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A NOTE ON LOCALLY A4-PROJECTIVE GROUPS

ULRICH ALBRECHT

If 4 is an abelian group, then a group G is locally 4-projective if
every finite subset of G is contained in a direct summand P of G which is
isomorphic to a direct summand of @ , 4. Under the assumption that A4 is
a torsion-free, reduced abelian group with a semi-prime, right and left
Noetherian, hereditary endomorphism ring, various results on locally
A-projective groups are proved that generalize structure theorems for
homogeneous, separable, torsion-free abelian groups.

1. Introduction. Since the publication of Baer’s paper on torsion-free
abelian groups [6] in 1937, many attempts have been made to give
structure theorems for classes of torsion-free abelian groups reaching
beyond the case of completely decomposable groups. However, even in
the case of separable torsion-free abelian groups, only the homogeneous
case yields some interesting results whose proofs heavily depend on the
well-known structure of subgroups of the rationals Q. Naturally, the
question arises whether the results themselves depend on the consideration
of subgroups of Q too.

A first step in answering this question was done by Arnold and Lady
in 1975. In [4], they introduced the following generalization of the class of
homogeneous, completely decomposable groups. If 4 is a torsion-free,
reduced abelian group, then a group G is A-projective if it is isomorphic to
a direct summand of @ 1A° In the case that both, 4 and G, are torsion-free
and have finite rank, Arnold and Lady were able to show that most
properties of homogeneous, completely decomposable groups still hold in
the more general setting that the endomorphism ring E(A4) of 4 is right
hereditary. In [13], Huber and Warfield showed that under these condi-
tions on A, the ring E(A) is semi-prime, right and left Noetherian, and
‘hereditary. Using this result, the author was able to remove the finite rank
condition from Arnold’s and Lady’s results [1]. These results are sum-
marized in Lemma 3.1 of this paper.

The progress made suggests the question whether a similar generaliza-
tion is possible for homogeneous, separable torsion-free groups. In [5],
Arnold and Murley began the discussion for torsion-free abelian groups 4
such that E(A) is a principal ideal domain, and E(A4)/I is torsion for all
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non-zero ideals I of E(A). They called an abelian group G locally
A-projective if every finite subset of G is contained in an A-projective
direct summand of G. However, compared with [4], these conditions on 4
are rather restrictive even if 4 has finite rank. In view of the results in [1],
a generalization to the case of torsion-free, reduced abelian groups 4 with
a semi-prime, right and left Noetherian, hereditary endomorphism ring
would provide a generalization of torsion-free separable groups which
besides having an interest of its own as a structure theory for a rather
large class of groups would also give a deeper understanding of homoge-
neous, separable groups.

The goal of this paper is to present such a generalization by discussing
locally A-projective groups using properties of locally projective E(A)-
modules, i.e. of E(A)-modules M such that every finite subset of M is
contained in a projective direct summand of M. The module-theoretic
results needed for this are given in §2. The key result is

PROPOSITION 2.2. Let R be a semi-prime, right and left Noetherian,
hereditary ring. An R-module M is locally projective if and only if M is
isomorphic to a submodule M’ of I1,R for some index set I such that
(II,R)/M'’ is a non-singular R-module.

It should be remarked that Chase proved the results in §2 in the case
that R is a principal ideal domain [7], but his proofs do not carry over to
the general setting.

Before it is possible to use the information obtained in §2, it is
necessary to consider the finite topology on the endomorphism ring of an
A-projective group in order to be able to compare the results of this paper
with those in [5]. In this, as in [1], it becomes apparent that the usual
notion of purity does not yield the generality desired in this paper. To
overcome this difficulty, the notion of almost { A} ,-purity is introduced
in §4. If for a pair (4,G) of abelian groups, S,(G) = XL{f(A): f€
Hom( 4, G)}, then a subgroup H of an abelian group G with S,(G) = G is
almost { A},-pure in G if S,(H) = H, and H is a direct summand of
H + f(A) for all f € Hom( A4, G). Special emphasis is given to the consid-
eration of almost { A},-pure subgroups of locally A-projective groups.
Moreover, it is outlined how almost { 4} ,-purity relates to purity in this
case.

Now, it is possible to formulate and prove

THEOREM 5.1. Let A be a torsion-free, reduced abelian group with a
semi-prime, right and left Noetherian, hereditary endomorphism ring. The
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following are equivalent for a torsion-free abelian group G:

(1) G is locally A-projective.

(i) S,(G) = G, and G is isomorphic to an almost { A} ,-pure subgroup
of S (11, A) for some index set I.

