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FINDING A BOUNDARY
FOR A HILBERT CUBE MANIFOLD BUNDLE

SCOTT C. METCALF

In this paper we develop an obstruction theory for the problem of
determining whether a bundle, E, over a compact polyhedron, B, with
non-compact Hubert cube manifoldjibers admits a boundary in the sense
that there exists a compact bundle E over 5 with β-manifold fibers and a
sliced Z-set, A c £,such that Έ = A U E. Included in the work is a new
result on fibered weak proper homotopy equivalences, a theorem on
proper liftings of homotopies, and the development of a sliced shape
theory whose equivalences are shown to classify our boundaries through
a tie to β-manif old theory via a sliced version of Chapman's Complement
Theorem.

1. Introduction. Browder, Levine, and Livesay, [3], and Sieben-
mann, [26], studied the question of putting a boundary on a finite
dimensional manifold. Adopting a somewhat more general, Z-set notion
of a boundary, Chapman and Siebenmann successfully obtained an ob-
struction theory for the problem of determining which β-manifolds admit
boundaries in [14]. Interest has since been expressed in the boundary
problem in a (locally trivial) bundle setting (see the problem section in the
back of [8] and, more recently, problem (QM 10) in [20].) The purpose of
this paper is to investigate the question of when a bundle with non-com-
pact g-manifold fibers can be compactified in such a way that the
resulting manifold has a bundle structure extending the original bundle
structure. In another variation on the boundary problem Chapman, [9],
has developed machinery for deciding if a β-manifold admits a controlled
boundary. The boundary is controlled in the sense that one is given an
arbitrary map from the non-compact manifold to a parameter space and
desires to find a compactification along with an extension of the given
map. The controlled boundary problem is evidently more general than the
question studied in this paper and it would be interesting to investigate
the relationship between the results of the two theories.

We begin with the introduction of some terminology and notation.
All spaces except function spaces will be locally compact, separable metric

p

spaces. A (locally trivial) bundle, M -» B, will be called a Q-manifold

bundle if its fiber, F9 is a β-manifold, i.e. a manifold modeled on the
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Hubert cube, Q. The usual procedure of treating components of B
separately and, hence, assuming B is connected allows us to talk about the

p

fiber of M -» B. The base space, B, will be assumed to be a compact

polyhedron and the bundle called a non-compact Q-manifold bundle if its

fiber, FQ, is noncompact. In this setting, a sliced Z-set of M -> B is a

closed set A c M with the property that there exist fiber preserving (f.p.)

maps M -> M — A arbitrarily close to the identity. With this notation we
p

consider when, given a non-compact β-manifold bundle M -> 2?, we can

find a compact β-manifold bundle p: M -> 5 such that M = M U A

where 4̂ is a sliced Z-set of p: M -* B and p\M = p.
Clearly p: M -> B admitting a bundle compactification implies that

both its fiber, F, and M itself admit boundaries in the sense of Chapman-
Siebenmann. In fact, for B equal a point the bundle boundary problem
reduces to the problem considered by Chapman and Siebenmann. Just as
Chapman and Siebenmann observed basic necessary conditions for a
β-manifold to admit a boundary, i.e. tameness at oo and finiteness of
type, we can easily recognize the necessity of fibered versions of these
conditions. Specifically we say p: M -> B is slicewise tame at oo if for
every compactum C c M there exists a compactum C" with C c C" c M
such that M — C *-> M — C factors slicewise through a finite complex up
to fibered homotopy; i.e. there exists a finite polyhedron K, maps a and
β, and a f.p. homotopy //: i — β ° α making the following diagram
commute (up to fibered homotopy)

M-C ^ M- C

K

In a similar spirit, p: M -> B is said to have sliced finite type if it is fibered
homotopy equivalent to a bundle over B with compact β-manifold fibers.
In light of the triangulation of compact β-manifold bundles (see Chap-
man and Ferry [12] for a proof using classifying spaces or [13] for a more
geometric proof) we could equivalently demand that the given bundle be
homotopy equivalent to a bundle with fiber a finite polyhedron.

Verifying that these necessary conditions which we have isolated hold
in a particular bundle is then the first step in determining whether it
admits a boundary. In checking for sliced finite type we encounter what
Hatcher refers to as the fibered obstruction to finiteness in problem 6.1 of
[22]. This problem can be formulated as a lifting problem which we briefly
describe. Let Jibe a finite polyhedron which is homotopy equivalent to
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the fiber of the bundle p: M -> B. Regarding p: M -> B as a Hurewicz
fibration/? is classified by a map of the base B into the classifying space of
self-homotopy equivalences of X, B -> BG(X). Write B(X) for a univer-
sal space for PL fibrations of finite polyhedra with fibers homotopy
equivalent to X. The lifting problem is that of completing the commuta-
tive diagram

B -+ BG{X)

where B(X) -» BG(X) is the natural forgetful map. Generalizing the
simple homotopy equivalences of [16] is the notion of a simple map, i.e. a
PL map of finite polyhedra with contractible point inverses. Using simple
maps as morphisms yields a category S(X) whose objects are finite
polyhedra containing X as a deformation retract. The obstructions to
sliced finite type then come from U*BS(X) (BS(X) being the classifying
space of S(X)) since BS(X) can be shown to be the homotopy fiber of
B(X) -• BG(X), see [21]. The obstruction then lies in the realm of
Hatcher's higher simple-homotopy theory, the name justified by the
observation that U0BS(X) * Wh(Ux X).

The main result of this paper identifies a second obstruction for a
bundle assumed to satisfy the necessary conditions above.

THEOREM 1. Homotopy Boundary Theorem. A non-compact Q-manifold

bundle which has sliced finite type and is slicewise tame at oo is proper fiber

homotopy equivalent to one which admits a bundle compactification.

Chapman and Siebenmann were able to characterize β-manifolds
which admit boundaries as those homeomorphic to a product of Q times
an infinite mapping cylinder, Map(σ), where σ is an inverse sequence of
compact polyhedra arising from the tameness at oo condition imposed on
the manifold. Requiring a bundle for our target we use a compact
β-manifold bundle which we get from sliced finite type and remove a
sliced Z-set copy of lim σ from it. Chapman and Siebenmann were able to
identify what they called the total obstruction (to the unfibered boundary
problem) as lying in the quotient of the group of simple-homotopy types
on M by the Whitehead group of Π^M. In analogy it seems likely that
proper definitions of a fiber simple-homotopy theory will locate the
obstruction to a fibered boundary as the image of the (fibered) torsion of
the proper fiber homotopy equivalence from Theorem 1 in the quotient of
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the group of all fiber simple homotopy types on M -> B by an ap-
propriate fibered Whitehead group. The following theorem assures us that
the obstruction is well-defined.

THEOREM 2. If f: N -> N' is a proper fiber homotopy equivalence

between non-compact Q-manifold bundles which admit bundle compactifica-

tions then f is proper fiber homotopic to a fiber-preserving homeomorphism

near oo.

As an application we prove the following.

COROLLARY 3. If p: M -> Sι is a non-compact Q-manifold bundle

which is sliced tame at oo and its fiber, F, is simply connected and simply

connected at oo then M admits a bundle compactification.

