ <

By Lemma 2 however, (ι/°ψ)* can be calculated by considering
\u © ψ(z)| for z belonging to a truncated Stoltz domain; so that outside an
ε-neighbourhood of the point — 1, the behaviour of w* ° ψ (which can be
determined by considering \u ° ψ(z)| over truncated moons) is controlled
by that of (u ° ψ)* and we have u* ° ψ e L ^ ( T \ { -1}). Returning to
the upper half plane, we see that w* G Lζ^R).

This implies that for each o e R w e have

|u (0| Λ ̂  ^>llί,
where K is a constant which depends on p and ε but is independent of
υ e R, since (w*)y = (wj*. Thus

sup Γ + 1 | t / * ( Γ
i εR Jυ

and we have proved that u* e (L^, /°°).

Proof of Theorem 3. Suppose p > 1, w is an harmonic function in P
and u* e (L77, /°°). A trivial consequence of Theorem 1 is that for each
v G R there is a conjugate function ύ of u such that

„
Cp\\u \p,co9

where Ĉ  is a constant depending only on p.

4. The converse:p = 1. To treat the case/? = 1 we will use certain
properties of conformal mappings. Consider a disc Δ in the plane C the
circumference of which passes through the points 0 and 1 and let Ω denote
that portion of Δ lying above the real axis. The region Ω can be mapped
conformally onto D by using the function F = /3 ° f2 ° fl9 where fγ and /3

are linear fractional transformations and/2 is a power; more explicitly, we
put

/ 2(z) = 2 /« and

£(*) = (z - i)/(z + i)

where a denotes the angle formed by/^ΘΩ).
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One can easily check that F~ι transforms radii of D into path
segments emanating from one point inside Ω and terminating on 3Ω.
Moreover, the mapping F~ι guarantees that each segment will be con-
tained in some Stoltz domain in Δ and each Stoltz domain can be chosen
to have the same opening angle. The Lp classes are also preserved under F
in the sense that Lebesgue measure on the circle is transformed under F~ι

to a measure on 3Ω which is absolutely continuous with respect to
Lebesgue measure.

THEOREM 4. // u is harmonic in P and u* e (L1, /°°) then for every
v e R there is a conjugate function ύ of u such that

Γ \a(χ)\—-^-

where C is some universal constant.

To prove this theorem we shall use the following result which appears
in [2, p. 170]. When u is an harmonic function in D its radial maximal
function u+ is defined by

= sup\u(reiθ)l θ <= T.
r<\

Fefferman and Stein showed that u is the real part of some analytic
/€= Hp(D),0 < p < oo, if and only if w + e LP(Ύ).

The proof of Theorem 4 is subdivided into a number of lemmas. As
before, to define the Hubert transform we use the conformal mapping ψ
defined in (2.7). Putting v = u ° ψ we see that the hypotheses of the
theorem imply that the corresponding maximal function, which we now
denote by *;*, belongs to L ^ T X {— 1}). Consequently, for the disc we
have v e L\Ί) and υ* e L ^ T X {-1}). By the Kolmogorov Theorem
[8, p. 187] we know that v is well-defined and in Ll

wcllk(T).

LEMMA 2. Under the hypotheses of Theorem 4,

Proof. Consider the region Σ defined as D \ H where H is a small
rectangular region centred about the point — 1 with sides parallel to the x
and y axes, one side forming a chord of D. Let F: Σ -> D be a conformal
mapping between Σ and the unit disc, so that v ° F ι is harmonic in D.
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We can dominate the radial maximal function (vζ>F~1) + by the

non-tangential maximal function υ* since under F~ι there is a one to one

correspondence between each radius R(θ) = {reiθ: 0 < r < 1}, 9 E T ,

and a corresponding Stoltz domain Ω(0')> θ' G T. More explicitly,

< sup |u(re''')| = υ*(θ').
«"efl(ί')

Whenever iVε( —1) denotes an ε-neighbourhood of —1 contained

strictly inside the rectangle H we have (v ° F~λ)+(θ) < C uniformly in

9 e T \ i V ε ( - l ) since, for each 0, ( y o Γ 1 ) ^ ) is calculated by taking

the supremum of \v\ over some compact subset of D. Since v* ^

^locOΓXί-1}) a n d
 (VOF-YKV* we see that ( U O Γ V is locally

integrable on T \ { —1} and uniformly bounded in a neighbourhood of

- 1 . Consequently (υ o f-^ + e L^T).