The results in §4 show that in Theorem 5.1 almost { 4} ,-purity can
be replaced by purity if in addition 4/U is torsion for all subgroups
U = A of A. This yields the exact formulation of Arnold’s and Murley’s
result. This last condition is satisfied for all groups considered in their
paper, but also for all torsion-free reduced groups of finite rank with a
right hereditary endomorphism ring. In view of [4], a further reduction of
the conditions on A seems very hard to achieve.

2. Locally projective R-modules. Many of the results of this section
have been proved by Chase in [7] for the case that R is a principal ideal
domain, but the proofs do not carry over even to Dedekind domains.

Using the notation of [12], the annihilator of a subset X of a left
R-module M is ann ,(X) = {r € R: rX = 0}. Clearly, ann,,( X) is a left
ideal of R. For any left R-module M, let Z(M) = {m € M: ann,,(m) is
an essential left ideal of R}. M is non-singular if Z(M) = 0. In particular,
if R is a principal ideal domain, then Z(M) is the torsion-submodule of
M.

For the remainder of this section, R will denote a semi-prime, right
and left Noetherian, hereditary ring, i.e.

(i) I? # O for all non-zero ideals I of R,

(i1) every right (left) ideal of R is finitely generated as a right (left)
R-module, and

(iii) every right (left) ideal of R is projective as a right (left) R-module.
In this case, Z(R) = 0 by [8, Theorem 1.6], and Z(M/Z(M)) = 0 for
every R-module M by [12, Proposition 1.23a]. Moreover, a right (left)
ideal of R is essential if and only if it contains a regular element of R, i.e.
it contains an element r such that rs = 0 or sr = 0 implies s = 0 for all
s € R [8, Theorem 1.10 and Lemma 1.11]. Consequently, an R-module M
is non-singular if and only if rm # 0 for all 0 # m € M and all regular
elements r or R.

THEOREM 2.1. Let R be a semi-prime, right and left Noetherian,
hereditary ring. If M is a finitely generated R-module, then M = P & Z( M)
where P is a finitely generated, projective R-module.

Proof. R has a semi-prime, Artinian right and left classical quotient
ring which is also right and left maximal [12, Theorem 3.37]. By [12,
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Theorem 3.10 and Theorem 5.17], every finitely generated, non-singular
R-module can be embedded in a free R-module. Hence, M/Z(M) is
projective since R is hereditary. Therefore, M = P & Z(M) where P is a
finitely generated, projective R-module.

Another important property of modules over Noetherian rings was
discovered by Jensen, see [11, Satz 6.2] for instance. He showed that I, R
is a locally projective right and left R-module if R is right and left
Noetherian.

PROPOSITION 2.2. Let R be a semi-prime, right and left Noetherian,
hereditary. ring. An R-module M is locally projective if and only if it is
isomorphic to a submodule M’ of 11, R such that (I1,R)/M’ is a non-singu-
lar R-module.

Proof. Suppose M is locally projective. Define
M = { P: Pis a finitely generated, projective summand of M }.

For every P € IR, choose a projection 7,: M — P which is the identity on
P and define @: M — I1,_q P by ®(m) = (7p(m)) pesp-

If m € ker @, choose a finitely generated, projective direct summand
P, of M containing m. Then, 0 = m,(m) = m, and ® is a monomorphism.

To show that (11,4, P)/®(M) is non-singular, let x € II,_q, P such
that cx € ®(M) for some regular element ¢ of R, say cx = ®(m) =
(mp(mM)) pegp- Write x = (xp) peq With xp, € P. Since M is locally projec-
tive, there is P, € M such that m € P,. Then, m = mp(m) = cxp and
c®(xp) = ®(m). Hence, c(x — ®(x5)) = 0. Consequently, x — ®(xp)
€ Z(M) = 0. Therefore, (I1 g, P)/P(M) is a non-singular left R-mod-
ule.

For each P € M, choose Qp such that P & Q, is a finitely generated,
free R-module. Then, II, g P is a direct summand of II,_ 4, (P & Qp),
and the latter module is isomorphic to II; R for some index set I. Thus,
(ITpeqe(P ® Qp))/®(M) is non-singular.

Conversely, suppose M C II, R such that (II,R)/M is non-singular.
If {m,,...,m,} € M, then there is a finitely generated, projective sum-
mand of P of II;R containing m,,...,m, by Jensen’s result. Let U =

" _1Rm; and choose a submodule V of P containing U such that
V/U = Z(P/U). Since (II, R) /M is non-singular, V is contained in M.

Moreover, Z(P/V)=Z(P/U)/(V/U))=Z(P/U)/Z(P/U)) =
0. Therefore, P/V is a finitely generated, non-singular R-module. Conse-
quently, P/V is projective, and ¥V is a summand of II; R. But then, V is
projective summand of M containing m,,...,m,,.
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From this last result, some important corollaries can be deduced
which have an interest of their own, although they will not be used in the
following.