A notable ingredient of the proof of the corollary is the calculation
that Π o # ( F ) = 0 where <#(F) is the group of concordances of F (see §8
for a precise definition), a result made possible by Chapman's exact
sequences of [7]. For bundles with higher dimensional bases one would
need assumptions of higher connectivity on the fiber as suggested by the
work of Burghelea, Lashof and Rothenberg, see for example Theorem B'
on page 36 of [4].

We introduce a sliced shape theory in this paper and prove a sliced
version of Chapman's Complement Theorem which is of fundamental
importance in the proofs of the theorems above. In addition we prove the
following

BOUNDARY CLASSIFICATION THEOREM. Let A -> B be a boundary for
p

the noncompact Q-manifold bundle E -> B and A' be a compact metric
p ' P

space. A' -* B is a boundary for E -> B if and only if A and A' have the
same sliced shape.

As to the organization of this paper we state fibered Q-manifold
preliminaries in §2. Section 3 contains sliced shape theory definitions and
results including our sliced shape complement theorem and the proof of
the Boundary Classification Theorem. In §4 we treat weak proper homo-
topy equivalences indicating a fibered version of a result of Edwards and
Hastings [18]. The preliminary groundwork is completed with the proof
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that small homotopies have proper lifts and thus, using Dold's trick ([17]),
small homotopy equivalences between bundles yield proper fiber homo-
topy equivalences in §5.

Section 6 contains the proof of Theorem 1 while §7 has that of
Theorem 2. Finally a brief discussion of calculations using these results
along with the proof of Corollary 3 may be found in §8.

2. Fibered β-manifold preliminaries. The following definitions and

notation will be used throughout this work. Letting / = [0,1], we say that
a homotopy H: X X / -> 7 is an a-homotopy or is limited by α, a cover of
Γ, if H{{x) X /) is contained in some element of a for any x e X. We
write / 2κ f p g to indicate that maps / and g are homotopic through a f.p.
homotopy and/ ~ β g if /, g: X -* Y are α-close, i.e. for any x e X there
exists an element 0 G « such that/(x) and g(x) both lie in 0.

A homeomorphism near oo is a map, i.e. a continuous function, /:
X -» Y such that for any compactum C a X there exists a compactum C"
containing C with f\X-C>: X - C" -> Y ~ / ( C ) a homeomorphism. A
map f: X -* Y between absolute neighborhood retracts is cell-like (CE) if
it is a proper surjection and for every y e Y and every open set U with
f~\y) c 1/ there exists an open set F c [/ which contains f~\y) and
deforms to a point in tΛ Basic definitions of the proper and weak proper
categories are collected in §4 while §5 contains fibered shape definitions.

A g-manifold is a separable metric manifold locally modeled on the
Hubert cube. The basic theory can be found in [8] where it is readily
apparent that Z-sets play the key role. The main tools of β-manifold
theory, stability, mapping replacement and Z-set unknotting have been
observed to hold in product ([15], [19] and [10]), bundle ([29]), and
submersive ([24]) settings. Fibered versions of Miller's theorem and CE
approximation as well as characterization and triangulation of β-manifold
bundles have also been proven. Below are versions of the β-manifold
tools we will use frequently in what follows. Statements are taken from
[29] and [24].

Fibered Mapping Replacement. Let/?: M -> B be a β-manifold bundle
and /: A -» M a proper map. Suppose that Ao is a compact subset of A
and / |^ o is a sliced Z-embedding. Then for any open cover a of M there
exists a proper map/: A -» M such that

(ii)/is a sliced Z-embedding
(in) / = / on Aoand
(iv)/is α-close to/.
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Fibered Z-Set Unknotting. Let/?: M -> B be a β-manifold bundle, A a
compactum and i7: A X / -» M a map such that 7^ and JFX are shced
Z-embeddings. If, additionally, pFt(a) = pF0(a) for all a (= A, F(A X /)
c {/an open set of M, and F is limited by an open cover a of U then
there exists an isotopy H: M X I -+ M satisfying

(i) jy0 = id
(ή)Ht\M\U= id

(iii) H\U X / is an α-isotopy
(iv) pHt = /?and
(v)HιF0 = Fv D

It should be noted that the result holds for A merely locally compact
if F is a proper map.

Fϊbered Stability. For any β-manifold bundle p: M -> B and any
open cover a of M there exists a f.p. homeomorphism h: M X Q -> M
which is α-close to projection. D

Fiber ed Collaring. If p: M -> B is a (g-manifold bundle and, for Λfx a
sliced Z-set of M, p\M: Mγ -* B is also a β-manifold bundle then Mx has
a fibered collar in M, i.e. there exists an open embedding M X [ O , 1 ) ^ M
with Afx X {0} = Mx and p(m, t) = jp(m,0) for all t G [0,1) and all
m e Afp D

The following are unfibered results from β-manifold theory which we
will use. As noted above, the first is true in a bundle setting, a fact easily
proved by piecing unfibered CE approximations on fibers together by
local contractibility over a fine triangulation of B, but we shall not need
the fibered result.

CE APPROXIMATION THEOREM. CE maps between Q-manifolds can be
approximated arbitrarily close by homeomorphisms. Π

CLASSIFICATION THEOREM. Suppose that f: X -> Y is a proper map
between polyhedra. f is a simple homotopy equivalence if and only iff X ΊάQ:
X X Q -» Y X Q is proper homotopic to a homeomorphism. D

Standard references for simple homotopy theory are [16] and, for
non-compact spaces, [27].
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3. Shape theory in the sliced category. Chapman established the
connection between β-manifolds and shape theory in [5] (see also [8]). In
this section we give definitions for a parameterized shape theory, hmiting
our discussion to the case in which the parameterization is actually a
bundle map. We present both the traditional approach of Borsuk using
fundamental sequences, [2], and the ANR-system approach of Mardesic
and Segal as both are useful and they are equivalent. The relevance of
sliced shapes to β-manifold bundles is established in a sliced version of
Chapman's Complement Theorem which is important in the proofs of
both of our main theorems. In the Homotopy Boundary Theorem the
application takes a form which we isolate as a corollary. Throughout we
assume that/?: E -» B is a β-manifold bundle.

Let A and A' be compact subsets of E. A relative shape map from A to
Af sliced over B consists of an open set G of E containing A and a
sequence of f.p. maps/fc: G -> E satisfying (i) fk is fiber homotopic to the
inclusion G «-> E for all k, and (ii) for every neighborhood V of A' there
exists an open neighborhood U of A in G and an integer N > 0 such that
*, / > N implies fk\a~^ffo (in V). We shall write f={fn,A,A'9G}:
A -+ A' for such a relative sliced shape map.

Given two relative sliced shape maps / = {/„, A, A', G] and g =
{gn, A, A\G} we say / is homotopic to g (written f ~ g) if for every
neighborhood V of A' there exists a neighborhood U of A and an integer
N > 0 such that k > N implies fn\υ —f.p.gn|i/ (in V). The identity shape
map is id^ = {idG, A, A,G}. Suppose that / = {/„, A, A'9 G) and g =
(gw, A\ A'\ H) are relative sliced shape maps between compacta in E.
Their composition is defined by gf = {gnfn9A9 A"9G'} where Gf is a
suitably restricted neighborhood of A. Clearly this composition is a
relative sliced shape map from A to A".