By the theorem of Fefferman and Stein [2, p. 17], (v o F" 1 ) " e L^T)

and since ί) = (ι;ojρ~1) O jp (modulo constants) we conclude that £ e
Llioc(τ \ { " !})• τ h i s completes the proof.

Inteφreting Lemma 2 in the upper half plane we have the following

situation: both u and w* belong to (L1, L°°) and any conjugate δ of u is in

L ^ R ) . In particular, for every v e R there is a conjugate function ϋ of w

satisfying

(4.1) Γ + 1 IfiWIdx^XlMlLoo

where K is a constant independent of u. Necessarily, K is also independent
ofi e R .

LEMMA 3. With the same hypotheses as Theorem 4, condition (4.1)

implies

(4.2) -

where I is any interval of integral length and K is a universal constant.

Proof. To determine how the constant K in (4.1) changes when the

interval is expanded we suppose without loss of generality that / = (0, n)

and define W#(JC) = u(nx). Then

i oo * Γ \"#(x)\dx = /X |δ(ι«)|Λ = \f\u{x)\dx.
JQ JQ n JQ
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But

iu (πoiΛ-sup/ k ooiv

1 Γ / «D + 1 z m + 2 >.««; + w I

= - sup / + / + • • • + / \u*(x)\dx\

Thus

i Γ |a(χ)|dχ < ^lu ii.00
n J0

and the proof is complete. Note that we now have a BMO-type condition

[4] on ύ for large intervals.

LEMMA 4. Let n ^ N and denote by un a conjugate function of u that

satisfies (4.2) for the interval [2", 2n + ι]. Then

where C is a constant that does not depend on n.

Proof. Note first of all that ϊιn and un_x are both conjugate functions

of u so their difference can only be a constant. To begin, we consider the

effect of doubling the interval. Let Il9 I2 and /3 be real intervals of the

form Ix = (z9(a + b)/2\ I2 = ((a + b)/29 b) and I3 = (a, b) and let ul9

u2 and ϋ 3 be conjugates on u which satisfy (4.2) for the intervals Il912 and

73 respectively. We have

(4.3) tflln lkoo > τ}τ ί \u3(x)\dx
\13\ Jh

= ϊ7Ti/ \»M\d*+ I \u3(x)\dx).
I73l [Jίι

 Jί2 )

but also

(4.4) Jψikoo > 2]T
z l /

Since each integral is positive (4.3) gives us
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whilst (4.4) gives

rτ- ί \uM\dx < Jψ*||i,oo,
I73l JIλ

so that

\ύ\ύ3 - ύλ\ = — ί \ύ3(x) - ύ^
\I3\ JI1

In a similar way we find

i|fi3 - ύ2\ >

As in the hypotheses we now let ύn be a conjugate of u associated with
the interval [2", 2"+1] in (4.2) and let μn be a conjugate of u associated
with the interval [0,2n]. Using the reasoning employed above we have

\μn - fij < \μn - μn + 1\ + \μn + ι - ύn\ <

and

so that finally

and the proof is complete. Note that this means that as the interval is
moved from [0,1] to [2", 2n+1] a conjugate function ύ of u is changing at
most by a constant which is O(n).

Finally, to fix a conjugate once and for all we denote by ύ a conjugate
of u associated with the interval (0,1), as in (4.2). Using the estimates we
have made in Lemmas 3 and 4 we see that

h* ' v " 1 + x2 " 22"

where C and K are constants. This shows that ύ e LX(R; dx/(l + x2)).
But there is nothing special about the interval (0,1) and the same
argument applies with equal validity to any interval (v, v + 1), v e R.

In conclusion, we have shown that there is a constant C such that if u
is harmonic in P and w* e (L1, /°°) then for every y G R there exists a
conjugate function ύ of w satisfying

C||«<2 — ^n * ||l,oo
1 + ( ϋ — jt)
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5. The converse: p < 1. When p < 1 we can no longer represent
the harmonic function u as a Poisson integral of some function on the
boundary. Nevertheless, the proof we gave in the case p = 1 can be
adapted to this situation and the key idea is to use the maximal conjugate
function. When / is harmonic in D and / is a conjugate of / the maximal
conjugate function f * is defined by

( / ) * ( * ) « sup |/(z) |, 0 e T .

Fefferman and Stein showed that if / is an harmonic function such that
/ * e LP(Ύ), 0 < p < oo, then there is a conjugate function / such that
/ * e Lp{Ύ) and

11/11, ^ ςii/*ιu
where Cp is a constant depending only on p [4, Ch. 3].