COROLLARY 2.3. Let R be a semi-prime, right and left Noetherian,
hereditary ring, and let M be a left R-module.

(i) If M is locally projective, then every submodule U of M with M /U
non-singular is locally projective.

(ii) Every submodule U of Hom (M, R) with Hom (M, R)/U non-
singular is a locally projective right R-module.

Proof. (i) is obvious.
For (ii) consider a projective resolution of M, say

0-K—-> @R->M-0.
I

Applying the functor Hom z(—, R) induces a sequence
0 - Hom,(M, R) - II,R - Hom,(K, R).

Since Hom ;z( K, R) is a non-singular right R-module, Hom z( M, R)
is locally projective by Proposition 2.2. An application of (i) completes the
proof.

For the sake of an easier notation, denote Homz(M, R) by M*.
There is a natural transformation i,,: M — M** given by i, (m)(¢) =
¢(m) forallg € M*and allm € M.

THEOREM 2.4. Let R be a semi-prime, right and left Noetherian,
hereditary ring. A left R-module M is locally projective if and only if i), is a
monomorphism, and M** /i,,(M) is non-singular.

Proof. Let ¢ € M** such that cg € i,,(M) for some regular element
¢ of R, say cp = i,,(m). Suppose, x € ker i,,. If M is locally projective,
then there is a finitely generated, projective summand U of M containing
m and x. The sequence

0O-U-M->-M/U-0
splits, and consequently the sequence
0> (M/U)* > M*> U*—>0
is split-exact. Applying * once more induces a commutative diagram

0 — U** — M**
Tiy Tin
0 -» U - M.
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Since U is finitely generated and projective, i, is an isomorphism by
[14, Theorem 5.1]. Therefore, 0 = i,,(x) = i, (x) implies x = 0. More-
over, since cp = i,,(m) and m € U, one has cp € i,,(U). Consequently,
¢ + U** is an element of Z(M**/U**). Since U** is a direct summand
of M** the module M** /U** is non-singular. Therefore, there is u € U
such that @ = i, (u) = i, (u). Consequently, M** /i, (M) is non-singu-
lar.

The converse is an immediate consequence of Corollary 2.3.

3. A-projective Abelian groups and the finite topology. An abelian
group is self-small if the functor Hom(A4, —) preserves direct sums of
copies of A. For these groups 4, Hom( 4, —) induces a category equiva-
lence between the category of A-projective abelian groups and the cate-
gory of projective right E(4)-modules. Its inverse is given by the functor
~® s A using that 4 is a left module over its endomorphism ring. This
category equivalence was introduced by Arnold, Lady, and Murley in [4]
and [S]. Using it, the author was able to prove the following result in [1].
Because of the point of view taken there, it was stated differently, but the
proof carries over literally.

Asin [4], S,(G) is written for the image of the natural map

0;: Hom(A4,G) ® A —> G

defined by 6;(f ® a) = f(a). It is easy to show that S,(G) = G if and
only if G is an epimorphic image of an A-projective group.

LEMMA 3.1. Let A be a torsion-free, reduced, self-small abelian group
which is flat as a left E( A)-module. If E( A) is right hereditary, then
(1) every exact sequence

0-B->G—->P—-0
where P is A-projective, and S,(G) + B = G splits, and
(ii) every subgroup B of an A-projective group with S,(B) =B is
A-projective.

In this paper, interest concentrates on torsion-free reduced abelian
groups A whose endomorphism ring is semi-prime, right and left
Noetherian, and hereditary.

PROPOSITION 3.2. A torsion-free, reduced abelian group A whose endo-
morphism ring is semi-prime, right and left Noetherian, and hereditary is
self-small. Moreover, it is flat as a left E( A)-module, each regular element of
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E(A) is a monomorphism, and conditions (i) and (ii) of Lemma 3.1 are
valid for A.

Proof. Let ¢ be a regular element of E(A), and a € ker ¢. Then,
E(A)/ann (a) = E(A)a C A. Since ¢ € ann 4(a), and E(A) is a semi-
prime, right and left Noetherian ring, ann ,(a) is an essential left ideal of
E(A). Because a semi-prime, right and left Noetherian, hereditary ring has
Krull dimension 1, E(A)/ann ,(a) is an Artinian left E(A)-module by [8,
Theorem 8.21].

Define E(A)-submodules U, of E(A)a by U, = E(A)n!a for all
non-negative integers n. Since U, ,, C U, for all n, there is n, < w such
that U, ., = U, for all ny < n < w. Here w denotes the first infinite
ordinal number. Consequently, U, is divisible. Since 4 is reduced, 0 =
U,, = no!E(A)a. But 4 is torsion-free implies that E(A4)a = 0. Therefore,
¢ is a monomorphism. By [2, Theorem 5.1], 4 is self-small.