A relative sliced shape map /: A -> A' is a relative sliced shape
equivalence if there exists a relative sliced shape map g: A' -> A such that
fg ^ id^, and gf ^ idA. A and Af then are said to have the same relative
sΠced~shaρe, denotecfby Sh |(^) = Sh|(,4')

The definition of the relative sliced shape of a compacta A a E
coincides with the standard, unsliced definition of relative shape if one
takes B = *, a point. For the passage to the absolute case, let a com-
pactum A and a map p: A -» B be given. Consider the trivial bundle
proj#: B X Q -> B. Regard A as a subset of B X Q by choosing a sliced
Z-embedding near the map/. A -> B X Q where7(0) = (p(a), 0), O e g .
Then the absolute sliced shape of Λ, Sh^(^f), is defined by ShB(A) =
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The approach to shape given above is patterned after Borsuk's defini-
tion and is useful in the proof of our

SLICED SHAPE COMPLEMENT THEOREM. Let A and A' be compact, sliced

Z-sets of E. Sh^(^l) = Sh^^ί') if and only if there exists af.p. homeomor-

phism h: E\A -> E\A' with h — f p id£. (Actually the homotopy is be-

tween the identity and the composition E -> E\A -> E\A' *-> 2?, the first

map being a fibered push off of A by a map which is close to the identity.)

For the direction which asserts that a f.p. homeomorphism between
complements implies that the compacta have the same shape we use the
following lemma which gives an explicit f.p. homotopy pushing the total
space of a β-manifold bundle off of a sliced Z-set instantaneously.

LEMMA. For any sliced Z-set A ofp: E -> B there exists a homotopy F:
E X I —> E satisfying

(ϊ)Ft(E)<z E\Aforallt> 0,

(ii)F0 = id,
(iii) F is f.p., and
(iv) for every open neighborhood U of A there exists t0 Ξ (0,1) such that

Ft(U)c UforO < t < t0.

Shape maps which establish the shape equivalence of A and A' are
then given by fn = hF1/n and gn = h~ιGι/n where Gt: E -> E comes from
the lemma with A replaced by A\

For the other direction one uses the shape equivalence from A to Ar to
construct a sequence of homeomorphisms ht of E onto itself such that the
composition hnhn_1 ••• h2hλ pushes A closer and closer to A' as n
increases. The construction makes repeated used of fibered mapping
replacement and Z-set unknotting and is accomplished in such a way that
points in E\A are moved by only finitely many of the hr This last
condition makes the map h = l i m ^ ^ ^ h2h1\E^A well-defined and it
is readily seen that h is the desired f.p. homeomorphism of E\A onto
E\A'. Details may be found in [5] or [8] with the only changes required
being the use of f.p. information contained in the fibered β-manifold
preliminaries of §2.

The following is an immediate

COROLLARY. Let A be a compact sliced Z-set of the compact Q-manifold
bundle p: E -> B. Suppose for every b e B there exists an open set U
containing b and a compact sliced Z-set, A\ of E which has the same relative
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sliced shape as A and whose complement in E over U is a product, i.e.
p~1(U)\A' is f.p. homeomorphic to U X F for some F. Then p\E\A'.
E\A -* B is a bundle.

Another direct application of the Sliced Shape Complement Theo-
rems is the

Proof of the boundary classification theorem. First suppose that Af is a

boundary for E -^ B. Write N = E U A and f = £ U / for our two
bundle compactifications. Replace N by N X [0, 1] where N X

pΓOJ^y p

[0,1] -> N -> B is our new bundle map and we use fibered Z-set unknot-
ting to have A c N X {0}. Since N X [0,1] - A = f p £ = f p N' - Af there
exists a f.p. homeomorphism A: JV X [0,1] — A -> N — A'. Also fibered
mapping replacement allows us to regard TV X {1} as a sliced Z-set in
B X Q. Define Eλ to be (B X Q) U (N X [0,1]) with the sewing along
N X {1} and E2 to be (B X Q) U N' sewn along h(N X {1}). Then
Eλ = f p £ 2 since using fibered collaring they are both easily seen to be f.p.
homeomorphic to B X Q. Finally, noting that A and A' are sliced Z-sets
in Eγ and E2 with Eλ — A = f p E2 — A\ the sliced shape complement
theorem gives us the desired sliced shape equivalence of A and A'.

For the other direction we let A be a sliced boundary of E and A' be
of the same sliced shape as A. As above, we have a compactification of E
given by E U A = f p N X [0,1] with A c N X {0} and we again consider
Eλ = (B X Q) U (N X [0,1]). When we take a sliced Z-embedding of A'
in i^ the sliced shape complement theorem gives us a f.p. homeomor-
phism h of Ex - A onto Ex - A' (recall that Ex = f p 5 x β ) . Then
h(N X [0,1]- A)U A' gives us a bundle compactification of £ with A' as
the boundary.

As noted previously, Mardesic and Segal offer an alternative ap-
proach to shape theory in the unsliced case, see [25]. We briefly discuss
the extension of their approach to the sliced category because it makes
quick work of demonstrating that two spaces have the same shape later in
this paper. Since we are here concerned only with metric spaces we shall
not require the generality of arbitrary directed sets with which to index
our ANR-systems. Rather we content ourselves with ANR-sequences.

An ANR-sequence (X, Xo) = p J 0 ) « ' L + i ) consists of an in-
verse system of pairs of compact absolute neighborhood retracts (ANR's)
for metric spaces with bonding mapspnn+1: (X, X0)n+ι "* ( ^ %o)n which
are continuous maps of pairs. To incorporate the notion of slicedness over
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a base B we additionally require, for each n = 1, 2,..., a projection map
pn: Xn -> B and that bonding maps commute with these projections, i.e.
Pn ° Pnn+ι = Pn+ι f°Γ a ^ n- Given a compact pair (X, Xo) we can find an
associated ANR-sequence (X, Xo) where (X, Xo) = lim(X, X0)n. This

associated ANR-sequence is unique up to homotopy type as we shall
explain and, hence, determines a well-defined property of the space, its
relative sliced shape.

A map between ANR-sequences sliced over B, denoted /: (X, Xo) ->
(Y, Yo) = {(Y, Y0)n9 qnn+ι}, consists of an increasing function / from the
natural numbers to itself and a collection of f.p. maps/,: (X, X0)f(n) ->
(y, Y0)n such that there exists a f.p. homotopy of pairs

H Qn-lnfn ~ Jn-lPf{n-\)f{n)

where

f(n - l)f(n) = Pf{n-l)J{n-l) + l° Pf(n-l) + \J{n-l) + 2° ' " ° Pf(n) -l,/(«)

The identity map _/(X, Xo): (X, Xo) -> (X, Xo) is given by \{n) = n and
!* = id(Ar,*oV T w o maps of ANR-sequences,/, g: (X, Xo) -> (y, Yq), are
homotopic, denoted / — g, if for every integer w there exists an integer m
such that m >/(w), g(«") and/w/? / ( n ) w = f . p . g Λ ^ I I ) m . Finally,/: (X, Xo)
-> (Y, Yo) is a homotopy equivalence if there exists a map of ANR-se-
quences g: (Y, YQ) -> (X, Xo) with ^ = /^ and ̂  = /y.