THEOREM 5. Ifu is harmonic in P and u* e (Lp, /°°), 0 < p < 1, then
for every v e R there is a conjugate function u of u such that

ί \ύ(x + iy)f ~ < Cp\\u
l /-oo 1 + (l7 — JC)

The proof of this theorem follows the same lines as that of Theorem 4
and so we restrict ourselves to an outline, only giving details when
differences occur.

Via the conformal mapping ψ we transfer to the unit disc and put
v = u o ψ. Then v is harmonic in D and v* e JLf^OΛ { -1}). We will
denote by v a conjugate function of υ and by υr the function v restricted to
the circle rΎ = {reiθ: 0 < θ < 2π) where r < 1.

LEMMA 5. v+e Lf^T \ { -1}).

Proof. Arguing as in Lemma 2 we consider the region Σ = D\H
where H is once again a small rectangular region centred about the point
— 1 and let F: Σ -> D be a conformal mapping between Σ and the unit
disc. From a theorem of Fef ferman and Stein we deduce that v ° F~ι is
the real part of some analytic function in HP(D) and so it follows from
the Burkholder, Gundy and Silverstein theorem that ( U O Γ 1 ) * ^ LP{T).
This implies that (v ° F~1)* e LP(Ύ).



378 ROBYN OWENS

Recalling that v = (v © F~ι) o f (modulo constants) we now calcu-
late ϋ\θ) for those θ e 3Σ Π T. As before, a radial segment in Σ is
transformed under F into a path segment in D contained in some Stoltz
domain. So

= sup \(re")\

= sup\(v o F~ι)~(F(reiθ))\ (modulo constants)
r<\

<(v°F-ψ(F(θ))

and we conclude that β + e LP

DC(Ύ\{-1}).
Transferring this back to the upper half plane as before we have for

every v e R the existence of a conjugate function u satisfying

(5.1) sup / \ύ(x + iy)\ dx < Cp\\u*fP^
y>0 Jυ

where C is a constant depending on p.
In the same fashion as Lemma 3 this can be extended to

(5.2) sup yί / \ύ( x + i»f </* < Cjt ι i ί.00

where / is any interval of integral length. The conjugate function ύ
depends on the interval / in the sense described in Lemma 4, the proof
being identical but for the replacement of the triangle inequality by the
inequality \a + b\p < \a\p + \b\p which is valid for all p < 1. This com-
pletes the outline of the proof of Theorem 5.

6. A direct classification. We have shown that if u is harmonic in P
and u = Re/ for some f <Ξ Hp, 0 < p < oo, then w* e (Lp

9 /°°); on the
other hand, the condition that u*^(Lp, /°°) certainly implies w e
(Lp, /°°) and consequently that the harmonic extension u(x + iy) satisfies
(2.1), but we can only say that for each v e R there is a conjugate
function ϋ satisfying

1 r°° i-/ \\p dx ^ιι *ιι*
sup — / \u\x + ιy)\ < CJii* /,,<».

In this section we shall show that the addition of a boundedness condition
implies that ύ actually satisfies (2.2). In this case we can speak of the
conjugate function ύ and state that (w, ύ) e Hp. We treat the case/? = 1.



A CLASS OF HARDY SPACES 379

THEOREM 6. Suppose u is harmonic in P and u* e (L1, /°°). If x -*
u(x + iy) belongs to L°°(R) for somey > 0 then ύ e (L1, /°°).

Proof. Choose any O G R . Using the notation of (4.2) we let u denote
a conjugate function of u which satisfies

\u(x)\dx £ K\\u*\\l9θ0.

For any n > 1 there is a constant λn(v) such that

and we know λw(t;)=O(w). Let λo(y) denote that constant such that
ύ — λ 0 satisfies (4.2) for the interval [v — 1, v + 1]. Then

„ fv-2"

nGN

Jv-2n + 1 Jv + 2n 'v-l

Now

^ | δ - λ Λ + 1 ( ι ; ) | + ( / i +

by Lemma 4, and by (6.1) we have

so that for any « e N w e have

J,(. ONO .()i a r
2 n

A similar estimate works over the interval [v — 2", v — 2n~ι] so that
we deduce

K —
< N < oo

where iV is a constant depending on the constants K, C and ||w*||it00 but is
independent of v e R.
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Now since υ -> u(υ + iy) e L°°(R) and

* ( " + />) = Γ />> - t)[u(t) - λo(υ)] dt + λo(ι;),

we see that λo(v) must be bounded for all v e R. In other words, the
constants representing the difference between any two conjugates of u are
bounded and hence may be disregarded. This implies ίί e (L1, /°°).
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