Moreover, since the regular elements of E(A) are monomorphisms, 4
is a non-singular E(A)-module. In particular, every finitely generated
E(A)-submodule of A4 is projective by Theorem 2.1. By [15, Corollary
3.31}, A is flat as an E( A)-module.

Actually, the proof of [2, Theorem 5.1] shows more than the fact that
A is self-small. On E(A), a topology called the finite topology is defined
by taking

{ann ,(x): X C A finite}
as a basis of neighborhoods of 0. The proof shows that E( A4) is discrete in
this topology. In [5], Arnold and Murley studied A-projective groups
whose endomorphism ring is discrete in the finite topology. In the
remaining part of this section, these groups are characterized in terms of
their A-rank where the A-rank of an A-projective group P is defined to be
the smallest cardinal number 8 such that P is an epimorphic image of

GBRA.

PROPOSITION 3.3. Let A be a torsion-free, reduced abelian group such
that E(A) is a semi-prime, right and left Noetherian, hereditary ring. An
A-projective group has finite A-rank if and only if its endomorphism ring is
discrete in the finite topology.

Proof. In a first step, it is shown that an 4-projective group P = @, 4
for n < w has an endomorphism ring which is discrete in the finite
topology. By the remarks preceding this proposition, there is a finite
subset X of A such that ann ,( X) = 0. Without loss of generality, assume
0e X
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Foreveryi € {1,...,n},let §;: A = P denote the embedding into the
ith-coordinate, while 7;: P — A denotes the projection onto the ith-coor-
dinate. Define

Y= { Y 8,(x,):x,€ Xfori= 1,...,n}.

i=1
Y is a finite subset of P. Suppose there is 0 # ¢ € ann(Y). Since ¢ # 0,
there is a, € 4 and iy € (1,...,n} such that ¢§, (a,) # 0. Moreover,
there is j, € {1,...,n} with w98, (a,) # 0, i.e. 0 # 7§, is an element
of E(A) which annihilates X because for all x € X, §,(x) € Y. The
resulting contradiction shows that ann ,(Y) = 0.

In the second step, assume P & Q = @ A4, andletw: @ A — Pbe
the projection onto P with kernel Q. In order to show that E(P) is
discrete in the finite topology, let Z = #(Y) where Y is defined as in the
first step.

Suppose p € annp(Z). Extend p to a map p € E(®, 4) by defining
p(g) =pm(g)forallge @ A.Forally € Y,p(y) = pm(y) = 0. By the
first step, p and hence p are zero.

Conversely, suppose P is a direct summand of & ,4 whose endomor-
phism ring is discrete in the finite topology. Choose a finite subset X of P
such that ann »( X) = 0. There is a finite subset J of I such that X C & ,4.
Let m @&,4 > @, ,4 be the projection with kernel & 4. Since
S (7(P)) = w(P), m(P) is an A-projective group. Therefore, P = P, & P,
where P, = P N ker #. Moreover, X C P;. Thus ann,(X) # 0if P, # 0, a
contradiction. Consequently, P = P, is a direct summand of & JA, and
has finite A-rank.

4. Almost { A} ,-purity. As [1, Theorem 5.1] shows, the concept of
purity is not sufficiently general for the discussion of A-projective groups.
One generalization of purity was given by C. P. Walker in [16]. In that
paper, a non-empty class ® of abelian groups is considered, and purity
with respect to O is defined by calling a subgroup H of an abelian group
G O ,-pure if H is a direct summand in every subgroup B of G containing
H such that B/H € ©;,, where O; = {f(X): X€ 0O and f€&
Hom( X, G)}. In this paper, only the case ® = { 4} is of interest.

Applying this definition to the situation given, the following difficulty
arises. In view of the results of [5], the generalization needed shall have the
property that purity implies the generalized form of purity in the case of
pure subgroups of (locally) A-projective groups if E(A) = Z for instance.
However, consider the following example.
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Choose a torsion-free abelian group 4 of countable, infinite rank with
E(A) = Z. There is an E( A)-projective resolution
0- QRZ-RXRZ-Q-0.
J

I

Tensoring with 4 over E(A) induces an exact sequence
0- ®®A4-> RRA4A->QR 4-0.
7 7 Z

Since A4 has countable, infinite rank, Q ® A= GBwQ- Thus, & IA is a
pure subgroup of & ,4 which is not a direct summand since 4 is reduced.
On the other hand, there is a free subgroup F of 4 such that F/F, = & Q.
Then, for some subgroup V of A containing F,, A/F, = V/F, ® F/F,.
Consequently, (&,4)/(®,4)=A/V & E‘)e,m ie. @,4 is not { A},
pure in @ ;A

To overcome this difficulty, the following is introduced:

DEFINITION 4.1. Let A be an abelian group. If G is an abelian group
with S,(G) = G, then a subgroup H of G with S,(H) = H is almost
{ A} s-pure in G if for every subgroup U of G with U € {A};, H is a
direct summand of H + U.