The equivalence of the two approaches is asserted in the following

THEOREM. Let A, Af c E be compacta and p: E -> B a Q-manifold
bundle. A and A' have the same relative sliced shape in the sense of Borsuk if
and only if they have the same relative sliced shape in the sense of
ANR-sequences.

The proof of Mardesic and Segal works in the sliced case if we merely
carry along the necessary fibered information. Note that the main ingredi-
ent of their proof is the homotopy extension theorem and so we provide
the following fibered version.

FIBERED HOMOTOPY EXTENSION THEOREM. Let (A, Ao) be a compact
p

ANRpair and X -> B a bundle. Suppose H: A0X I -> X is a f.p. homotopy

such that Ho extends to HQ: A -> X. Then there exists a f.p. homotopy H\

A X / -> X extending Ho with H = HonA0X I.

The proof is straightforward. Since A X I is an ANR containing the
closed set T = (Ao X I) U (A X {0}) there exists an extension of H U Ho:
T -> X to a neighborhood of T. Though not necessarily f.p. this extension
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is almost f.p. by choosing a small neighborhood of T and hence, using the
homotopy lifting property, we can make it f.p. From this point the proof
is the same as in the unfibered case as H is defined by composing a push
of A X / into the chosen neighborhood with the extension obtained
above.

4. Weak proper homotopy equivalences. In the course of establish-

ing the Homotopy Boundary Theorem we take a route in which (a) our
homotopies are not proper and (b) our homotopies and even the maps
between our original bundle and our target bundle which admits a
boundary are not fiber preserving. That loss of control is what makes this
and the next section necessary.

A concept of fundamental importance in the study of non-compact
spaces is the definition of a proper map. A map f: X -* Yis proper if for
any compactum C c 7 , /~1(C) is compact. Proper maps / and g are
proper homotopic, written / = p g, if they are homotopic through a homo-
topy which is proper. Spaces X and Y are proper homotopy equivalent
(p.h.e.) if there exist proper maps f: X -* Y and g: Y -> X and proper
homotopies of / ° g and g ° / to the appropriate identity maps. The
constructions which take place in §6 yield homotopies which are not
proper but merely weakly proper.

A pair of proper maps fl9 f2: X -> Y are weakly proper homotopic if
for any compact set C a Y there exists a compact set D c X and a
homotopy H: fx = f2 with Ht(X\D)<z Y\ C for all t. A proper map /:
X -» Y is a weak proper homotopy equivalence if there exists a proper
map g: Y -> X such that / ° g and g <> / are weakly proper homotopic to
idy and id^, respectively. The knowledgeable reader will recognize the
close relationship between weak proper homotopy equivalences and the
shape theoretic fundamental sequences employed in the preceding section.

The result which allows us to extract proper information from weak
proper homotopy equivalences is Edwards and Hastings', [18].

THEOREM. Letf: X -» Y be a proper map ofσ-compact, locally compact

Hausdorff spaces. If f is a weak proper homotopy equivalence then f is

weakly proper homotopic to a genuine proper homotopy equivalence.

We remark that if X and Y axe finite dimensional polyhedra then / is
itself a proper homotopy equivalence by Siebenmann [27]. The additional
parameterized information in the following result is what we require.
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ADDENDUM. Along with the hypotheses above suppose that/?: X -> B
and q: Y -» B are any maps.

(1) If /, g and the homotopies to the identity maps can all be chosen
to be fiber preserving then / is weakly proper homotopic through f.p.
homotopies to a proper fiber homotopy equivalence.

(2) Suppose that for any open cover a of B there exists maps /':
X -> Y and g': X -> Y such that / ' and g' are weak proper homotopy
inverses with (a) qf α-close to p (qf~ap) (b) pg~aq and (c) the
homotopies of the compositions f'gf and g'/' to the respective identity are
limited by a when mapped to B (by q and p). Then for any open cover β
of B we can find /: I ^ Γ a n d g : Y -+ X such that (a) qf~βp (b)
Pg ~β <l (c) / a n c * S are proper homotopy inverses with the homotopies
involved being limited by β when measured in B.

We shall call X and Y satisfying the hypotheses of (2) weakly proper
homotopy equivalent nearly fiberwise and, similarly, X and Y satisfying
the conclusion proper homotopy equivalent nearly fiberwise. Addendum
(1) follows immediately from the proof of Edwards and Hastings by
choosing f.p. maps and noting that the proper homotopy equivalence that
they find is fiber preserving. For addendum (2) simply choose homotopies
with better and better control towards the end.

5. Proper lifting. In this section we develop methods for turning
proper homotopy equivalences between bundles which are nearly fiber-
wise into proper fiber homotopy equivalences. Dold does this in [17]
without the stipulation that maps be proper. The main ingredient in his
proof is the homotopy lifting property for bundles. Thus the result which
we require and constitutes the main theorem of this section is what we
shall refer to as the

PROPER HOMOTOPY LIFTING THEOREM. Given any bundle p: E -> B
there exists an open cover a of B such that the following holds. Suppose that
H: XX I -> B and Ho: I X { 0 } - > £ are maps with Ho proper and
pH0 = Ho. If H is an a-homotopy then there exists a proper map H:
X X I -> E which extends Ho and lifts H. In other words we can complete
the following commutative diagram with the dotted line being a proper map.

XX{O) -ί E

Π &'' i p

XXl' " B
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Proof. Let β be a cover of B by open sets over which p is trivial.
Choose a countable refinement {Ui}fs=1 of β which also covers B and with
each Uέ compact and each JJi contained in some open set of B over which
p is trivial. Set a = {ί^}°lχ.

We now define a tower of compacta, {C,}, whose union is E. Begin
with {C,} where each C, is compact, C, c i n t C ί + 1 and U(*L1Ci = JF, the
fiber of / ? : £ - * 5. Define C\ = /^(Q X ϊ^) where ht: FXU^ p'1^)
is a homeomorphism arising from the bundle structure of E. Assume that
Cj has been defined for all j < k, k some positive integer. From the
construction to follow note that the Cj are renumbered as needed so that
we also assume that the sets we refer to below have already been
reindexed. Clearly hj(Ck X Όj) Π hi(Ck X Ut) = CiJ is compact, i and
j < k. Set CiJ = pF(h]ι(CiJ)) U^Ar^C1"-')) a compactum of F. There
exists N > k such that U/V/<^ CiJ c int Q . Reindex the C, fory = k 4- 1,
fc + 2,... with the new Ck+i being the old CN+i_v i = 1, 2, 3,... Then we

Considering /Sro as a map from X to E let fΓx = H^ι{Cλ) X /, a
compact subset of X X / since //Q is proper. Inductively define a cover of
X X /by compacta W{ with WP̂  c int Wi+ι by noting that U ^ H o l ( C i ) =

X and setting Wt = HQl(Ck) X I ίov k sufficiently large. Finally, renum-
ber the C, (and C,) so that Wt = Jϊo'HQ X /.

Assuming that H is an α-homotopy we have, for every x e X,
H({x) X I) c JJi for some i. Then {x} X / c H^U^ an open set, and
so by the tube lemma there exists an open set O'x of X containing JC with
O'XX I c H~λ{JJ^). Without loss of generality (by intersecting covers) we
may assume that the cover {Oxx I}xGX refines the open cover {W2,W3

- Wl9...9Wk- Wk_2,...} of X X I. Cutting back slightly we can find
open sets Ox, such that for any x e X, x e Ox c Ox c Ox with Ox

compact. For every k = 2, 3, 4,... choose a finite refinement of {O x} x e X

which covers the compact set Wk— Wk_λ say [Ok }]Lι where Ok X I c
H~\Ukj) and O'k c W^+1 - W^_3 taking ^ = 0 for / = 0 or -1 and

At long last we are in a position to define H. Choose Urysohn
functions uy. X -» [0,1] such that Uj(θλ) = 1 and uy(X - O() = 0 for
l ^ j ^ n p Let TΛ(JC) = mnκι^k{uJ(x)} and τo(x) = 0 and ^ =
{(JC, 0 |0 < / < T^(JC)} c W2. Set

H(x, 0 = hlk(pFh^H(x, τk_x{x)), H(x9 tj)

for x & Xl — Xl_v This defines // on X^, which contains Wv
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Inductively suppose that H is defined on X* containing Wk. We show
how to extend to X^] containing Wk+1. Take Urysohn functions uy.
X-*[τnk{x)A] such that Uj(O{k+l)) = 1 and Uj(X - O[k+l)) = τnk(x)
where 1 <j < nk+ι. Set τ/x) = maxliSJ.^{ !!,(*)} with τo(x) = τΛk(x)
and let

, t)\τnk{x) < t < T l(x)} c # , + 2 - Wk.

Define

# ( x , 0 = h(k+l)(pFh-(l+l)H{x, T ^ ί * ) ) , # ( x , ί))

for* e * * + 1 - A*y (X*+ 1 = X&
The continuity of H is clear from the formula and the observation

that the definition extends H from X^1 to Xt

k+ι (as well as from X%k to
X ^ 1 ) continuously. The last coordinate in the formula assures us that H
is a lift of H. For the fact that H is proper, note that H is close to the
proper map HO°UX: X X I ^> E. Specifically, the two maps are close as
measured by an open cover of rings formed from the Ci9 i.e. open sets of
the form int Ck+1 — Ck. •

The (non-proper) homotopy lifting property of a map/?: E -> B states
that given a homotopy H: X X / -> B such that one end lifts, i.e. there is
a map ίί0: I X { 0 ) ^ £ with pH0 = i/0, there exists a lift of the
homotopy extending //0, a map H: X X I -* E withpH = i/ and H\X X
{0} = ίi0. Dold, Theorem 6.1 in [17], makes repeated use of such lifts to
prove the following

THEOREM. Let p: E -» B andp'\ Er -> B be spaces over B which have
the homotopy lifting property, e.g. bundles. Then if af.p. map f: E -> Efis
an ordinary homotopy equivalence it is a fiber homotopy equivalence.

Making use of our Proper Homotopy Lifting Theorem in Dold's
proof easily yields the following result.

THEOREM. Let p: E -> B and p'\ Ef -> B be bundles. There exists an
open cover a of B such that if f: E —> Er is a proper f .p. map which is a
proper homotopy equivalence through homotopies limited by a when mea-
sured in B then f is a proper fiber homotopy equivalence.

Proof. Choose the open cover a from the Proper Lifting Theorem. Let
g' be a proper homotopy inverse of / and H: Er X I -» Ef a proper
homotopy with (i) Ho = fg' (ii) Hλ = id^ and (iii) for every er e Er there
exists 0 e a such that/?'#({ e'} X I) c 0.
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The homotopy p'H\ E' X / -> B has a proper lift to E which we call
G: E' X / -> E satisfying Go = g'. Setting g = Gx we proceed to show
that g, which is fiber preserving, is a proper fiber homotopy inverse of/.

Define a homotopy H: E' X [0,2] -> £ ' from /g to idE, by the
formula

^ , ffG(e'A-s) f o r O < 5 < l
H[e'S) \H(e\s-l) foτl<s<2

H then is proper and, though not vertical, satisfies

Exploiting this last equation we lift the homotopy h: E' X [0,2] X [0,1]
-> B given by

ίpfH(e\s) ίors < 1 - t
h(e'9s,t)= lp'H{e'A - t)=p'H{e\l + t) ίor 1 - / < s < 1 + /

\p'H(e',s) fors> 1 + /

to a proper homotopy, //: E' X [0,2] X [0,1] -> £ ' with ^(e ' , 5,0) =
^ ( e ' , ^). It is then an easy check to see that going around three sides of
H, i.e. letting F: Ef X [0,4] -• E1 be defined by

(H(e',0,t) foτt<l

F(e',t) = ΪH{e\t- 1,1) for 1 <t<3

{H(e',294-t) ΐoτ3<t

gives a proper, f.p. homotopy between fg and id^.
We can now apply the same argument with g in place of / and obtain

a proper map /' : E -> Ef such that we have a proper homotopy gf'
~ f.p. ίdE. Consequently the string of proper, f.p. homotopies

establishes the result. D

6. Homotopy boundary theorem. We are given a non-compact β-mani-
fold bundle/?: M -+ B which has sliced finite type and is slicewise tame at
oo. Let q: N -> B be a compact β-manifold bundle guaranteed by the
former hypothesis with f.p. homotopy inverses/: M -> N and g: N -* M.
Using the sliced tameness at oo we can find a neighborhood system of oo,
{M - M,}^!, i.e. compact sets M, c M with Mi c int Mi+ι and UfLi Mi

= M, and finite polyhedra Ki9 i = 1, 2, 3,..., and a f.p. homotopy
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commutative diagram

Set A = lim { ̂ , ai9 βt) recalling that this means that

A = [(k09kl9k29...)ef[Ki = kjori = 0,l,2,... .

Approximate fβι^Ki: A ^> N, πκ denoting projection to Kl9 by a sliced
Z-embedding φ: A -> TV. Letting Λ = φ(^ί) we now have our target,
N — A, which we will show is proper fiber homotopy equivalent to M.

An intermediate space is useful in establishing the desired proper
fiber homotopy equivalence. In Chapman-Siebenmann, [14], a β-manifold
with finite type which is tame at oo is shown to be proper homotopy
equivalent to a certain mapping telescope, Map(σ) where σ is the inverse
sequence of compact polyhedra {Ki9 α,-^}. Chapman's observation that
A X Q = lim σ X Q is the natural boundary of Map(σ) X Q is the heart

of [6] and also appears in the more detailed analysis of [14]. We briefly
review the constructions of Chapman and Siebenmann for the conveni-
ence of the reader and to justify the additional observations which we
require for the fibered situation.