Obviously, (H + U)/H € {A}; /4 Thus, { A},-purity implies al-
most { A} ,-purity.

LEMMA 4.2. Let A be an abelian group. If H C K C G are abelian
groups with S,(H)=H, S(K)=K, and S,(G)= G, then H almost
{ A} y-pure in K and K almost { A} -pure in G imply H is almost { A} ,-pure
inG.

Proof. Let U € { A};. Then, K + U = K & W for some subgroup W
of G. Let #: K + U — K denote the projection onto K with kernel W.
Then, #(H) = H, and for all h€ H and u € U, one has h + u=h +
a(u) + (1 — 7)(u). Therefore, H+ U C (H + w(U)) ® W. Moreover,
7(U) is a homomorphic image of 4 in K. Hence, H + #(U) = H ® V for
some subgroup V of K. Thus, H is a direct summand of H + U.

Almost { A},-pure subgroups of an abelian group G will be of
particular interest if G is a subgroup of I1, 4 in view of §5. Obviously, this
groups can be described by the condition that R, (G) = N{kerf: f€
Hom(G, A)} is zero. R ,(G) is the kernel of the natural map ¢ from G to
Hom ;, ,, (Hom(G, 4), 4) defined by p(g)(f) = f(g).
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LEMMA 4.3. Let A be a torsion-free, reduced abelian group whose
endomorphism ring is semi-prime, right and left Noetherian, and hereditary.
If U= (&, A)/V and R (G) = O, then U is isomorphic to a subgroup of
® A for some r < w. U is A-projective, and Hom(A4,U) is a finitely
generated right E( A)-module.

Proof. Since U is an epimorphic image of & A, Hom(U, 4) is a
submodule of the finitely generated, free left E(A4)-module
Hom(&® A4, A) = &, E(A). Because E(A) is Noetherian, Hom(U, A) is
finitely generated as an E( A)-module, say by f;,...,f,. Then, since R ,(U)
= 0, the map u — (f(u)) embeds U into @& A. The rest of the lemma
follows from Lemma 3.1.

PROPOSITION 4.4. Let A be a torsion-free, reduced abelian group whose
endomorphism ring is semi-prime, right and left Noetherian, and hereditary.
If G is an abelian group with R ,(G) = 0 and S,(G) = G, then the following
are equivalent for a subgroup H of G with S,(H) = H.

(1) H is almost { A} ,-pure in G.

(ii) Hom( 4, G)/Hom( A, H) is a non-singular right E( A)-module.

(iii) H is a direct summand of H + U for all subgroups U of G such that
U= (®,A4)/V for somen € w.

Proof. (i) = (ii): Suppose, f € Hom(4, G) such that for some regular
element ¢ of E(A) fc € Hom(A4, H). Since H is almost { A} ,-pure in G,
H + f(A) = H ® C. For some g in Hom(A4, H) and 4 in Hom(4, C),
f = g + h. Then, hc = 0. Since R ,(G) = 0, Hom( 4, G) < II,E(A) and is
non-singular. Hence, A = 0. This proves (ii).

(i) = (iii): By Lemma 4.3. U is A-projective of finite A-rank, and
Hom( 4, U) is a finitely generated E(A)-module. Thus,

(Hom(A, H) + Hom(A4,U))/Hom(A, H) € Hom(A4, G)/Hom(A4, H)

is a finitely generated submodule of the nonsingular E(A)-module
Hom( A4, G) /Hom( A, H). Therefore, it is projective, and

Hom(A4, H) + Hom(A,U) = Hom(A4, H) ® M
for some E(A)-module M.

By [1, Lemma 6.2], the natural map 6, from Hom(4, G) ®;,, G to G
is a monomorphism. Observing that S,(H)= H and S,(U) = U, one
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obtains
H+U=S,H)+S,(U)

= 0(Hom(4, H) ® ,,, A) + 05(Hom(4,U) ®E(A)A)

= 0;((Hom(4, H) + Hom(4,U)) ®, , 4)

= 0(Hom(4, H) ®, , 4) ® 0(M ® , , 4)

E(4)

=H® oG(M ®E(A)A)'
This proves (iii).

(iii) implies (i) is obvious.
From this, several important corollaries can be deduced.

COROLLARY 4.5. Let A be a torsion-free, reduced abelian group whose
endomorphism ring is semi-prime, right and left Noetherian, and hereditary.
If B is an almost { A} ,-pure subgroup of an A-projective group P such that
S B) =B and B is discrete in the finite topology, then B is a direct
summand of P.