The f.p. homotopy ladder, (*), is formed with care in order to have
the M 's clean submanifolds of M, i.e. each Mt is a closed β-manifold as is
its topological frontier 3Afz which is also collared in both Mt and the
closure of M - M . The finite polyhedra Kt are for convenience consid-
ered to be contained in int(M,+1) - M, with the maps βt: Kt-> M — Mt

being inclusions. Let a\\ M — int Mf -> M — int Mi be homotopies with
α? = id and a) = at noting that these are f.p. in our problem. By the
sliced finite type of M we also can assume the existence of a f.p. retraction
α^: id — aι

0 where α^ maps M into a compact polyhedron Ko c int Mv

The locally compact space Map(σ) where σ = {Ki9 a)\κ,}°l0 is the infinite
union of the mapping cylinders M(a)\) sewn together in a natural way
along their ends. Recall that M(a)\), a)\: Ki -» Kt_l9 is the disjoint union
Kt X [0,1] LI Kt_x with a)(k) identified with (A:, 1) for k e Kt.

Weak proper homotopy inverses α: Map(σ) -> M and β: M ->
Map(σ) are then defined on compact pieces as follows. a\: M(a)\) -»
MXintM; is just the map which sends ( c, t) to a\(x) for (x, t) e
Kt X [0,1] and x to itself for x e Kt_v β\: λfi+1 - int Mt -> M(a)\) is
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a) on Mi+1 - [3(M/+1) X [0, 2)UintM ί ], where 8(Afi+1) X [0,2] c
Mi+ι - (intίM,) U j Q is a collar of 9M/+1 in Mi+ι with θ( Aff+1) X {0} =
dMi+v and

for* e 3(M ί + 1) X [0,1).

In the fibered setting one should recognize that β and a as well as the
homotopies which deform the compositions β ° a and a ° β to the identity
maps are all nearly fiberwise by choosing short collars. Therefore, plug-
ging this information into our fibered version of Edwards and Hastings
yields

PROPOSITION 1. There exists a proper homotopy equivalence, k: M ->
Map(σ), which is nearly fiberwise. Π

We remark that the loss of absolute fiber control above was due to the
fact that our collars were not fibered collars. Another difficulty with using
Map(σ), or Map(σ) X Q, as a bridge between M and N — A is that
Map(σ) is not a bundle and so we again are forced to settle for near fiber
control below.

PROPOSITION 2. N — A is proper homotopy equivalent nearly fiberwise
toMap(σ) X Q.

Proof. Setting X — Map(σ) U A we shall actually prove the equiva-
lence between N X / - A X 0 and X X Q - A X 0. Replacing N - A by
the f.p. homeomorphic β-manifold iVx/ — ̂ [ χ 0 i s a standard device
using fibered stability and Z-set unknotting. On the other hand we note
that A X 0 and A X Q clearly have the same relative shape in XX Q and
so J X β - i X 0 is homeomorphic to XxQ-AxQ = Map(σ) X Q.
Moreover, examination of the proof of the Complement Theorem which
provides the homeomorphism reveals that it is nearly fiberwise.

The inclusion A *-» X and the composition

A^N^M^ Map(σ)^ΛΓ

are homotopic nearly fiberwise. For by closeness φ ̂  fβιτrKγ and i — iττκ

for j sufficiently large. We shall write fliτKi for ffi^Kl since βλ is now
the inclusion map and remark that the product topology on UfLιKi

provides the closeness in the latter homotopy with mκ understood to be
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Λ proi

A c Π~ ! Kt -> ϋ:y -> Map(σ). Thus we have

* , -f.P.

Approximate ίoi'&&: N -^> X X Q by a Z-embedding TJ where /0: I - > ί X
(? is defined by setting io(x) = (x,0). Since ηφ = ioikgφ — ioi we may
assume that ηφ = ioi.

Next let μ: N X / -> M(η) be the quotient map and c : M ( i | ) ^ l x ρ
the collapse to the base. Since c is a CE map (for x e X X g, c"x(x) is
either a point or the unit interval) it is close to a homeomorphism c:
Af(τj) - ^ I x β which unknotting again we can adjust so that A X 0 c JV
X 0 is mapped onto ̂  X 0 c X x 0. Then cμ|: N X I - A X 0 ^> X X Q
— A X 0 is a homeomorphism near oo and an ordinary homotopy equiva-
lence and thus a proper homotopy equivalence. Though Map(σ) not being
a bundle prevents the use of fibered results the maps are close to the
original nearly f.p. composition ioikg and so also using Z-set unknotting
with control we get that the equivalence is nearly fiberwise. D

Consequently it is clear that M and N - A are proper homotopy
equivalent nearly fiberwise. To achieve fiber control we establish the
following

PROPOSITION 3. q\N-A: N - A -> Bis a bundle.

Proof. According to the corollary to the sliced shape complement
theorem we need but to show that, for each small open set U of B, A has
the same sliced relative shape as some compact sliced Z-set whose
complement in N is a product over U. This is accomplished in two steps.
First we prove that any Af defined similarly to A but with possibly
different choices of σ and appropriate sliced Z-embedding of lim σ has

the same sliced relative shape (in N) as A. Then for any i E ί w e find an
open set U containing b and construct a homotopy ladder which yields a
sliced Z-set A withp~\U) D (N - A') ~ f p U X F for some F.

Step 1. Assume that two different choices of inverse sequences of
compact polyhedra obtained by the sliced tameness of oo hypothesis on/?:
M -* B have been made. That is, we have f.p. homotopy commutative
diagrams

M <- M~MX <-> M- M2 •-* M - M 3 ^

βO\ / «1 βl \ i/ «2 β2 \ \/ «3

KQ Kγ K2



HILBERT CUBE MANIFOLD BUNDLE 171

and

M M- M{ M - M2' M - M3'

l/ «2

K'o K'2

which give rise to compacta^ί = lim { Kiy α,./?,.} and Ar = Um { K , a'ifij}.

By approximating the maps /?,: Kt -> M — M, and /: M -* N by sliced
Z-embeddings we assume that Ki cz M — Mi c iV (Mo = φ). Let άz:
(Λ̂ , KJ -• (JV, ^ - ^ be a f.p. extension of α,: M - Mt-* N with ά,
^ f p id. Consider the f.p. inverse sequence of pairs

(N,K0)^(N9K1)^(N,K2)< .

It is a simple matter to find increasing sequences {«,} and {n^} and
shuffle sequences to get the following diagram which commutes up to f.p.
homotopy

Vf Vf

M M-

1/

M M - M'w
n2

l /

This demonstrates that A and Ar have the same sliced relative shape in N
by the ANR-system approach and completes Step 1.

Step 2. Let b e B be given. Choose an open set U c B such that
(i)ftetf,

(ii) dU is collared in B - U, we write simply that dU X [0,2) is an
open set of 5 - ί/ with dU=dUX {0},

(in) /> is trivial over U U (9C7 X [0,1]) = ί/ and
(iv) U contracts to b say by the homotopy H: ϋ X I -* U with

ifo = idand/f 1 (t/)= {b}.
Form a new ladder

M M - M{

«0 A'

M - Ni-

from our original ladder (*) as follows. First extend H to H: B X / -> B

by feathering H to the identity outside of U. For a formula we may use

(Ht(u) forwGί/

fOΓMEΰ- £/.
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Now, letting h: U X F -> p~ι(U) be a f.p. homeomorphism define M -
to be M - Mf outside otp~ι(U) and a product over U. Specifically, set

M - M; = (/^( i* - c/) n ( A f - M,))

In a similar way one can define the K to be Ki Π β[ιp~ι(B — ϋ) outside
of β^ιp~ι{U) and products over U and the α̂  and /?/ are defined naturally
from the αf and /?,. The net effect is that we have stretched what the
original diagram saw overp~\b) to a product over p~ι(U).

Clearly, A' = lim { K\, α β/} is a product over p~ι(U). Choosing an

appropriate copy A' of A' in N we see that over q~ι(U) we shall be
removing a product when we form N — Ar. We take a moment to show
why q~ι(U) Π (N - A') is a product. Consider the f.p. map f\p-iφy
F X U -> i7 ' X ί/ where we choose t/ shall enough so that 9 is trivial over
it and suppress the homeomorphisms resulting from the local triviality of
p and q. Define a f.p. homotopy/,: F X [/ -* JF" X ί/by setting/^(x, w) =
(prf(x9 Ht(u% u). Note that

(i)/o=/>
(ii)/, extends to all of M by letting ft = fonM - (FX U)9 and

(iii)Λ(Λ:, u) = (pF,f(x,b), u) for all (x, u) e F X £/, i.e. Λ is a
product map on F X ίΛ Approximate the maps fβ[πκ^ and fιβ[πκ, by
sliced Z-embeddings to get copies of vί', 4̂' and A", respectively, in N.
N — A" is a product over U since yί' is and fl9 β[ and mK^ are all product
maps there. Then by fibered Z-set unknotting N — A' and N — A" are
fiber homeomorphic. D

Proof of the homotopy boundary theorem. We have established that M
and N — A are bundles which are proper homotopy equivalent nearly
fiberwise. By our proper version of Dold's theorem we need only find a
f.p. proper map f:M^>N — A which is a homotopy equivalence through
homotopies which are small when measured in B. But this is easy. For let
/: M -> N — A be a proper homotopy equivalence that is nearly fiberwise.
Since B is a polyhedron and p is close to qf the two maps are homotopic
via a small homotopy. Choose a homotopy inverse of f,g:N — A-^> M,
and use the Proper Homotopy Lifting Theorem to left H: qfgf = p to H:
M X / -> N - A with Ho = fgf. Then Hλ: M -+ N - A is f.p. and proper
and fulfills our needs since Hx ~ fgf ~ f, the homotopies being f.p. and
nearly f.p., respectively. D
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7. Theorem 2. We are given that /: N -> N' is a proper fiber
homotopy equivalence between bundles q: N -> B and #': N' -* B and
that iV and N' admit boundaries. Let Λί and A' be sliced Z-sets (inN U A
and iV' U ̂ Γ) which compactify N and JV' where we retain q and q' as
bundle maps. Let Ft be an instantaneous f.p. homotopy push of N U A off
of yl as in Lemma 1 of §3. Approximate

N U A 4 AT -£ ΛT -> ΛΓ' U A'

by a sliced Z-embedding/': N U A -> N' U A'.

Claim. f'(A) and ^4' are slicewise relatively fundamentally equivalent
in N' U A'.

The method of proof is much like that used in §3 and so we just
indicate the construction of the slicewised relative fundamental sequences
between f\A) and A'. Let f'(N U A) X [0,1) be a fibered collar of
f'(N U A) inN' U Λ' with/'( JV U A) = /'(ΛΓ U Λ) X {0}. Define/ = { fk:
f'(N UA)X [0,1) -> JV'} by fk=fF1/k(frιπf>(NuA), where τr"denotes
projection, and g = {g^: iV' U A' -> iV'} by gΛ = f'gG1/k where g is a
proper fiber homotopy inverse of/and Gt is a homotopy push off of Ά.

Therefore, by the sliced shape complement theorem, there is a f.p.
homeomorphism h: (N' U A') -f\A) -» N' with A «f.p.id. Then Λ|: /'(iV
U 1̂) X [0,1/2] — f\A) -»iV' is a f.p. homeomorphism near oo and by
fibered stability and Z-set unknotting there exists a f.p. homeomorphism
s: N -> (iV U A) X [0,1/2] - Λ X {0}. Then φ = Λ(/' X id)s is a f.p.
homeomorphism near oo between N and N\ It remains to be shown that φ
is proper fiber homotopic to /. That φ and / are homotopic through a f.p.
homotopy is easy, indeed

φ = * ( / ' x id)ί »f.PφA/' «f.P./' »f,./*ί =f.P./

A slightly more delicate analysis is needed to achieve the proper require-
ment; the homotopy above is not proper. Part of the problem is the fact
that our homotopy push of N U A off of A, namely Ft9 is decidedly not
proper when restricted to N.

Knowledge of the construction of the homeomorphism h from the
sliced shape complement theorem is what enables us to find a proper
homotopy. Rather than getting stuck in the morass of the proof of §3 we
indicate how to view h more simply, basically by combining the construc-
tions of the complement theorem with those of the lemma preceding it as
Chapman does in the unfibered case in [8]. Briefly, there exists an
increasing sequence of positive integers {̂ V/}°11 and sliced Z-embeddings
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a2n+i a n ( * «2n a P P Γ o χ i m a t i n g / ^ 2 / J + 1

 a n d 8N2n> respectively. Then by fibered
Z-set unknotting and extending by the identity outside of smaller and
smaller neighborhoods of f\A) and A\ we get f.p. homeomorphisms
Λ2rt + i> h-2\ N' ^ N' extending a2n+1<> Λ"1 o h2

λ o . . . o*-J and
*2«-i ° ^2«-2 ° " " °h2°h1o a2n. The f.p. homeomorphism h is defined
by

h(x)= l i m h2n+1»h2n° ••• oh^x).
n*n-* oo

Since we know from the proof that each x e N is moved only finitely

many times by this infinite composition there exists, for any x e N, an n

such that h(x) = h2n+1

o h2n ° ••• ° Λ2 © /^(JC) which is close to a 2 « + i ( x )

(merely!). But a2n+ι is close to fN which is given above to be

fFι/JfT\(NuA) letting m = N2n+ι^

Therefore Φ = p A / ' = / F 1 / / M ( / r V u / = / f i / . o n a c e r t a i n

compact ring of N where choosing the compact ring appropriately closer
to A increases m. Piecing these homotopies together note that by closeness
the latter homotopy above takes the proper map hf to a proper map
through proper maps and so is proper.

The final homotopy to check, fFt on pieces, is not hard to recognize as
proper. For given a compactum C c N'9 /~1(C/) = C is compact since/
is proper. Then for m large Fn t e [0,1/m], is the identity on C so inverse
images of compacta are compact and φ is proper fiber homotopic to/.