Proof. By Lemma 3.1, B is A-projective, and by Proposition 3.3, it has
finite A-rank. Consequently, Hom(A4, B) is a finitely generated right
E(A)-module which is contained in a finitely generated direct summand
Q of Hom( 4, P). Since B is almost { 4} ,-pure in P, Q/Hom(A4, B) is a
non-singular E( A)-module. Since Q is finitely generated, Hom(A4, B) is a
direct summand of Q and hence of Hom( 4, P). Tensoring with 4 over
E(A) and observing that the natural maps 6, and 6, are isomorphisms
shows that 0 - B - P - P/B — 0 splits.

COROLLARY 4.6. Let A be a torsion-free, reduced abelian group whose
endomorphism ring is semi-prime, right and left Noetherian, and hereditary.
An abelian group G is A-projective of countable A-rank if and only if it is the
union of an ascending chain {G,},., of almost { A},-pure A-projective
subgroups of G of finite A-rank.

Proof. Since A is self-small, G = Hom(4, G) ® ECA) A if G is A-pro-
jective. Since E( A) is right hereditary, there is a countable family {1,,}, .,
of right ideals of E(A) such that Hom(4,G) = & __1I,. Since E(4) is
right Noetherian, I, ® . ™ A is A-projective of finite A-rank.
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Conversely, G,,, =G, ® C,,, for all n < w. If Cj = G, then G is
the direct sum of the C,’s. Since each C, is A-projective of finite 4-rank, G
is A-projective of countable 4-rank.

From the last result, it is possible to deduce the following. It was
stated in [1] under some additional assumptions as Theorem 6.3, but its
proof carries over literally to the setting presented here.

COROLLARY 4.7. Let A be a torsion-free, reduced abelian group with a
semi-prime, right and left Noetherian, hereditary endomorphism ring. If G is
a subgroup of 11, A which is an epimorphic image of ® A, then G is
A-projective.

This section concludes with a discussion of the relation between
almost { 4} ,-purity and purity. In this, only pure subgroups of an abelian
group G with R ,(G) = 0 are considered. Under the conditions of Corollary
4.7 on A, the following gives a sufficient condition on 4 such that a pure
subgroup H of such a G with S,(H) = H always is almost { 4 } ,-pure.

THEOREM 4.8. Let A be a torsion-free, reduced abelian group such that
E(A) is a semi-prime, right and left Noetherian, hereditary ring. The
following are equivalent:

(i) For every torsion-free abelian group G with S,(G) = G and R ,(G)
= 0, the smallest pure subgroup H, containing a subgroup H of G with
S,(H) = H satisfies S,(H4) = H, and is almost { A} ,-pure in G.

(i) If U is a subgroup of A which is isomorphic to A, then A/U is
torsion.

(iii) If U is a subgroup of A which is isomorphic to A, then A/U, is
reduced where U ,, is the smallest pure subgroup of A containing U.

Proof. (i) = (ii): Let U be a subgroup of 4 with U = 4. The smallest
pure subgroup U, of A containing U is almost {A4},-pure in A by
condition (i). Therefore, S,(U,) = U,. By Lemma 3.1, U, is A-projective.
By Corollary 4.5, 4 = U, & C for some subgroup C of 4. Then, E(A4) =
Hom(A4,U,) ® Hom(A4, C). Since U = 4, Hom(A4, U,) contains a regular
element of E(A). Thus, Hom(A, U,) is an essential right ideal of E(A),
and Hom(A4,C) = 0. Since C is a direct summand of A, this is only
possible if C = 0. Consequently, 4 /U is torsion.

(ii) = (iii) is obvious.

(iii) = (i). In a first step, the implication (iii) = (ii) is shown. Let U
be a subgroup of 4 with U = A. With the notation from the preceding
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paragraph, Hom(4, U,) is essential right ideal of E(A). Since E(A) has
Krull dimension 1, E(A)/Hom(4, U,) is an Artinian right £(4)-module
which is torsion-free as an abelian group. Thus, E(A4)/Hom(4,U,) is
divisible. Applying the functor - ® A induces a commutative diagram

E(A)

E(4) Crd - (E(A)/Hom(4,U,)) ®py4d — 0
0, 1o

A > A/U, > 0.

Since 6, is an isomorphism, # is an epimorphism. In particular, 4 /U, is
divisible. Since it is also reduced, 4 /U, = 0. This proves (ii).

Now, consider an abelian group G with R ,(G) = 0 and S,(G) = G.
Let H be any subgroup of G with S,(H) = H. In order to show that H, is
almost { A},-pure in G, it is enough to show that S,(H,) = H, and
Hom( A4, G)/Hom( A, H,) is a non-singular E( 4)-module.

To show that S,(H,) = H,, let h € H,. Since S,(G) = G, there is a
subgroup W of G containing h which is an epimorphic image of an
A-projective group of finite A-rank. Moreover, R ,(G) = 0 implies R ,(W)
= 0. By Lemma 4.3, W is A-projective of finite A-rank.

Consider the exact sequence

0 - Hom(4, H) » Hom(4, H) + Hom(4, W) -> X - 0
where X is an E( 4)-submodule of Hom(A4, H + W)/Hom(A4, H). Choose
a submodule Y of Hom(A4, H) + Hom(A4, W) containing Hom(A4, H)
such that Y/Hom(A4, H) = Z( X). Then the module

(Hom(A4, H) + Hom(A4,W))/Y = X/Z(X)
is finitely generated and non-singular. Consequently, it is projective.
Applying the functor - ® , ” A gives

(Hom(A4, H) + Hom(A4, W)) L

equals ¥ ® , Ay A ® P for some A-projective group P of finite A-rank.
Applying the isomorphism 6, gives H + W = S,(H) + S(W) =
0;((Hom(A, H) + Hom(4, W)) ® A)yand HC 0,(Y ® A) since
A is flat as an E( A)-module.

Moreover, 05(Y ®, ™ A)/H is torsion. To show this, let x =
Xi.1f;®a; bein Y®, A with f,€Y and a, € A. For every i €
{1,...,n}, there is a regular element ¢; in E(A) such that fic, €
Hom(A, H) since Y/Hom(A, H) = Z(X). By condition (ii), A/c;(A)
is torsion. Hence, there is 0 # m € Z and b,,...,b, € A such that ma, =
c;(b;). Thus

mby(x) = m éfi(ai) - gf,»(ma,-) - gnlf,-c,.(b,») c H.

E(4) E(4)
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Therefore,
85(Y ®,,,A) = Su(8s(Y ®,, 4)) € Su(H.).

Furthermore, & + 05(Y ® ; ,, A4) is a torsion element of the A-projec-
tive group (H + W)/0,(Y ® A A). Since A is torsion-free, h €
104 ® riay A). Therefore, H, = S,(H ).

Finally, to show that Hom(4, G)/Hom(4, H,) is a non-singular
E(A)-module, let f € Hom(A4, G) such that fc € Hom(4, H,) for some
regular element ¢ of E(A). Since A/c(A) is torsion, one has that for all
a € A there is a’ € A and 0 # n € Z with na = c¢(a’). Thus, nf(a) =
f(na) = fc(a’) is an element of nG N H, = nH ,. Hence, f(a) € H,. This
proves that Hom( 4, G) /Hom( 4, H ,) is a non-singular E( 4)-module.

COROLLARY 4.9. Let A be a torsion-free, reduced abelian group whose
endomorphism ring is semi-prime, right and left Noetherian, and hereditary.
Suppose that A/ U is torsion for all subgroups U of A isomorphic to A. If G is
an abelian group with R ,(G) = 0 and S,(G) = G, then every pure subgroup
H of Gwith S,(H) = H is almost { A} ,-pure in G.

Finally, it shall be remarked that every torsion-free, reduced group 4
whose endomorphism ring E(A) is a principal ideal domain and satisfies
E(A)/I is torsion for every non-zero ideal I satisfies the hypotheses of
Corollary 4.9. Besides the examples from Arnold’s and Murley’s paper,
every torsion-free, reduced group A4 of finite rank with E(A) right (left)
hereditary has this property by [13, Theorem 2.3]

5. Locally A-projective Abelian groups. Let A be a torsion-free,
reduced abelian group. An abelian group G is locally A-projective if every
finite subset of G is contained in an A-projective direct summand of G.
Arnold and Murley showed in [5] that the category of locally 4-projective
groups is equivalent to the category of locally projective E(4)-modules in
the case that E(A) is discrete in the finite topology. The equivalence is
given by the functors Hom( 4, -) and - ® " A. If E(A) is a semi-prime,
right and left Noetherian, hereditary ring, then every finite subset of G is
contained in an A-projective summand of finite A-rank of G. If G is
locally A-projective, then S,(G) = G and R ,(G) = 0. However, the con-
verse does not hold since there are subgroups of II,Z that are not locally
free. Applying the results on locally projective modules from §1, it is
possible to prove

E
t

THEOREM 5.1. Let A be a torsion-free, reduced abelian group whose
endomorphism ring is semi-prime, right and left Noetherian, and hereditary.
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The following are equivalent for an abelian group G.

(i) G is locally A-projective.