8. Applications. Given a non-compact β-manifold bundle, p: M -»
B, the application of the results contained in this paper first requires
verification that the bundle is sliced tame at oo and of sliced finite type as
discussed in the introduction. The Homotopy Boundary Theorem then
provides a proper fiber homotopy equivalence/: M -» N to a β-manifold
bundle which admits a boundary. The existence of a homeomorphism
near oo in the proper fiber homotopy class of / is then a necessary and
sufficient condition for the original bundle to admit a compactification.

In Corollary 3 of the introduction we have assumed sliced tameness at
oo and hence begin by proving the following

Assertion, p: M -> Sι is fiber homotopy equivalent to a compact
β-manifold bundle.

Proof. Choose a point * E S 1 and let F = p~ι(*) be the fiber of the
given bundle. The sliced tameness at oo of M -> Sι restricts to show that
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Fis tame at oo. Thus simply choosing a large clean, compact submanifold
Fλ and a homotopy which takes the end F — Fx to a compact portion of
the space we can feather the homotopy to the identity on Fλ — (dFλ X
[0,1)) and observe thus that we can homotope the identity map on F to a
push into a finite portion of the space. Triangulation of β-manifolds then
implies that F is finitely dominated. Wall's finiteness obstruction assigns
to each finitely dominated space X an element σ(X) in the reduced
projective class group K0(Z^X) which vanishes if and only if X has finite
type. When Jfis simply connected it is well-known that σ(X) = 0. Thus JF
is of finite type and we let /: F -> P be a homotopy equivalence to the
compact β-manifold P.

Now let the map a: (/, 9/) -> (S1, *) be a wrapping of the unit
interval once around S1. We obtain a characteristic map (see [11]) φ:
F -> F of p: M -> B by lifting α <> Π 7 : F X / -» Sι to # : F X / -> M with
//0 the inclusion map and setting φ = Hv Consider the homotopy equiva-

g Φ f
lence P -> F -> F -> P where g is a homotopy inverse of /. Since P is
simply connected the Whitehead group of P is trivial. The map/φg is then
a simple homotopy equivalence and by the Classification Theorem there
exists a homeomorphism h: P -+ P with h — fφg. Therefore we have a
homotopy commutative diagram

h

P -> P

si U
Φ

F -> F

Form the mapping torus of A, τ(A) = P X [0, l ] / ~ where — is the
equivalence relationship generated by (JC, 1) ~ (A(JC), 0). τ(A) is a compact
β-manifold bundle over Sι with characteristic map A. Since A/ = /φ, τ(A)
is fiber homotopy equivalent top: M -> S1 by Lemma 5.2 of [11]. D

Before we apply our main theorem we calculate Π o of the space of
concordances of our fiber F and show how this concordance information
implies an isotopy result, namely that when T1O

<£(XQ) = 0 proper homo-
topy classes of homeomorphisms coincide with isotopy classes. The space
of concordances of any space X, denoted ^(X), is the function space of
all homeomorphisms on X X / which are the identity on X X {0}. Chap-
man in [7] provides exact sequences which relate Π o of the space of
concordances of a non-compact β-manifold to various limits of Π o of the
space of concordances of compact submanifolds and complements of
compact submanifolds and Whitehead groups of such complements. Using
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these sequences (Theorems 2 and 3 of [7]) and a compact result (C in [7]
which Chapman calculates from [21] and [23]) yields

PROPOSITION 8.1. If X is a simply connected non-compact Q-manifold
which is simply connected at oo then Iίo^{X) = 0.

An easy consequence of Π o of the concordances of a β-manifold
vanishing is the following

PROPOSITION 8.2. Suppose X is a non-compact Q-manifold with
TIQ£( X) = 0. If h: X —> X is a homeomorphism which is proper homotopic
to the identity then h is isotopic to the identity.

Proof. Replace X by X X I and let h: I x / ^ l x / b e a homeo-
morphism such that h ~ p id. In particular then, h\Xx0 ~p(X X 0 «-> X X
/) and since X X 0 is a Z-set in X X I Z-set unknotting provides us with
an isotopy H: (XXl)Xl->Xxl with Ho = i d ^ x / and H^I^Q =
id^xo. Define H: (X X I) X I -> X X I by H = H<>(h X id) so that
Ho = h and Hλ = Hλh. Since Hλ\XXQ = id^ x 0 and Ht is a homeomor-
phism for all t we have that H is an isotopy between h and the concor-
dance Hv

The assumption that Π 0 # ( X X /) = 0 implies that there exists a map
φ: [1,2] -> <g{X X I) such that φ(l) = Hx and φ(2) = id^ x / . The result
follows by defining an isotopy φ: ( I X / ) X [ 1 , 2 ] ^ I X / from Hx to

by setting^ = φ(t). Π

The following restatement is the form of the above result which we
shall use.

PROPOSITION 8.3. Suppose X is a non-compact Q-manifold with
n o ^ ( X ) = 0. If hv h2: X -> X are homeomorphisms which are proper
homotopic then hλ is isotopic toh2Π

Returning to the proof of the corollary we apply the Homotopy
Boundary Theorem to deduce a proper fiber homotopy equivalence /:
M -» N where g: N -> Sι is a β-manifold bundle which admits a
boundary. Splitting both bundles over some point * e Sι yields bundles
over the unit interval which are thus products as well as a fiber homotopy
equivalence
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Note that we may take g~ι(*) = F by Siebenmann's infinite simple
homotopy theory [27] and the assumptions on F. The identifications
F X {0} -> F X {1} used to recapture the bundles p: M -> Sι and g:
N -> S1 from the above products yield homeomorphisms Λx and h2 from
F to itself such that clearly τ{hx) » f p M and τ(Λ2) « f p JV. But it is easy
to see in general that given proper homotopy equivalences/^ X -* X and
/2: X' -» X' and a proper fiber homotopy equivalence between r{fx) and
τ(/ 2) there exist proper homotopy equivalences φl9 φ2: X -* X' such that
Φi/i —pfiΦi- I n O U Γ situation observing that the φ, come from looking at
the bundle split over a point of Sι and making an appropriate choice of
the identification of g-1(*) with F we get hλ -ph2. Then Propositions 8.1
and 8.3 yield an isotopy from hλ to h2, say G: F X I -* F with Go = hλ

and Gx = Λ2. Recalling that rih^ = FX [0,l]/(x,l) - (Af.(jc),O) define

This is a f.p. homeomoφhism and so we have shown that M and JV are
fiberwise homeomorphic and the result is clear.

Corollary 3 and its proof remain valid with any finite one-dimen-
sional polyhedron as base. As a last note we remark that similar calcula-
tions involving non-compact β-manifold bundles with slightly more gen-
eral fibers are possible. For example, results of Bass, Heller and Swann
([1]) and Stallings ([28]) show that Wh(X) = 0 for any space X with UλX
free or free abelian. Therefore a non-compact g-manifold bundle over S1

which is sliced tame at oo need only for its fiber to have a free or free
abelian fundamental group in order for the proof that it has sliced finite
type to go through. Chapman's exact sequences for Π 0 ^ ( M ) do require
more care though, e.g. we get Π 0 ^(M) to vanish for M a compact
β-manifold (a fact used in the proof of Corollary 3) only if M has simply
connected components.
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