(i) S,(G) = G, and G is isomorphic to an almost { A} ,-pure subgroup
of S (11, A) for some index set I.

Proof. (i) = (ii): Since G is locally A-projective and E(A) is discrete
in the finite topology, Hom( 4, G) is a locally projective right E(A4)-mod-
ule by [5, Theorem III]. By Proposition 2.2, there is an index-set I such
that Hom( 4, G) is isomorphic to a submodule U of IT, E(A) in such a
way that (I, E(A))/U is non-singular. Applying the functor - ® BA) A
induces a short exact sequence

0> U®pH4 - (I, E(4)) ®pay A
from which the diagram
0 - Hom(A4,U®,A4) — Hom(4,(II,E(A))®g., A)

T(I)U T‘Dn,su)
0 - U - I1,E(A)

is obtained. Here, ®,: M — Hom(A4, M ®p,, A) is defined by
®,,(m)(a) = m ® a. By [5, Lemma 4.5], ®,, is an isomorphism if M is
locally projective. Especially, this holds for U and II,E(A). Conse-
quently, the fact that (II, E(A4))/U is non-singular implies the same for
the quotient in the first row.

Since Hom(4, II,4) = Hom(4, S,(II,A4)) = II,E(A), one obtains
(IT, E(A)) ® 4y A = Sy(I1;4). Let G’ < S,(I1;4) be the image of
U ®4)A under this isomorphism. Then, G’ is almost { A},-pure in
S4(11,A4). Finally, [S, Theorem III] implies G = Hom(4, G) ®f 4 4 =
U ® 4y A = G'. This proves (ii).

(i) = (i): G c S,(II,A4) implies R ,(G) = 0. Because of S,(G) = G,
the natural map 6;: Hom(4,G) ®p,4 4 — G is an isomorphism
by [1, Lemma 6.2). By Proposition 4.4, the E(A)-module
Hom( A4, S,))/Hom(A4, G) is non-singular.

Finally, since Hom(4, S,(I1,4)) = II, E(A), Proposition 2.2 implies
that Hom( 4, G) is a locally projective right E( A)-module. By [S, Theorem
I}, G = Hom(4, G) ®,, 4 is locally 4-projective.

COROLLARY 5.2. Let A be a torsion-free, reduced abelian group which
has a semi-prime, right and left Noetherian, hereditary endomorphism ring.

(i) If B is an almost { A} ,-pure subgroup of a locally A-projective group
G, then B is locally A-projective. Moreover, if E(B) is discrete in the finite
topology, then B is an A-projective direct summand of finite A-rank of G.
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(i) A locally A-projective group G which is an epimorphic image of
@ A is A-projective.

Proof. In view of Lemma 4.2 and Theorem 5.1, the first part of (i) is
obvious.

If E(B) is discrete in the finite topology, then there is a finite subset
X of B with ann z( X) = 0. There is an 4-projective summand C of finite
A-rank of B containing X, say B = C & D. If D # 0, then ann z( X) # 0,
a contradiction. Therefore, B is an A-projective group of finite 4-rank.

Furthermore, Hom( 4, B) is a finitely generated E(A)-module, and it
is contained in a finitely generated, projective summand Q of Hom(4, G).
Since Q/Hom( A, B) is non-singular, Hom( 4, B) is a direct summand of
Q and hence of Hom(4, G). Applying the functor —® 4 4 completes
the proof.

(ii) is an immediate consequence of Corollary 4.7.

Combining the results of §5 with the last result in §4 gives the
following

COROLLARY 5.3. Let A be a torsion-free, reduced abelian group whose
endomorphism ring is semi-prime, right and left Noetherian, and hereditary.
Suppose that A /U is torsion for every subgroup U = A of A.

(i) If B is a pure subgroup of an A-projective group P such that
S B) = B, and E(B) is discrete in the finite topology, then B is an
A-projective summand of finite A-rank of G.

(ii) 4 group G is locally A-projective if and only if S,(G) = G, and G is
isomorphic to a pure subgroup of S,(I1, A) for some index set I.

(iii) If B is a pure subgroup of a locally A-projective group such that
S (B) = B, then B is locally A-projective. Moreover, if E(B) is discrete in
the finite topology, then B is an A-projective summand of finite A-rank of G.

Proof. By Corollary 4.9, it is possible to replace in the statement of
Corollary 5.3 purity by almost { 4},-purity. The results follow from
Corollary 4.5, Theorem 5.1, and Corollary 5.2.

Corollary 5.3 coincides exactly with the formulation of Arnold’s and
Murley’s result [5, Corollary IV]. As it has been remarked following
Corollary 4.5, it contains not only the previously mentioned result but
also the case of finite rank, torsion-free, reduced abelian groups whose
endomorphisms ring is right or left hereditary.
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